forked from OSchip/llvm-project
1228 lines
52 KiB
C++
1228 lines
52 KiB
C++
//===-- CallInterface.cpp -- Procedure call interface ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Lower/CallInterface.h"
|
|
#include "flang/Evaluate/fold.h"
|
|
#include "flang/Lower/Bridge.h"
|
|
#include "flang/Lower/Mangler.h"
|
|
#include "flang/Lower/PFTBuilder.h"
|
|
#include "flang/Lower/StatementContext.h"
|
|
#include "flang/Lower/Support/Utils.h"
|
|
#include "flang/Lower/Todo.h"
|
|
#include "flang/Optimizer/Builder/Character.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Dialect/FIRDialect.h"
|
|
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
|
|
#include "flang/Optimizer/Support/InternalNames.h"
|
|
#include "flang/Semantics/symbol.h"
|
|
#include "flang/Semantics/tools.h"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BIND(C) mangling helpers
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Return the binding label (from BIND(C...)) or the mangled name of a symbol.
|
|
static std::string getMangledName(const Fortran::semantics::Symbol &symbol) {
|
|
const std::string *bindName = symbol.GetBindName();
|
|
return bindName ? *bindName : Fortran::lower::mangle::mangleName(symbol);
|
|
}
|
|
|
|
/// Return the type of a dummy procedure given its characteristic (if it has
|
|
/// one).
|
|
mlir::Type getProcedureDesignatorType(
|
|
const Fortran::evaluate::characteristics::Procedure *,
|
|
Fortran::lower::AbstractConverter &converter) {
|
|
// TODO: Get actual function type of the dummy procedure, at least when an
|
|
// interface is given. The result type should be available even if the arity
|
|
// and type of the arguments is not.
|
|
llvm::SmallVector<mlir::Type> resultTys;
|
|
llvm::SmallVector<mlir::Type> inputTys;
|
|
// In general, that is a nice to have but we cannot guarantee to find the
|
|
// function type that will match the one of the calls, we may not even know
|
|
// how many arguments the dummy procedure accepts (e.g. if a procedure
|
|
// pointer is only transiting through the current procedure without being
|
|
// called), so a function type cast must always be inserted.
|
|
auto *context = &converter.getMLIRContext();
|
|
auto untypedFunc = mlir::FunctionType::get(context, inputTys, resultTys);
|
|
return fir::BoxProcType::get(context, untypedFunc);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Caller side interface implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool Fortran::lower::CallerInterface::hasAlternateReturns() const {
|
|
return procRef.hasAlternateReturns();
|
|
}
|
|
|
|
std::string Fortran::lower::CallerInterface::getMangledName() const {
|
|
const Fortran::evaluate::ProcedureDesignator &proc = procRef.proc();
|
|
if (const Fortran::semantics::Symbol *symbol = proc.GetSymbol())
|
|
return ::getMangledName(symbol->GetUltimate());
|
|
assert(proc.GetSpecificIntrinsic() &&
|
|
"expected intrinsic procedure in designator");
|
|
return proc.GetName();
|
|
}
|
|
|
|
const Fortran::semantics::Symbol *
|
|
Fortran::lower::CallerInterface::getProcedureSymbol() const {
|
|
return procRef.proc().GetSymbol();
|
|
}
|
|
|
|
bool Fortran::lower::CallerInterface::isIndirectCall() const {
|
|
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
|
|
return Fortran::semantics::IsPointer(*symbol) ||
|
|
Fortran::semantics::IsDummy(*symbol);
|
|
return false;
|
|
}
|
|
|
|
const Fortran::semantics::Symbol *
|
|
Fortran::lower::CallerInterface::getIfIndirectCallSymbol() const {
|
|
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
|
|
if (Fortran::semantics::IsPointer(*symbol) ||
|
|
Fortran::semantics::IsDummy(*symbol))
|
|
return symbol;
|
|
return nullptr;
|
|
}
|
|
|
|
mlir::Location Fortran::lower::CallerInterface::getCalleeLocation() const {
|
|
const Fortran::evaluate::ProcedureDesignator &proc = procRef.proc();
|
|
// FIXME: If the callee is defined in the same file but after the current
|
|
// unit we cannot get its location here and the funcOp is created at the
|
|
// wrong location (i.e, the caller location).
|
|
if (const Fortran::semantics::Symbol *symbol = proc.GetSymbol())
|
|
return converter.genLocation(symbol->name());
|
|
// Use current location for intrinsics.
|
|
return converter.getCurrentLocation();
|
|
}
|
|
|
|
// Get dummy argument characteristic for a procedure with implicit interface
|
|
// from the actual argument characteristic. The actual argument may not be a F77
|
|
// entity. The attribute must be dropped and the shape, if any, must be made
|
|
// explicit.
|
|
static Fortran::evaluate::characteristics::DummyDataObject
|
|
asImplicitArg(Fortran::evaluate::characteristics::DummyDataObject &&dummy) {
|
|
Fortran::evaluate::Shape shape =
|
|
dummy.type.attrs().none() ? dummy.type.shape()
|
|
: Fortran::evaluate::Shape(dummy.type.Rank());
|
|
return Fortran::evaluate::characteristics::DummyDataObject(
|
|
Fortran::evaluate::characteristics::TypeAndShape(dummy.type.type(),
|
|
std::move(shape)));
|
|
}
|
|
|
|
static Fortran::evaluate::characteristics::DummyArgument
|
|
asImplicitArg(Fortran::evaluate::characteristics::DummyArgument &&dummy) {
|
|
return std::visit(
|
|
Fortran::common::visitors{
|
|
[&](Fortran::evaluate::characteristics::DummyDataObject &obj) {
|
|
return Fortran::evaluate::characteristics::DummyArgument(
|
|
std::move(dummy.name), asImplicitArg(std::move(obj)));
|
|
},
|
|
[&](Fortran::evaluate::characteristics::DummyProcedure &proc) {
|
|
return Fortran::evaluate::characteristics::DummyArgument(
|
|
std::move(dummy.name), std::move(proc));
|
|
},
|
|
[](Fortran::evaluate::characteristics::AlternateReturn &x) {
|
|
return Fortran::evaluate::characteristics::DummyArgument(
|
|
std::move(x));
|
|
}},
|
|
dummy.u);
|
|
}
|
|
|
|
Fortran::evaluate::characteristics::Procedure
|
|
Fortran::lower::CallerInterface::characterize() const {
|
|
Fortran::evaluate::FoldingContext &foldingContext =
|
|
converter.getFoldingContext();
|
|
std::optional<Fortran::evaluate::characteristics::Procedure> characteristic =
|
|
Fortran::evaluate::characteristics::Procedure::Characterize(
|
|
procRef.proc(), foldingContext);
|
|
assert(characteristic && "Failed to get characteristic from procRef");
|
|
// The characteristic may not contain the argument characteristic if the
|
|
// ProcedureDesignator has no interface.
|
|
if (!characteristic->HasExplicitInterface()) {
|
|
for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
|
|
procRef.arguments()) {
|
|
if (arg.value().isAlternateReturn()) {
|
|
characteristic->dummyArguments.emplace_back(
|
|
Fortran::evaluate::characteristics::AlternateReturn{});
|
|
} else {
|
|
// Argument cannot be optional with implicit interface
|
|
const Fortran::lower::SomeExpr *expr = arg.value().UnwrapExpr();
|
|
assert(
|
|
expr &&
|
|
"argument in call with implicit interface cannot be assumed type");
|
|
std::optional<Fortran::evaluate::characteristics::DummyArgument>
|
|
argCharacteristic =
|
|
Fortran::evaluate::characteristics::DummyArgument::FromActual(
|
|
"actual", *expr, foldingContext);
|
|
assert(argCharacteristic &&
|
|
"failed to characterize argument in implicit call");
|
|
characteristic->dummyArguments.emplace_back(
|
|
asImplicitArg(std::move(*argCharacteristic)));
|
|
}
|
|
}
|
|
}
|
|
return *characteristic;
|
|
}
|
|
|
|
void Fortran::lower::CallerInterface::placeInput(
|
|
const PassedEntity &passedEntity, mlir::Value arg) {
|
|
assert(static_cast<int>(actualInputs.size()) > passedEntity.firArgument &&
|
|
passedEntity.firArgument >= 0 &&
|
|
passedEntity.passBy != CallInterface::PassEntityBy::AddressAndLength &&
|
|
"bad arg position");
|
|
actualInputs[passedEntity.firArgument] = arg;
|
|
}
|
|
|
|
void Fortran::lower::CallerInterface::placeAddressAndLengthInput(
|
|
const PassedEntity &passedEntity, mlir::Value addr, mlir::Value len) {
|
|
assert(static_cast<int>(actualInputs.size()) > passedEntity.firArgument &&
|
|
static_cast<int>(actualInputs.size()) > passedEntity.firLength &&
|
|
passedEntity.firArgument >= 0 && passedEntity.firLength >= 0 &&
|
|
passedEntity.passBy == CallInterface::PassEntityBy::AddressAndLength &&
|
|
"bad arg position");
|
|
actualInputs[passedEntity.firArgument] = addr;
|
|
actualInputs[passedEntity.firLength] = len;
|
|
}
|
|
|
|
bool Fortran::lower::CallerInterface::verifyActualInputs() const {
|
|
if (getNumFIRArguments() != actualInputs.size())
|
|
return false;
|
|
for (mlir::Value arg : actualInputs) {
|
|
if (!arg)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Fortran::lower::CallerInterface::walkResultLengths(
|
|
ExprVisitor visitor) const {
|
|
assert(characteristic && "characteristic was not computed");
|
|
const Fortran::evaluate::characteristics::FunctionResult &result =
|
|
characteristic->functionResult.value();
|
|
const Fortran::evaluate::characteristics::TypeAndShape *typeAndShape =
|
|
result.GetTypeAndShape();
|
|
assert(typeAndShape && "no result type");
|
|
Fortran::evaluate::DynamicType dynamicType = typeAndShape->type();
|
|
// Visit result length specification expressions that are explicit.
|
|
if (dynamicType.category() == Fortran::common::TypeCategory::Character) {
|
|
if (std::optional<Fortran::evaluate::ExtentExpr> length =
|
|
dynamicType.GetCharLength())
|
|
visitor(toEvExpr(*length));
|
|
} else if (dynamicType.category() == common::TypeCategory::Derived) {
|
|
const Fortran::semantics::DerivedTypeSpec &derivedTypeSpec =
|
|
dynamicType.GetDerivedTypeSpec();
|
|
if (Fortran::semantics::CountLenParameters(derivedTypeSpec) > 0)
|
|
TODO(converter.getCurrentLocation(),
|
|
"function result with derived type length parameters");
|
|
}
|
|
}
|
|
|
|
// Compute extent expr from shapeSpec of an explicit shape.
|
|
// TODO: Allow evaluate shape analysis to work in a mode where it disregards
|
|
// the non-constant aspects when building the shape to avoid having this here.
|
|
static Fortran::evaluate::ExtentExpr
|
|
getExtentExpr(const Fortran::semantics::ShapeSpec &shapeSpec) {
|
|
const auto &ubound = shapeSpec.ubound().GetExplicit();
|
|
const auto &lbound = shapeSpec.lbound().GetExplicit();
|
|
assert(lbound && ubound && "shape must be explicit");
|
|
return Fortran::common::Clone(*ubound) - Fortran::common::Clone(*lbound) +
|
|
Fortran::evaluate::ExtentExpr{1};
|
|
}
|
|
|
|
void Fortran::lower::CallerInterface::walkResultExtents(
|
|
ExprVisitor visitor) const {
|
|
// Walk directly the result symbol shape (the characteristic shape may contain
|
|
// descriptor inquiries to it that would fail to lower on the caller side).
|
|
const Fortran::semantics::SubprogramDetails *interfaceDetails =
|
|
getInterfaceDetails();
|
|
if (interfaceDetails) {
|
|
const Fortran::semantics::Symbol &result = interfaceDetails->result();
|
|
if (const auto *objectDetails =
|
|
result.detailsIf<Fortran::semantics::ObjectEntityDetails>())
|
|
if (objectDetails->shape().IsExplicitShape())
|
|
for (const Fortran::semantics::ShapeSpec &shapeSpec :
|
|
objectDetails->shape())
|
|
visitor(Fortran::evaluate::AsGenericExpr(getExtentExpr(shapeSpec)));
|
|
} else {
|
|
if (procRef.Rank() != 0)
|
|
fir::emitFatalError(
|
|
converter.getCurrentLocation(),
|
|
"only scalar functions may not have an interface symbol");
|
|
}
|
|
}
|
|
|
|
bool Fortran::lower::CallerInterface::mustMapInterfaceSymbols() const {
|
|
assert(characteristic && "characteristic was not computed");
|
|
const std::optional<Fortran::evaluate::characteristics::FunctionResult>
|
|
&result = characteristic->functionResult;
|
|
if (!result || result->CanBeReturnedViaImplicitInterface() ||
|
|
!getInterfaceDetails())
|
|
return false;
|
|
bool allResultSpecExprConstant = true;
|
|
auto visitor = [&](const Fortran::lower::SomeExpr &e) {
|
|
allResultSpecExprConstant &= Fortran::evaluate::IsConstantExpr(e);
|
|
};
|
|
walkResultLengths(visitor);
|
|
walkResultExtents(visitor);
|
|
return !allResultSpecExprConstant;
|
|
}
|
|
|
|
mlir::Value Fortran::lower::CallerInterface::getArgumentValue(
|
|
const semantics::Symbol &sym) const {
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
const Fortran::semantics::SubprogramDetails *ifaceDetails =
|
|
getInterfaceDetails();
|
|
if (!ifaceDetails)
|
|
fir::emitFatalError(
|
|
loc, "mapping actual and dummy arguments requires an interface");
|
|
const std::vector<Fortran::semantics::Symbol *> &dummies =
|
|
ifaceDetails->dummyArgs();
|
|
auto it = std::find(dummies.begin(), dummies.end(), &sym);
|
|
if (it == dummies.end())
|
|
fir::emitFatalError(loc, "symbol is not a dummy in this call");
|
|
FirValue mlirArgIndex = passedArguments[it - dummies.begin()].firArgument;
|
|
return actualInputs[mlirArgIndex];
|
|
}
|
|
|
|
mlir::Type Fortran::lower::CallerInterface::getResultStorageType() const {
|
|
if (passedResult)
|
|
return fir::dyn_cast_ptrEleTy(inputs[passedResult->firArgument].type);
|
|
assert(saveResult && !outputs.empty());
|
|
return outputs[0].type;
|
|
}
|
|
|
|
const Fortran::semantics::Symbol &
|
|
Fortran::lower::CallerInterface::getResultSymbol() const {
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
const Fortran::semantics::SubprogramDetails *ifaceDetails =
|
|
getInterfaceDetails();
|
|
if (!ifaceDetails)
|
|
fir::emitFatalError(
|
|
loc, "mapping actual and dummy arguments requires an interface");
|
|
return ifaceDetails->result();
|
|
}
|
|
|
|
const Fortran::semantics::SubprogramDetails *
|
|
Fortran::lower::CallerInterface::getInterfaceDetails() const {
|
|
if (const Fortran::semantics::Symbol *iface =
|
|
procRef.proc().GetInterfaceSymbol())
|
|
return iface->GetUltimate()
|
|
.detailsIf<Fortran::semantics::SubprogramDetails>();
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Callee side interface implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool Fortran::lower::CalleeInterface::hasAlternateReturns() const {
|
|
return !funit.isMainProgram() &&
|
|
Fortran::semantics::HasAlternateReturns(funit.getSubprogramSymbol());
|
|
}
|
|
|
|
std::string Fortran::lower::CalleeInterface::getMangledName() const {
|
|
if (funit.isMainProgram())
|
|
return fir::NameUniquer::doProgramEntry().str();
|
|
return ::getMangledName(funit.getSubprogramSymbol());
|
|
}
|
|
|
|
const Fortran::semantics::Symbol *
|
|
Fortran::lower::CalleeInterface::getProcedureSymbol() const {
|
|
if (funit.isMainProgram())
|
|
return nullptr;
|
|
return &funit.getSubprogramSymbol();
|
|
}
|
|
|
|
mlir::Location Fortran::lower::CalleeInterface::getCalleeLocation() const {
|
|
// FIXME: do NOT use unknown for the anonymous PROGRAM case. We probably
|
|
// should just stash the location in the funit regardless.
|
|
return converter.genLocation(funit.getStartingSourceLoc());
|
|
}
|
|
|
|
Fortran::evaluate::characteristics::Procedure
|
|
Fortran::lower::CalleeInterface::characterize() const {
|
|
Fortran::evaluate::FoldingContext &foldingContext =
|
|
converter.getFoldingContext();
|
|
std::optional<Fortran::evaluate::characteristics::Procedure> characteristic =
|
|
Fortran::evaluate::characteristics::Procedure::Characterize(
|
|
funit.getSubprogramSymbol(), foldingContext);
|
|
assert(characteristic && "Fail to get characteristic from symbol");
|
|
return *characteristic;
|
|
}
|
|
|
|
bool Fortran::lower::CalleeInterface::isMainProgram() const {
|
|
return funit.isMainProgram();
|
|
}
|
|
|
|
mlir::func::FuncOp
|
|
Fortran::lower::CalleeInterface::addEntryBlockAndMapArguments() {
|
|
// On the callee side, directly map the mlir::value argument of
|
|
// the function block to the Fortran symbols.
|
|
func.addEntryBlock();
|
|
mapPassedEntities();
|
|
return func;
|
|
}
|
|
|
|
bool Fortran::lower::CalleeInterface::hasHostAssociated() const {
|
|
return funit.parentHasHostAssoc();
|
|
}
|
|
|
|
mlir::Type Fortran::lower::CalleeInterface::getHostAssociatedTy() const {
|
|
assert(hasHostAssociated());
|
|
return funit.parentHostAssoc().getArgumentType(converter);
|
|
}
|
|
|
|
mlir::Value Fortran::lower::CalleeInterface::getHostAssociatedTuple() const {
|
|
assert(hasHostAssociated() || !funit.getHostAssoc().empty());
|
|
return converter.hostAssocTupleValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallInterface implementation: this part is common to both caller and caller
|
|
// sides.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void addSymbolAttribute(mlir::func::FuncOp func,
|
|
const Fortran::semantics::Symbol &sym,
|
|
mlir::MLIRContext &mlirContext) {
|
|
// Only add this on bind(C) functions for which the symbol is not reflected in
|
|
// the current context.
|
|
if (!Fortran::semantics::IsBindCProcedure(sym))
|
|
return;
|
|
std::string name =
|
|
Fortran::lower::mangle::mangleName(sym, /*keepExternalInScope=*/true);
|
|
func->setAttr(fir::getSymbolAttrName(),
|
|
mlir::StringAttr::get(&mlirContext, name));
|
|
}
|
|
|
|
/// Declare drives the different actions to be performed while analyzing the
|
|
/// signature and building/finding the mlir::func::FuncOp.
|
|
template <typename T>
|
|
void Fortran::lower::CallInterface<T>::declare() {
|
|
if (!side().isMainProgram()) {
|
|
characteristic.emplace(side().characterize());
|
|
bool isImplicit = characteristic->CanBeCalledViaImplicitInterface();
|
|
determineInterface(isImplicit, *characteristic);
|
|
}
|
|
// No input/output for main program
|
|
|
|
// Create / get funcOp for direct calls. For indirect calls (only meaningful
|
|
// on the caller side), no funcOp has to be created here. The mlir::Value
|
|
// holding the indirection is used when creating the fir::CallOp.
|
|
if (!side().isIndirectCall()) {
|
|
std::string name = side().getMangledName();
|
|
mlir::ModuleOp module = converter.getModuleOp();
|
|
func = fir::FirOpBuilder::getNamedFunction(module, name);
|
|
if (!func) {
|
|
mlir::Location loc = side().getCalleeLocation();
|
|
mlir::FunctionType ty = genFunctionType();
|
|
func = fir::FirOpBuilder::createFunction(loc, module, name, ty);
|
|
if (const Fortran::semantics::Symbol *sym = side().getProcedureSymbol())
|
|
addSymbolAttribute(func, *sym, converter.getMLIRContext());
|
|
for (const auto &placeHolder : llvm::enumerate(inputs))
|
|
if (!placeHolder.value().attributes.empty())
|
|
func.setArgAttrs(placeHolder.index(), placeHolder.value().attributes);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Once the signature has been analyzed and the mlir::func::FuncOp was
|
|
/// built/found, map the fir inputs to Fortran entities (the symbols or
|
|
/// expressions).
|
|
template <typename T>
|
|
void Fortran::lower::CallInterface<T>::mapPassedEntities() {
|
|
// map back fir inputs to passed entities
|
|
if constexpr (std::is_same_v<T, Fortran::lower::CalleeInterface>) {
|
|
assert(inputs.size() == func.front().getArguments().size() &&
|
|
"function previously created with different number of arguments");
|
|
for (auto [fst, snd] : llvm::zip(inputs, func.front().getArguments()))
|
|
mapBackInputToPassedEntity(fst, snd);
|
|
} else {
|
|
// On the caller side, map the index of the mlir argument position
|
|
// to Fortran ActualArguments.
|
|
int firPosition = 0;
|
|
for (const FirPlaceHolder &placeHolder : inputs)
|
|
mapBackInputToPassedEntity(placeHolder, firPosition++);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void Fortran::lower::CallInterface<T>::mapBackInputToPassedEntity(
|
|
const FirPlaceHolder &placeHolder, FirValue firValue) {
|
|
PassedEntity &passedEntity =
|
|
placeHolder.passedEntityPosition == FirPlaceHolder::resultEntityPosition
|
|
? passedResult.value()
|
|
: passedArguments[placeHolder.passedEntityPosition];
|
|
if (placeHolder.property == Property::CharLength)
|
|
passedEntity.firLength = firValue;
|
|
else
|
|
passedEntity.firArgument = firValue;
|
|
}
|
|
|
|
/// Helpers to access ActualArgument/Symbols
|
|
static const Fortran::evaluate::ActualArguments &
|
|
getEntityContainer(const Fortran::evaluate::ProcedureRef &proc) {
|
|
return proc.arguments();
|
|
}
|
|
|
|
static const std::vector<Fortran::semantics::Symbol *> &
|
|
getEntityContainer(Fortran::lower::pft::FunctionLikeUnit &funit) {
|
|
return funit.getSubprogramSymbol()
|
|
.get<Fortran::semantics::SubprogramDetails>()
|
|
.dummyArgs();
|
|
}
|
|
|
|
static const Fortran::evaluate::ActualArgument *getDataObjectEntity(
|
|
const std::optional<Fortran::evaluate::ActualArgument> &arg) {
|
|
if (arg)
|
|
return &*arg;
|
|
return nullptr;
|
|
}
|
|
|
|
static const Fortran::semantics::Symbol &
|
|
getDataObjectEntity(const Fortran::semantics::Symbol *arg) {
|
|
assert(arg && "expect symbol for data object entity");
|
|
return *arg;
|
|
}
|
|
|
|
static const Fortran::evaluate::ActualArgument *
|
|
getResultEntity(const Fortran::evaluate::ProcedureRef &) {
|
|
return nullptr;
|
|
}
|
|
|
|
static const Fortran::semantics::Symbol &
|
|
getResultEntity(Fortran::lower::pft::FunctionLikeUnit &funit) {
|
|
return funit.getSubprogramSymbol()
|
|
.get<Fortran::semantics::SubprogramDetails>()
|
|
.result();
|
|
}
|
|
|
|
/// Bypass helpers to manipulate entities since they are not any symbol/actual
|
|
/// argument to associate. See SignatureBuilder below.
|
|
using FakeEntity = bool;
|
|
using FakeEntities = llvm::SmallVector<FakeEntity>;
|
|
static FakeEntities
|
|
getEntityContainer(const Fortran::evaluate::characteristics::Procedure &proc) {
|
|
FakeEntities enities(proc.dummyArguments.size());
|
|
return enities;
|
|
}
|
|
static const FakeEntity &getDataObjectEntity(const FakeEntity &e) { return e; }
|
|
static FakeEntity
|
|
getResultEntity(const Fortran::evaluate::characteristics::Procedure &proc) {
|
|
return false;
|
|
}
|
|
|
|
/// This is the actual part that defines the FIR interface based on the
|
|
/// characteristic. It directly mutates the CallInterface members.
|
|
template <typename T>
|
|
class Fortran::lower::CallInterfaceImpl {
|
|
using CallInterface = Fortran::lower::CallInterface<T>;
|
|
using PassEntityBy = typename CallInterface::PassEntityBy;
|
|
using PassedEntity = typename CallInterface::PassedEntity;
|
|
using FirValue = typename CallInterface::FirValue;
|
|
using FortranEntity = typename CallInterface::FortranEntity;
|
|
using FirPlaceHolder = typename CallInterface::FirPlaceHolder;
|
|
using Property = typename CallInterface::Property;
|
|
using TypeAndShape = Fortran::evaluate::characteristics::TypeAndShape;
|
|
using DummyCharacteristics =
|
|
Fortran::evaluate::characteristics::DummyArgument;
|
|
|
|
public:
|
|
CallInterfaceImpl(CallInterface &i)
|
|
: interface(i), mlirContext{i.converter.getMLIRContext()} {}
|
|
|
|
void buildImplicitInterface(
|
|
const Fortran::evaluate::characteristics::Procedure &procedure) {
|
|
// Handle result
|
|
if (const std::optional<Fortran::evaluate::characteristics::FunctionResult>
|
|
&result = procedure.functionResult)
|
|
handleImplicitResult(*result);
|
|
else if (interface.side().hasAlternateReturns())
|
|
addFirResult(mlir::IndexType::get(&mlirContext),
|
|
FirPlaceHolder::resultEntityPosition, Property::Value);
|
|
// Handle arguments
|
|
const auto &argumentEntities =
|
|
getEntityContainer(interface.side().getCallDescription());
|
|
for (auto pair : llvm::zip(procedure.dummyArguments, argumentEntities)) {
|
|
const Fortran::evaluate::characteristics::DummyArgument
|
|
&argCharacteristics = std::get<0>(pair);
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const auto &dummy) {
|
|
const auto &entity = getDataObjectEntity(std::get<1>(pair));
|
|
handleImplicitDummy(&argCharacteristics, dummy, entity);
|
|
},
|
|
[&](const Fortran::evaluate::characteristics::AlternateReturn &) {
|
|
// nothing to do
|
|
},
|
|
},
|
|
argCharacteristics.u);
|
|
}
|
|
}
|
|
|
|
void buildExplicitInterface(
|
|
const Fortran::evaluate::characteristics::Procedure &procedure) {
|
|
// Handle result
|
|
if (const std::optional<Fortran::evaluate::characteristics::FunctionResult>
|
|
&result = procedure.functionResult) {
|
|
if (result->CanBeReturnedViaImplicitInterface())
|
|
handleImplicitResult(*result);
|
|
else
|
|
handleExplicitResult(*result);
|
|
} else if (interface.side().hasAlternateReturns()) {
|
|
addFirResult(mlir::IndexType::get(&mlirContext),
|
|
FirPlaceHolder::resultEntityPosition, Property::Value);
|
|
}
|
|
bool isBindC = procedure.IsBindC();
|
|
// Handle arguments
|
|
const auto &argumentEntities =
|
|
getEntityContainer(interface.side().getCallDescription());
|
|
for (auto pair : llvm::zip(procedure.dummyArguments, argumentEntities)) {
|
|
const Fortran::evaluate::characteristics::DummyArgument
|
|
&argCharacteristics = std::get<0>(pair);
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::characteristics::DummyDataObject
|
|
&dummy) {
|
|
const auto &entity = getDataObjectEntity(std::get<1>(pair));
|
|
if (dummy.CanBePassedViaImplicitInterface())
|
|
handleImplicitDummy(&argCharacteristics, dummy, entity);
|
|
else
|
|
handleExplicitDummy(&argCharacteristics, dummy, entity,
|
|
isBindC);
|
|
},
|
|
[&](const Fortran::evaluate::characteristics::DummyProcedure
|
|
&dummy) {
|
|
const auto &entity = getDataObjectEntity(std::get<1>(pair));
|
|
handleImplicitDummy(&argCharacteristics, dummy, entity);
|
|
},
|
|
[&](const Fortran::evaluate::characteristics::AlternateReturn &) {
|
|
// nothing to do
|
|
},
|
|
},
|
|
argCharacteristics.u);
|
|
}
|
|
}
|
|
|
|
void appendHostAssocTupleArg(mlir::Type tupTy) {
|
|
mlir::MLIRContext *ctxt = tupTy.getContext();
|
|
addFirOperand(tupTy, nextPassedArgPosition(), Property::BaseAddress,
|
|
{mlir::NamedAttribute{
|
|
mlir::StringAttr::get(ctxt, fir::getHostAssocAttrName()),
|
|
mlir::UnitAttr::get(ctxt)}});
|
|
interface.passedArguments.emplace_back(
|
|
PassedEntity{PassEntityBy::BaseAddress, std::nullopt,
|
|
interface.side().getHostAssociatedTuple(), emptyValue()});
|
|
}
|
|
|
|
static llvm::Optional<Fortran::evaluate::DynamicType> getResultDynamicType(
|
|
const Fortran::evaluate::characteristics::Procedure &procedure) {
|
|
if (const std::optional<Fortran::evaluate::characteristics::FunctionResult>
|
|
&result = procedure.functionResult)
|
|
if (const auto *resultTypeAndShape = result->GetTypeAndShape())
|
|
return resultTypeAndShape->type();
|
|
return llvm::None;
|
|
}
|
|
|
|
static bool mustPassLengthWithDummyProcedure(
|
|
const Fortran::evaluate::characteristics::Procedure &procedure) {
|
|
// When passing a character function designator `bar` as dummy procedure to
|
|
// `foo` (e.g. `foo(bar)`), pass the result length of `bar` to `foo` so that
|
|
// `bar` can be called inside `foo` even if its length is assumed there.
|
|
// From an ABI perspective, the extra length argument must be handled
|
|
// exactly as if passing a character object. Using an argument of
|
|
// fir.boxchar type gives the expected behavior: after codegen, the
|
|
// fir.boxchar lengths are added after all the arguments as extra value
|
|
// arguments (the extra arguments order is the order of the fir.boxchar).
|
|
|
|
// This ABI is compatible with ifort, nag, nvfortran, and xlf, but not
|
|
// gfortran. Gfortran does not pass the length and is therefore unable to
|
|
// handle later call to `bar` in `foo` where the length would be assumed. If
|
|
// the result is an array, nag and ifort and xlf still pass the length, but
|
|
// not nvfortran (and gfortran). It is not clear it is possible to call an
|
|
// array function with assumed length (f18 forbides defining such
|
|
// interfaces). Hence, passing the length is most likely useless, but stick
|
|
// with ifort/nag/xlf interface here.
|
|
if (llvm::Optional<Fortran::evaluate::DynamicType> type =
|
|
getResultDynamicType(procedure))
|
|
return type->category() == Fortran::common::TypeCategory::Character;
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
void handleImplicitResult(
|
|
const Fortran::evaluate::characteristics::FunctionResult &result) {
|
|
if (result.IsProcedurePointer())
|
|
TODO(interface.converter.getCurrentLocation(),
|
|
"procedure pointer result not yet handled");
|
|
const Fortran::evaluate::characteristics::TypeAndShape *typeAndShape =
|
|
result.GetTypeAndShape();
|
|
assert(typeAndShape && "expect type for non proc pointer result");
|
|
Fortran::evaluate::DynamicType dynamicType = typeAndShape->type();
|
|
// Character result allocated by caller and passed as hidden arguments
|
|
if (dynamicType.category() == Fortran::common::TypeCategory::Character) {
|
|
handleImplicitCharacterResult(dynamicType);
|
|
} else if (dynamicType.category() ==
|
|
Fortran::common::TypeCategory::Derived) {
|
|
// Derived result need to be allocated by the caller and the result value
|
|
// must be saved. Derived type in implicit interface cannot have length
|
|
// parameters.
|
|
setSaveResult();
|
|
mlir::Type mlirType = translateDynamicType(dynamicType);
|
|
addFirResult(mlirType, FirPlaceHolder::resultEntityPosition,
|
|
Property::Value);
|
|
} else {
|
|
// All result other than characters/derived are simply returned by value
|
|
// in implicit interfaces
|
|
mlir::Type mlirType =
|
|
getConverter().genType(dynamicType.category(), dynamicType.kind());
|
|
addFirResult(mlirType, FirPlaceHolder::resultEntityPosition,
|
|
Property::Value);
|
|
}
|
|
}
|
|
void
|
|
handleImplicitCharacterResult(const Fortran::evaluate::DynamicType &type) {
|
|
int resultPosition = FirPlaceHolder::resultEntityPosition;
|
|
setPassedResult(PassEntityBy::AddressAndLength,
|
|
getResultEntity(interface.side().getCallDescription()));
|
|
mlir::Type lenTy = mlir::IndexType::get(&mlirContext);
|
|
std::optional<std::int64_t> constantLen = type.knownLength();
|
|
fir::CharacterType::LenType len =
|
|
constantLen ? *constantLen : fir::CharacterType::unknownLen();
|
|
mlir::Type charRefTy = fir::ReferenceType::get(
|
|
fir::CharacterType::get(&mlirContext, type.kind(), len));
|
|
mlir::Type boxCharTy = fir::BoxCharType::get(&mlirContext, type.kind());
|
|
addFirOperand(charRefTy, resultPosition, Property::CharAddress);
|
|
addFirOperand(lenTy, resultPosition, Property::CharLength);
|
|
/// For now, also return it by boxchar
|
|
addFirResult(boxCharTy, resultPosition, Property::BoxChar);
|
|
}
|
|
|
|
/// Return a vector with an attribute with the name of the argument if this
|
|
/// is a callee interface and the name is available. Otherwise, just return
|
|
/// an empty vector.
|
|
llvm::SmallVector<mlir::NamedAttribute>
|
|
dummyNameAttr(const FortranEntity &entity) {
|
|
if constexpr (std::is_same_v<FortranEntity,
|
|
std::optional<Fortran::common::Reference<
|
|
const Fortran::semantics::Symbol>>>) {
|
|
if (entity.has_value()) {
|
|
const Fortran::semantics::Symbol *argument = &*entity.value();
|
|
// "fir.bindc_name" is used for arguments for the sake of consistency
|
|
// with other attributes carrying surface syntax names in FIR.
|
|
return {mlir::NamedAttribute(
|
|
mlir::StringAttr::get(&mlirContext, "fir.bindc_name"),
|
|
mlir::StringAttr::get(&mlirContext,
|
|
toStringRef(argument->name())))};
|
|
}
|
|
}
|
|
return {};
|
|
}
|
|
|
|
void handleImplicitDummy(
|
|
const DummyCharacteristics *characteristics,
|
|
const Fortran::evaluate::characteristics::DummyDataObject &obj,
|
|
const FortranEntity &entity) {
|
|
Fortran::evaluate::DynamicType dynamicType = obj.type.type();
|
|
if (dynamicType.category() == Fortran::common::TypeCategory::Character) {
|
|
mlir::Type boxCharTy =
|
|
fir::BoxCharType::get(&mlirContext, dynamicType.kind());
|
|
addFirOperand(boxCharTy, nextPassedArgPosition(), Property::BoxChar,
|
|
dummyNameAttr(entity));
|
|
addPassedArg(PassEntityBy::BoxChar, entity, characteristics);
|
|
} else {
|
|
// non-PDT derived type allowed in implicit interface.
|
|
mlir::Type type = translateDynamicType(dynamicType);
|
|
fir::SequenceType::Shape bounds = getBounds(obj.type.shape());
|
|
if (!bounds.empty())
|
|
type = fir::SequenceType::get(bounds, type);
|
|
mlir::Type refType = fir::ReferenceType::get(type);
|
|
addFirOperand(refType, nextPassedArgPosition(), Property::BaseAddress,
|
|
dummyNameAttr(entity));
|
|
addPassedArg(PassEntityBy::BaseAddress, entity, characteristics);
|
|
}
|
|
}
|
|
|
|
// Define when an explicit argument must be passed in a fir.box.
|
|
bool dummyRequiresBox(
|
|
const Fortran::evaluate::characteristics::DummyDataObject &obj) {
|
|
using ShapeAttr = Fortran::evaluate::characteristics::TypeAndShape::Attr;
|
|
using ShapeAttrs = Fortran::evaluate::characteristics::TypeAndShape::Attrs;
|
|
constexpr ShapeAttrs shapeRequiringBox = {
|
|
ShapeAttr::AssumedShape, ShapeAttr::DeferredShape,
|
|
ShapeAttr::AssumedRank, ShapeAttr::Coarray};
|
|
if ((obj.type.attrs() & shapeRequiringBox).any())
|
|
// Need to pass shape/coshape info in fir.box.
|
|
return true;
|
|
if (obj.type.type().IsPolymorphic())
|
|
// Need to pass dynamic type info in fir.box.
|
|
return true;
|
|
if (const Fortran::semantics::DerivedTypeSpec *derived =
|
|
Fortran::evaluate::GetDerivedTypeSpec(obj.type.type()))
|
|
if (const Fortran::semantics::Scope *scope = derived->scope())
|
|
// Need to pass length type parameters in fir.box if any.
|
|
return scope->IsDerivedTypeWithLengthParameter();
|
|
return false;
|
|
}
|
|
|
|
mlir::Type
|
|
translateDynamicType(const Fortran::evaluate::DynamicType &dynamicType) {
|
|
Fortran::common::TypeCategory cat = dynamicType.category();
|
|
// DERIVED
|
|
if (cat == Fortran::common::TypeCategory::Derived) {
|
|
if (dynamicType.IsPolymorphic())
|
|
TODO(interface.converter.getCurrentLocation(),
|
|
"[translateDynamicType] polymorphic types");
|
|
return getConverter().genType(dynamicType.GetDerivedTypeSpec());
|
|
}
|
|
// CHARACTER with compile time constant length.
|
|
if (cat == Fortran::common::TypeCategory::Character)
|
|
if (std::optional<std::int64_t> constantLen =
|
|
toInt64(dynamicType.GetCharLength()))
|
|
return getConverter().genType(cat, dynamicType.kind(), {*constantLen});
|
|
// INTEGER, REAL, LOGICAL, COMPLEX, and CHARACTER with dynamic length.
|
|
return getConverter().genType(cat, dynamicType.kind());
|
|
}
|
|
|
|
void handleExplicitDummy(
|
|
const DummyCharacteristics *characteristics,
|
|
const Fortran::evaluate::characteristics::DummyDataObject &obj,
|
|
const FortranEntity &entity, bool isBindC) {
|
|
using Attrs = Fortran::evaluate::characteristics::DummyDataObject::Attr;
|
|
|
|
bool isValueAttr = false;
|
|
[[maybe_unused]] mlir::Location loc =
|
|
interface.converter.getCurrentLocation();
|
|
llvm::SmallVector<mlir::NamedAttribute> attrs = dummyNameAttr(entity);
|
|
auto addMLIRAttr = [&](llvm::StringRef attr) {
|
|
attrs.emplace_back(mlir::StringAttr::get(&mlirContext, attr),
|
|
mlir::UnitAttr::get(&mlirContext));
|
|
};
|
|
if (obj.attrs.test(Attrs::Optional))
|
|
addMLIRAttr(fir::getOptionalAttrName());
|
|
if (obj.attrs.test(Attrs::Asynchronous))
|
|
TODO(loc, "Asynchronous in procedure interface");
|
|
if (obj.attrs.test(Attrs::Contiguous))
|
|
addMLIRAttr(fir::getContiguousAttrName());
|
|
if (obj.attrs.test(Attrs::Value))
|
|
isValueAttr = true; // TODO: do we want an mlir::Attribute as well?
|
|
if (obj.attrs.test(Attrs::Volatile))
|
|
TODO(loc, "Volatile in procedure interface");
|
|
if (obj.attrs.test(Attrs::Target))
|
|
addMLIRAttr(fir::getTargetAttrName());
|
|
|
|
// TODO: intents that require special care (e.g finalization)
|
|
|
|
using ShapeAttr = Fortran::evaluate::characteristics::TypeAndShape::Attr;
|
|
const Fortran::evaluate::characteristics::TypeAndShape::Attrs &shapeAttrs =
|
|
obj.type.attrs();
|
|
if (shapeAttrs.test(ShapeAttr::AssumedRank))
|
|
TODO(loc, "Assumed Rank in procedure interface");
|
|
if (shapeAttrs.test(ShapeAttr::Coarray))
|
|
TODO(loc, "Coarray in procedure interface");
|
|
|
|
// So far assume that if the argument cannot be passed by implicit interface
|
|
// it must be by box. That may no be always true (e.g for simple optionals)
|
|
|
|
Fortran::evaluate::DynamicType dynamicType = obj.type.type();
|
|
mlir::Type type = translateDynamicType(dynamicType);
|
|
fir::SequenceType::Shape bounds = getBounds(obj.type.shape());
|
|
if (!bounds.empty())
|
|
type = fir::SequenceType::get(bounds, type);
|
|
if (obj.attrs.test(Attrs::Allocatable))
|
|
type = fir::HeapType::get(type);
|
|
if (obj.attrs.test(Attrs::Pointer))
|
|
type = fir::PointerType::get(type);
|
|
mlir::Type boxType = fir::BoxType::get(type);
|
|
|
|
if (obj.attrs.test(Attrs::Allocatable) || obj.attrs.test(Attrs::Pointer)) {
|
|
// Pass as fir.ref<fir.box>
|
|
mlir::Type boxRefType = fir::ReferenceType::get(boxType);
|
|
addFirOperand(boxRefType, nextPassedArgPosition(), Property::MutableBox,
|
|
attrs);
|
|
addPassedArg(PassEntityBy::MutableBox, entity, characteristics);
|
|
} else if (dummyRequiresBox(obj)) {
|
|
// Pass as fir.box
|
|
if (isValueAttr)
|
|
TODO(loc, "assumed shape dummy argument with VALUE attribute");
|
|
addFirOperand(boxType, nextPassedArgPosition(), Property::Box, attrs);
|
|
addPassedArg(PassEntityBy::Box, entity, characteristics);
|
|
} else if (dynamicType.category() ==
|
|
Fortran::common::TypeCategory::Character) {
|
|
// Pass as fir.box_char
|
|
mlir::Type boxCharTy =
|
|
fir::BoxCharType::get(&mlirContext, dynamicType.kind());
|
|
addFirOperand(boxCharTy, nextPassedArgPosition(), Property::BoxChar,
|
|
attrs);
|
|
addPassedArg(isValueAttr ? PassEntityBy::CharBoxValueAttribute
|
|
: PassEntityBy::BoxChar,
|
|
entity, characteristics);
|
|
} else {
|
|
// Pass as fir.ref unless it's by VALUE and BIND(C)
|
|
mlir::Type passType = fir::ReferenceType::get(type);
|
|
PassEntityBy passBy = PassEntityBy::BaseAddress;
|
|
Property prop = Property::BaseAddress;
|
|
if (isValueAttr) {
|
|
if (isBindC) {
|
|
passBy = PassEntityBy::Value;
|
|
prop = Property::Value;
|
|
passType = type;
|
|
} else {
|
|
passBy = PassEntityBy::BaseAddressValueAttribute;
|
|
}
|
|
}
|
|
addFirOperand(passType, nextPassedArgPosition(), prop, attrs);
|
|
addPassedArg(passBy, entity, characteristics);
|
|
}
|
|
}
|
|
|
|
void handleImplicitDummy(
|
|
const DummyCharacteristics *characteristics,
|
|
const Fortran::evaluate::characteristics::DummyProcedure &proc,
|
|
const FortranEntity &entity) {
|
|
if (proc.attrs.test(
|
|
Fortran::evaluate::characteristics::DummyProcedure::Attr::Pointer))
|
|
TODO(interface.converter.getCurrentLocation(),
|
|
"procedure pointer arguments");
|
|
// Otherwise, it is a dummy procedure.
|
|
const Fortran::evaluate::characteristics::Procedure &procedure =
|
|
proc.procedure.value();
|
|
mlir::Type funcType =
|
|
getProcedureDesignatorType(&procedure, interface.converter);
|
|
llvm::Optional<Fortran::evaluate::DynamicType> resultTy =
|
|
getResultDynamicType(procedure);
|
|
if (resultTy && mustPassLengthWithDummyProcedure(procedure)) {
|
|
// The result length of dummy procedures that are character functions must
|
|
// be passed so that the dummy procedure can be called if it has assumed
|
|
// length on the callee side.
|
|
mlir::Type tupleType =
|
|
fir::factory::getCharacterProcedureTupleType(funcType);
|
|
llvm::StringRef charProcAttr = fir::getCharacterProcedureDummyAttrName();
|
|
addFirOperand(tupleType, nextPassedArgPosition(), Property::CharProcTuple,
|
|
{mlir::NamedAttribute{
|
|
mlir::StringAttr::get(&mlirContext, charProcAttr),
|
|
mlir::UnitAttr::get(&mlirContext)}});
|
|
addPassedArg(PassEntityBy::CharProcTuple, entity, characteristics);
|
|
return;
|
|
}
|
|
addFirOperand(funcType, nextPassedArgPosition(), Property::BaseAddress);
|
|
addPassedArg(PassEntityBy::BaseAddress, entity, characteristics);
|
|
}
|
|
|
|
void handleExplicitResult(
|
|
const Fortran::evaluate::characteristics::FunctionResult &result) {
|
|
using Attr = Fortran::evaluate::characteristics::FunctionResult::Attr;
|
|
|
|
if (result.IsProcedurePointer())
|
|
TODO(interface.converter.getCurrentLocation(),
|
|
"procedure pointer results");
|
|
const Fortran::evaluate::characteristics::TypeAndShape *typeAndShape =
|
|
result.GetTypeAndShape();
|
|
assert(typeAndShape && "expect type for non proc pointer result");
|
|
mlir::Type mlirType = translateDynamicType(typeAndShape->type());
|
|
fir::SequenceType::Shape bounds = getBounds(typeAndShape->shape());
|
|
if (!bounds.empty())
|
|
mlirType = fir::SequenceType::get(bounds, mlirType);
|
|
if (result.attrs.test(Attr::Allocatable))
|
|
mlirType = fir::BoxType::get(fir::HeapType::get(mlirType));
|
|
if (result.attrs.test(Attr::Pointer))
|
|
mlirType = fir::BoxType::get(fir::PointerType::get(mlirType));
|
|
|
|
if (fir::isa_char(mlirType)) {
|
|
// Character scalar results must be passed as arguments in lowering so
|
|
// that an assumed length character function callee can access the result
|
|
// length. A function with a result requiring an explicit interface does
|
|
// not have to be compatible with assumed length function, but most
|
|
// compilers supports it.
|
|
handleImplicitCharacterResult(typeAndShape->type());
|
|
return;
|
|
}
|
|
|
|
addFirResult(mlirType, FirPlaceHolder::resultEntityPosition,
|
|
Property::Value);
|
|
// Explicit results require the caller to allocate the storage and save the
|
|
// function result in the storage with a fir.save_result.
|
|
setSaveResult();
|
|
}
|
|
|
|
fir::SequenceType::Shape getBounds(const Fortran::evaluate::Shape &shape) {
|
|
fir::SequenceType::Shape bounds;
|
|
for (const std::optional<Fortran::evaluate::ExtentExpr> &extent : shape) {
|
|
fir::SequenceType::Extent bound = fir::SequenceType::getUnknownExtent();
|
|
if (std::optional<std::int64_t> i = toInt64(extent))
|
|
bound = *i;
|
|
bounds.emplace_back(bound);
|
|
}
|
|
return bounds;
|
|
}
|
|
std::optional<std::int64_t>
|
|
toInt64(std::optional<
|
|
Fortran::evaluate::Expr<Fortran::evaluate::SubscriptInteger>>
|
|
expr) {
|
|
if (expr)
|
|
return Fortran::evaluate::ToInt64(Fortran::evaluate::Fold(
|
|
getConverter().getFoldingContext(), toEvExpr(*expr)));
|
|
return std::nullopt;
|
|
}
|
|
void
|
|
addFirOperand(mlir::Type type, int entityPosition, Property p,
|
|
llvm::ArrayRef<mlir::NamedAttribute> attributes = llvm::None) {
|
|
interface.inputs.emplace_back(
|
|
FirPlaceHolder{type, entityPosition, p, attributes});
|
|
}
|
|
void
|
|
addFirResult(mlir::Type type, int entityPosition, Property p,
|
|
llvm::ArrayRef<mlir::NamedAttribute> attributes = llvm::None) {
|
|
interface.outputs.emplace_back(
|
|
FirPlaceHolder{type, entityPosition, p, attributes});
|
|
}
|
|
void addPassedArg(PassEntityBy p, FortranEntity entity,
|
|
const DummyCharacteristics *characteristics) {
|
|
interface.passedArguments.emplace_back(
|
|
PassedEntity{p, entity, emptyValue(), emptyValue(), characteristics});
|
|
}
|
|
void setPassedResult(PassEntityBy p, FortranEntity entity) {
|
|
interface.passedResult =
|
|
PassedEntity{p, entity, emptyValue(), emptyValue()};
|
|
}
|
|
void setSaveResult() { interface.saveResult = true; }
|
|
int nextPassedArgPosition() { return interface.passedArguments.size(); }
|
|
|
|
static FirValue emptyValue() {
|
|
if constexpr (std::is_same_v<Fortran::lower::CalleeInterface, T>) {
|
|
return {};
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
Fortran::lower::AbstractConverter &getConverter() {
|
|
return interface.converter;
|
|
}
|
|
CallInterface &interface;
|
|
mlir::MLIRContext &mlirContext;
|
|
};
|
|
|
|
template <typename T>
|
|
bool Fortran::lower::CallInterface<T>::PassedEntity::isOptional() const {
|
|
if (!characteristics)
|
|
return false;
|
|
return characteristics->IsOptional();
|
|
}
|
|
template <typename T>
|
|
bool Fortran::lower::CallInterface<T>::PassedEntity::mayBeModifiedByCall()
|
|
const {
|
|
if (!characteristics)
|
|
return true;
|
|
return characteristics->GetIntent() != Fortran::common::Intent::In;
|
|
}
|
|
template <typename T>
|
|
bool Fortran::lower::CallInterface<T>::PassedEntity::mayBeReadByCall() const {
|
|
if (!characteristics)
|
|
return true;
|
|
return characteristics->GetIntent() != Fortran::common::Intent::Out;
|
|
}
|
|
|
|
template <typename T>
|
|
void Fortran::lower::CallInterface<T>::determineInterface(
|
|
bool isImplicit,
|
|
const Fortran::evaluate::characteristics::Procedure &procedure) {
|
|
CallInterfaceImpl<T> impl(*this);
|
|
if (isImplicit)
|
|
impl.buildImplicitInterface(procedure);
|
|
else
|
|
impl.buildExplicitInterface(procedure);
|
|
// We only expect the extra host asspciations argument from the callee side as
|
|
// the definition of internal procedures will be present, and we'll always
|
|
// have a FuncOp definition in the ModuleOp, when lowering.
|
|
if constexpr (std::is_same_v<T, Fortran::lower::CalleeInterface>) {
|
|
if (side().hasHostAssociated())
|
|
impl.appendHostAssocTupleArg(side().getHostAssociatedTy());
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
mlir::FunctionType Fortran::lower::CallInterface<T>::genFunctionType() {
|
|
llvm::SmallVector<mlir::Type> returnTys;
|
|
llvm::SmallVector<mlir::Type> inputTys;
|
|
for (const FirPlaceHolder &placeHolder : outputs)
|
|
returnTys.emplace_back(placeHolder.type);
|
|
for (const FirPlaceHolder &placeHolder : inputs)
|
|
inputTys.emplace_back(placeHolder.type);
|
|
return mlir::FunctionType::get(&converter.getMLIRContext(), inputTys,
|
|
returnTys);
|
|
}
|
|
|
|
template <typename T>
|
|
llvm::SmallVector<mlir::Type>
|
|
Fortran::lower::CallInterface<T>::getResultType() const {
|
|
llvm::SmallVector<mlir::Type> types;
|
|
for (const FirPlaceHolder &out : outputs)
|
|
types.emplace_back(out.type);
|
|
return types;
|
|
}
|
|
|
|
template class Fortran::lower::CallInterface<Fortran::lower::CalleeInterface>;
|
|
template class Fortran::lower::CallInterface<Fortran::lower::CallerInterface>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Function Type Translation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Build signature from characteristics when there is no Fortran entity to
|
|
/// associate with the arguments (i.e, this is not a call site or a procedure
|
|
/// declaration. This is needed when dealing with function pointers/dummy
|
|
/// arguments.
|
|
|
|
class SignatureBuilder;
|
|
template <>
|
|
struct Fortran::lower::PassedEntityTypes<SignatureBuilder> {
|
|
using FortranEntity = FakeEntity;
|
|
using FirValue = int;
|
|
};
|
|
|
|
/// SignatureBuilder is a CRTP implementation of CallInterface intended to
|
|
/// help translating characteristics::Procedure to mlir::FunctionType using
|
|
/// the CallInterface translation.
|
|
class SignatureBuilder
|
|
: public Fortran::lower::CallInterface<SignatureBuilder> {
|
|
public:
|
|
SignatureBuilder(const Fortran::evaluate::characteristics::Procedure &p,
|
|
Fortran::lower::AbstractConverter &c, bool forceImplicit)
|
|
: CallInterface{c}, proc{p} {
|
|
bool isImplicit = forceImplicit || proc.CanBeCalledViaImplicitInterface();
|
|
determineInterface(isImplicit, proc);
|
|
}
|
|
/// Does the procedure characteristics being translated have alternate
|
|
/// returns ?
|
|
bool hasAlternateReturns() const {
|
|
for (const Fortran::evaluate::characteristics::DummyArgument &dummy :
|
|
proc.dummyArguments)
|
|
if (std::holds_alternative<
|
|
Fortran::evaluate::characteristics::AlternateReturn>(dummy.u))
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
/// This is only here to fulfill CRTP dependencies and should not be called.
|
|
std::string getMangledName() const {
|
|
llvm_unreachable("trying to get name from SignatureBuilder");
|
|
}
|
|
|
|
/// This is only here to fulfill CRTP dependencies and should not be called.
|
|
mlir::Location getCalleeLocation() const {
|
|
llvm_unreachable("trying to get callee location from SignatureBuilder");
|
|
}
|
|
|
|
/// This is only here to fulfill CRTP dependencies and should not be called.
|
|
const Fortran::semantics::Symbol *getProcedureSymbol() const {
|
|
llvm_unreachable("trying to get callee symbol from SignatureBuilder");
|
|
};
|
|
|
|
Fortran::evaluate::characteristics::Procedure characterize() const {
|
|
return proc;
|
|
}
|
|
/// SignatureBuilder cannot be used on main program.
|
|
static constexpr bool isMainProgram() { return false; }
|
|
|
|
/// Return the characteristics::Procedure that is being translated to
|
|
/// mlir::FunctionType.
|
|
const Fortran::evaluate::characteristics::Procedure &
|
|
getCallDescription() const {
|
|
return proc;
|
|
}
|
|
|
|
/// This is not the description of an indirect call.
|
|
static constexpr bool isIndirectCall() { return false; }
|
|
|
|
/// Return the translated signature.
|
|
mlir::FunctionType getFunctionType() { return genFunctionType(); }
|
|
|
|
// Copy of base implementation.
|
|
static constexpr bool hasHostAssociated() { return false; }
|
|
mlir::Type getHostAssociatedTy() const {
|
|
llvm_unreachable("getting host associated type in SignatureBuilder");
|
|
}
|
|
|
|
private:
|
|
const Fortran::evaluate::characteristics::Procedure &proc;
|
|
};
|
|
|
|
mlir::FunctionType Fortran::lower::translateSignature(
|
|
const Fortran::evaluate::ProcedureDesignator &proc,
|
|
Fortran::lower::AbstractConverter &converter) {
|
|
std::optional<Fortran::evaluate::characteristics::Procedure> characteristics =
|
|
Fortran::evaluate::characteristics::Procedure::Characterize(
|
|
proc, converter.getFoldingContext());
|
|
// Most unrestricted intrinsic characteristic has the Elemental attribute
|
|
// which triggers CanBeCalledViaImplicitInterface to return false. However,
|
|
// using implicit interface rules is just fine here.
|
|
bool forceImplicit = proc.GetSpecificIntrinsic();
|
|
return SignatureBuilder{characteristics.value(), converter, forceImplicit}
|
|
.getFunctionType();
|
|
}
|
|
|
|
mlir::func::FuncOp Fortran::lower::getOrDeclareFunction(
|
|
llvm::StringRef name, const Fortran::evaluate::ProcedureDesignator &proc,
|
|
Fortran::lower::AbstractConverter &converter) {
|
|
mlir::ModuleOp module = converter.getModuleOp();
|
|
mlir::func::FuncOp func = fir::FirOpBuilder::getNamedFunction(module, name);
|
|
if (func)
|
|
return func;
|
|
|
|
const Fortran::semantics::Symbol *symbol = proc.GetSymbol();
|
|
assert(symbol && "non user function in getOrDeclareFunction");
|
|
// getOrDeclareFunction is only used for functions not defined in the current
|
|
// program unit, so use the location of the procedure designator symbol, which
|
|
// is the first occurrence of the procedure in the program unit.
|
|
mlir::Location loc = converter.genLocation(symbol->name());
|
|
std::optional<Fortran::evaluate::characteristics::Procedure> characteristics =
|
|
Fortran::evaluate::characteristics::Procedure::Characterize(
|
|
proc, converter.getFoldingContext());
|
|
mlir::FunctionType ty = SignatureBuilder{characteristics.value(), converter,
|
|
/*forceImplicit=*/false}
|
|
.getFunctionType();
|
|
mlir::func::FuncOp newFunc =
|
|
fir::FirOpBuilder::createFunction(loc, module, name, ty);
|
|
addSymbolAttribute(newFunc, *symbol, converter.getMLIRContext());
|
|
return newFunc;
|
|
}
|
|
|
|
// Is it required to pass a dummy procedure with \p characteristics as a tuple
|
|
// containing the function address and the result length ?
|
|
static bool mustPassLengthWithDummyProcedure(
|
|
const std::optional<Fortran::evaluate::characteristics::Procedure>
|
|
&characteristics) {
|
|
return characteristics &&
|
|
Fortran::lower::CallInterfaceImpl<SignatureBuilder>::
|
|
mustPassLengthWithDummyProcedure(*characteristics);
|
|
}
|
|
|
|
bool Fortran::lower::mustPassLengthWithDummyProcedure(
|
|
const Fortran::evaluate::ProcedureDesignator &procedure,
|
|
Fortran::lower::AbstractConverter &converter) {
|
|
std::optional<Fortran::evaluate::characteristics::Procedure> characteristics =
|
|
Fortran::evaluate::characteristics::Procedure::Characterize(
|
|
procedure, converter.getFoldingContext());
|
|
return ::mustPassLengthWithDummyProcedure(characteristics);
|
|
}
|
|
|
|
mlir::Type Fortran::lower::getDummyProcedureType(
|
|
const Fortran::semantics::Symbol &dummyProc,
|
|
Fortran::lower::AbstractConverter &converter) {
|
|
std::optional<Fortran::evaluate::characteristics::Procedure> iface =
|
|
Fortran::evaluate::characteristics::Procedure::Characterize(
|
|
dummyProc, converter.getFoldingContext());
|
|
mlir::Type procType = getProcedureDesignatorType(
|
|
iface.has_value() ? &*iface : nullptr, converter);
|
|
if (::mustPassLengthWithDummyProcedure(iface))
|
|
return fir::factory::getCharacterProcedureTupleType(procType);
|
|
return procType;
|
|
}
|