llvm-project/bolt/lib/Passes/LongJmp.cpp

646 lines
23 KiB
C++

//===- bolt/Passes/LongJmp.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LongJmpPass class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/LongJmp.h"
#define DEBUG_TYPE "longjmp"
using namespace llvm;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern llvm::cl::opt<unsigned> AlignText;
extern cl::opt<unsigned> AlignFunctions;
extern cl::opt<bool> UseOldText;
extern cl::opt<bool> HotFunctionsAtEnd;
static cl::opt<bool> GroupStubs("group-stubs",
cl::desc("share stubs across functions"),
cl::init(true), cl::cat(BoltOptCategory));
}
namespace llvm {
namespace bolt {
namespace {
constexpr unsigned ColdFragAlign = 16;
void relaxStubToShortJmp(BinaryBasicBlock &StubBB, const MCSymbol *Tgt) {
const BinaryContext &BC = StubBB.getFunction()->getBinaryContext();
InstructionListType Seq;
BC.MIB->createShortJmp(Seq, Tgt, BC.Ctx.get());
StubBB.clear();
StubBB.addInstructions(Seq.begin(), Seq.end());
}
void relaxStubToLongJmp(BinaryBasicBlock &StubBB, const MCSymbol *Tgt) {
const BinaryContext &BC = StubBB.getFunction()->getBinaryContext();
InstructionListType Seq;
BC.MIB->createLongJmp(Seq, Tgt, BC.Ctx.get());
StubBB.clear();
StubBB.addInstructions(Seq.begin(), Seq.end());
}
BinaryBasicBlock *getBBAtHotColdSplitPoint(BinaryFunction &Func) {
if (!Func.isSplit() || Func.empty())
return nullptr;
assert(!(*Func.begin()).isCold() && "Entry cannot be cold");
for (auto I = Func.layout_begin(), E = Func.layout_end(); I != E; ++I) {
auto Next = std::next(I);
if (Next != E && (*Next)->isCold())
return *I;
}
llvm_unreachable("No hot-colt split point found");
}
bool shouldInsertStub(const BinaryContext &BC, const MCInst &Inst) {
return (BC.MIB->isBranch(Inst) || BC.MIB->isCall(Inst)) &&
!BC.MIB->isIndirectBranch(Inst) && !BC.MIB->isIndirectCall(Inst);
}
} // end anonymous namespace
std::pair<std::unique_ptr<BinaryBasicBlock>, MCSymbol *>
LongJmpPass::createNewStub(BinaryBasicBlock &SourceBB, const MCSymbol *TgtSym,
bool TgtIsFunc, uint64_t AtAddress) {
BinaryFunction &Func = *SourceBB.getFunction();
const BinaryContext &BC = Func.getBinaryContext();
const bool IsCold = SourceBB.isCold();
MCSymbol *StubSym = BC.Ctx->createNamedTempSymbol("Stub");
std::unique_ptr<BinaryBasicBlock> StubBB = Func.createBasicBlock(0, StubSym);
MCInst Inst;
BC.MIB->createUncondBranch(Inst, TgtSym, BC.Ctx.get());
if (TgtIsFunc)
BC.MIB->convertJmpToTailCall(Inst);
StubBB->addInstruction(Inst);
StubBB->setExecutionCount(0);
// Register this in stubs maps
auto registerInMap = [&](StubGroupsTy &Map) {
StubGroupTy &StubGroup = Map[TgtSym];
StubGroup.insert(
std::lower_bound(
StubGroup.begin(), StubGroup.end(),
std::make_pair(AtAddress, nullptr),
[&](const std::pair<uint64_t, BinaryBasicBlock *> &LHS,
const std::pair<uint64_t, BinaryBasicBlock *> &RHS) {
return LHS.first < RHS.first;
}),
std::make_pair(AtAddress, StubBB.get()));
};
Stubs[&Func].insert(StubBB.get());
StubBits[StubBB.get()] = BC.MIB->getUncondBranchEncodingSize();
if (IsCold) {
registerInMap(ColdLocalStubs[&Func]);
if (opts::GroupStubs && TgtIsFunc)
registerInMap(ColdStubGroups);
++NumColdStubs;
} else {
registerInMap(HotLocalStubs[&Func]);
if (opts::GroupStubs && TgtIsFunc)
registerInMap(HotStubGroups);
++NumHotStubs;
}
return std::make_pair(std::move(StubBB), StubSym);
}
BinaryBasicBlock *LongJmpPass::lookupStubFromGroup(
const StubGroupsTy &StubGroups, const BinaryFunction &Func,
const MCInst &Inst, const MCSymbol *TgtSym, uint64_t DotAddress) const {
const BinaryContext &BC = Func.getBinaryContext();
auto CandidatesIter = StubGroups.find(TgtSym);
if (CandidatesIter == StubGroups.end())
return nullptr;
const StubGroupTy &Candidates = CandidatesIter->second;
if (Candidates.empty())
return nullptr;
auto Cand = std::lower_bound(
Candidates.begin(), Candidates.end(), std::make_pair(DotAddress, nullptr),
[&](const std::pair<uint64_t, BinaryBasicBlock *> &LHS,
const std::pair<uint64_t, BinaryBasicBlock *> &RHS) {
return LHS.first < RHS.first;
});
if (Cand == Candidates.end())
return nullptr;
if (Cand != Candidates.begin()) {
const StubTy *LeftCand = std::prev(Cand);
if (Cand->first - DotAddress > DotAddress - LeftCand->first)
Cand = LeftCand;
}
int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1;
uint64_t Mask = ~((1ULL << BitsAvail) - 1);
uint64_t PCRelTgtAddress = Cand->first;
PCRelTgtAddress = DotAddress > PCRelTgtAddress ? DotAddress - PCRelTgtAddress
: PCRelTgtAddress - DotAddress;
LLVM_DEBUG({
if (Candidates.size() > 1)
dbgs() << "Considering stub group with " << Candidates.size()
<< " candidates. DotAddress is " << Twine::utohexstr(DotAddress)
<< ", chosen candidate address is "
<< Twine::utohexstr(Cand->first) << "\n";
});
return PCRelTgtAddress & Mask ? nullptr : Cand->second;
}
BinaryBasicBlock *
LongJmpPass::lookupGlobalStub(const BinaryBasicBlock &SourceBB,
const MCInst &Inst, const MCSymbol *TgtSym,
uint64_t DotAddress) const {
const BinaryFunction &Func = *SourceBB.getFunction();
const StubGroupsTy &StubGroups =
SourceBB.isCold() ? ColdStubGroups : HotStubGroups;
return lookupStubFromGroup(StubGroups, Func, Inst, TgtSym, DotAddress);
}
BinaryBasicBlock *LongJmpPass::lookupLocalStub(const BinaryBasicBlock &SourceBB,
const MCInst &Inst,
const MCSymbol *TgtSym,
uint64_t DotAddress) const {
const BinaryFunction &Func = *SourceBB.getFunction();
const DenseMap<const BinaryFunction *, StubGroupsTy> &StubGroups =
SourceBB.isCold() ? ColdLocalStubs : HotLocalStubs;
const auto Iter = StubGroups.find(&Func);
if (Iter == StubGroups.end())
return nullptr;
return lookupStubFromGroup(Iter->second, Func, Inst, TgtSym, DotAddress);
}
std::unique_ptr<BinaryBasicBlock>
LongJmpPass::replaceTargetWithStub(BinaryBasicBlock &BB, MCInst &Inst,
uint64_t DotAddress,
uint64_t StubCreationAddress) {
const BinaryFunction &Func = *BB.getFunction();
const BinaryContext &BC = Func.getBinaryContext();
std::unique_ptr<BinaryBasicBlock> NewBB;
const MCSymbol *TgtSym = BC.MIB->getTargetSymbol(Inst);
assert(TgtSym && "getTargetSymbol failed");
BinaryBasicBlock::BinaryBranchInfo BI{0, 0};
BinaryBasicBlock *TgtBB = BB.getSuccessor(TgtSym, BI);
auto LocalStubsIter = Stubs.find(&Func);
// If already using stub and the stub is from another function, create a local
// stub, since the foreign stub is now out of range
if (!TgtBB) {
auto SSIter = SharedStubs.find(TgtSym);
if (SSIter != SharedStubs.end()) {
TgtSym = BC.MIB->getTargetSymbol(*SSIter->second->begin());
--NumSharedStubs;
}
} else if (LocalStubsIter != Stubs.end() &&
LocalStubsIter->second.count(TgtBB)) {
// If we are replacing a local stub (because it is now out of range),
// use its target instead of creating a stub to jump to another stub
TgtSym = BC.MIB->getTargetSymbol(*TgtBB->begin());
TgtBB = BB.getSuccessor(TgtSym, BI);
}
BinaryBasicBlock *StubBB = lookupLocalStub(BB, Inst, TgtSym, DotAddress);
// If not found, look it up in globally shared stub maps if it is a function
// call (TgtBB is not set)
if (!StubBB && !TgtBB) {
StubBB = lookupGlobalStub(BB, Inst, TgtSym, DotAddress);
if (StubBB) {
SharedStubs[StubBB->getLabel()] = StubBB;
++NumSharedStubs;
}
}
MCSymbol *StubSymbol = StubBB ? StubBB->getLabel() : nullptr;
if (!StubBB) {
std::tie(NewBB, StubSymbol) =
createNewStub(BB, TgtSym, /*is func?*/ !TgtBB, StubCreationAddress);
StubBB = NewBB.get();
}
// Local branch
if (TgtBB) {
uint64_t OrigCount = BI.Count;
uint64_t OrigMispreds = BI.MispredictedCount;
BB.replaceSuccessor(TgtBB, StubBB, OrigCount, OrigMispreds);
StubBB->setExecutionCount(StubBB->getExecutionCount() + OrigCount);
if (NewBB) {
StubBB->addSuccessor(TgtBB, OrigCount, OrigMispreds);
StubBB->setIsCold(BB.isCold());
}
// Call / tail call
} else {
StubBB->setExecutionCount(StubBB->getExecutionCount() +
BB.getExecutionCount());
if (NewBB) {
assert(TgtBB == nullptr);
StubBB->setIsCold(BB.isCold());
// Set as entry point because this block is valid but we have no preds
StubBB->getFunction()->addEntryPoint(*StubBB);
}
}
BC.MIB->replaceBranchTarget(Inst, StubSymbol, BC.Ctx.get());
return NewBB;
}
void LongJmpPass::updateStubGroups() {
auto update = [&](StubGroupsTy &StubGroups) {
for (auto &KeyVal : StubGroups) {
for (StubTy &Elem : KeyVal.second)
Elem.first = BBAddresses[Elem.second];
std::sort(KeyVal.second.begin(), KeyVal.second.end(),
[&](const std::pair<uint64_t, BinaryBasicBlock *> &LHS,
const std::pair<uint64_t, BinaryBasicBlock *> &RHS) {
return LHS.first < RHS.first;
});
}
};
for (auto &KeyVal : HotLocalStubs)
update(KeyVal.second);
for (auto &KeyVal : ColdLocalStubs)
update(KeyVal.second);
update(HotStubGroups);
update(ColdStubGroups);
}
void LongJmpPass::tentativeBBLayout(const BinaryFunction &Func) {
const BinaryContext &BC = Func.getBinaryContext();
uint64_t HotDot = HotAddresses[&Func];
uint64_t ColdDot = ColdAddresses[&Func];
bool Cold = false;
for (BinaryBasicBlock *BB : Func.layout()) {
if (Cold || BB->isCold()) {
Cold = true;
BBAddresses[BB] = ColdDot;
ColdDot += BC.computeCodeSize(BB->begin(), BB->end());
} else {
BBAddresses[BB] = HotDot;
HotDot += BC.computeCodeSize(BB->begin(), BB->end());
}
}
}
uint64_t LongJmpPass::tentativeLayoutRelocColdPart(
const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions,
uint64_t DotAddress) {
DotAddress = alignTo(DotAddress, llvm::Align(opts::AlignFunctions));
for (BinaryFunction *Func : SortedFunctions) {
if (!Func->isSplit())
continue;
DotAddress = alignTo(DotAddress, BinaryFunction::MinAlign);
uint64_t Pad =
offsetToAlignment(DotAddress, llvm::Align(Func->getAlignment()));
if (Pad <= Func->getMaxColdAlignmentBytes())
DotAddress += Pad;
ColdAddresses[Func] = DotAddress;
LLVM_DEBUG(dbgs() << Func->getPrintName() << " cold tentative: "
<< Twine::utohexstr(DotAddress) << "\n");
DotAddress += Func->estimateColdSize();
DotAddress = alignTo(DotAddress, Func->getConstantIslandAlignment());
DotAddress += Func->estimateConstantIslandSize();
}
return DotAddress;
}
uint64_t LongJmpPass::tentativeLayoutRelocMode(
const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions,
uint64_t DotAddress) {
// Compute hot cold frontier
uint32_t LastHotIndex = -1u;
uint32_t CurrentIndex = 0;
if (opts::HotFunctionsAtEnd) {
for (BinaryFunction *BF : SortedFunctions) {
if (BF->hasValidIndex()) {
LastHotIndex = CurrentIndex;
break;
}
++CurrentIndex;
}
} else {
for (BinaryFunction *BF : SortedFunctions) {
if (!BF->hasValidIndex()) {
LastHotIndex = CurrentIndex;
break;
}
++CurrentIndex;
}
}
// Hot
CurrentIndex = 0;
bool ColdLayoutDone = false;
for (BinaryFunction *Func : SortedFunctions) {
if (!BC.shouldEmit(*Func)) {
HotAddresses[Func] = Func->getAddress();
continue;
}
if (!ColdLayoutDone && CurrentIndex >= LastHotIndex) {
DotAddress =
tentativeLayoutRelocColdPart(BC, SortedFunctions, DotAddress);
ColdLayoutDone = true;
if (opts::HotFunctionsAtEnd)
DotAddress = alignTo(DotAddress, opts::AlignText);
}
DotAddress = alignTo(DotAddress, BinaryFunction::MinAlign);
uint64_t Pad =
offsetToAlignment(DotAddress, llvm::Align(Func->getAlignment()));
if (Pad <= Func->getMaxAlignmentBytes())
DotAddress += Pad;
HotAddresses[Func] = DotAddress;
LLVM_DEBUG(dbgs() << Func->getPrintName() << " tentative: "
<< Twine::utohexstr(DotAddress) << "\n");
if (!Func->isSplit())
DotAddress += Func->estimateSize();
else
DotAddress += Func->estimateHotSize();
DotAddress = alignTo(DotAddress, Func->getConstantIslandAlignment());
DotAddress += Func->estimateConstantIslandSize();
++CurrentIndex;
}
// BBs
for (BinaryFunction *Func : SortedFunctions)
tentativeBBLayout(*Func);
return DotAddress;
}
void LongJmpPass::tentativeLayout(
const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions) {
uint64_t DotAddress = BC.LayoutStartAddress;
if (!BC.HasRelocations) {
for (BinaryFunction *Func : SortedFunctions) {
HotAddresses[Func] = Func->getAddress();
DotAddress = alignTo(DotAddress, ColdFragAlign);
ColdAddresses[Func] = DotAddress;
if (Func->isSplit())
DotAddress += Func->estimateColdSize();
tentativeBBLayout(*Func);
}
return;
}
// Relocation mode
uint64_t EstimatedTextSize = 0;
if (opts::UseOldText) {
EstimatedTextSize = tentativeLayoutRelocMode(BC, SortedFunctions, 0);
// Initial padding
if (EstimatedTextSize <= BC.OldTextSectionSize) {
DotAddress = BC.OldTextSectionAddress;
uint64_t Pad =
offsetToAlignment(DotAddress, llvm::Align(opts::AlignText));
if (Pad + EstimatedTextSize <= BC.OldTextSectionSize) {
DotAddress += Pad;
}
}
}
if (!EstimatedTextSize || EstimatedTextSize > BC.OldTextSectionSize)
DotAddress = alignTo(BC.LayoutStartAddress, opts::AlignText);
tentativeLayoutRelocMode(BC, SortedFunctions, DotAddress);
}
bool LongJmpPass::usesStub(const BinaryFunction &Func,
const MCInst &Inst) const {
const MCSymbol *TgtSym = Func.getBinaryContext().MIB->getTargetSymbol(Inst);
const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(TgtSym);
auto Iter = Stubs.find(&Func);
if (Iter != Stubs.end())
return Iter->second.count(TgtBB);
return false;
}
uint64_t LongJmpPass::getSymbolAddress(const BinaryContext &BC,
const MCSymbol *Target,
const BinaryBasicBlock *TgtBB) const {
if (TgtBB) {
auto Iter = BBAddresses.find(TgtBB);
assert(Iter != BBAddresses.end() && "Unrecognized BB");
return Iter->second;
}
uint64_t EntryID = 0;
const BinaryFunction *TargetFunc = BC.getFunctionForSymbol(Target, &EntryID);
auto Iter = HotAddresses.find(TargetFunc);
if (Iter == HotAddresses.end() || (TargetFunc && EntryID)) {
// Look at BinaryContext's resolution for this symbol - this is a symbol not
// mapped to a BinaryFunction
ErrorOr<uint64_t> ValueOrError = BC.getSymbolValue(*Target);
assert(ValueOrError && "Unrecognized symbol");
return *ValueOrError;
}
return Iter->second;
}
bool LongJmpPass::relaxStub(BinaryBasicBlock &StubBB) {
const BinaryFunction &Func = *StubBB.getFunction();
const BinaryContext &BC = Func.getBinaryContext();
const int Bits = StubBits[&StubBB];
// Already working with the largest range?
if (Bits == static_cast<int>(BC.AsmInfo->getCodePointerSize() * 8))
return false;
const static int RangeShortJmp = BC.MIB->getShortJmpEncodingSize();
const static int RangeSingleInstr = BC.MIB->getUncondBranchEncodingSize();
const static uint64_t ShortJmpMask = ~((1ULL << RangeShortJmp) - 1);
const static uint64_t SingleInstrMask =
~((1ULL << (RangeSingleInstr - 1)) - 1);
const MCSymbol *RealTargetSym = BC.MIB->getTargetSymbol(*StubBB.begin());
const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(RealTargetSym);
uint64_t TgtAddress = getSymbolAddress(BC, RealTargetSym, TgtBB);
uint64_t DotAddress = BBAddresses[&StubBB];
uint64_t PCRelTgtAddress = DotAddress > TgtAddress ? DotAddress - TgtAddress
: TgtAddress - DotAddress;
// If it fits in one instruction, do not relax
if (!(PCRelTgtAddress & SingleInstrMask))
return false;
// Fits short jmp
if (!(PCRelTgtAddress & ShortJmpMask)) {
if (Bits >= RangeShortJmp)
return false;
LLVM_DEBUG(dbgs() << "Relaxing stub to short jump. PCRelTgtAddress = "
<< Twine::utohexstr(PCRelTgtAddress)
<< " RealTargetSym = " << RealTargetSym->getName()
<< "\n");
relaxStubToShortJmp(StubBB, RealTargetSym);
StubBits[&StubBB] = RangeShortJmp;
return true;
}
// The long jmp uses absolute address on AArch64
// So we could not use it for PIC binaries
if (BC.isAArch64() && !BC.HasFixedLoadAddress) {
errs() << "BOLT-ERROR: Unable to relax stub for PIC binary\n";
exit(1);
}
LLVM_DEBUG(dbgs() << "Relaxing stub to long jump. PCRelTgtAddress = "
<< Twine::utohexstr(PCRelTgtAddress)
<< " RealTargetSym = " << RealTargetSym->getName() << "\n");
relaxStubToLongJmp(StubBB, RealTargetSym);
StubBits[&StubBB] = static_cast<int>(BC.AsmInfo->getCodePointerSize() * 8);
return true;
}
bool LongJmpPass::needsStub(const BinaryBasicBlock &BB, const MCInst &Inst,
uint64_t DotAddress) const {
const BinaryFunction &Func = *BB.getFunction();
const BinaryContext &BC = Func.getBinaryContext();
const MCSymbol *TgtSym = BC.MIB->getTargetSymbol(Inst);
assert(TgtSym && "getTargetSymbol failed");
const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(TgtSym);
// Check for shared stubs from foreign functions
if (!TgtBB) {
auto SSIter = SharedStubs.find(TgtSym);
if (SSIter != SharedStubs.end())
TgtBB = SSIter->second;
}
int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1;
uint64_t Mask = ~((1ULL << BitsAvail) - 1);
uint64_t PCRelTgtAddress = getSymbolAddress(BC, TgtSym, TgtBB);
PCRelTgtAddress = DotAddress > PCRelTgtAddress ? DotAddress - PCRelTgtAddress
: PCRelTgtAddress - DotAddress;
return PCRelTgtAddress & Mask;
}
bool LongJmpPass::relax(BinaryFunction &Func) {
const BinaryContext &BC = Func.getBinaryContext();
bool Modified = false;
assert(BC.isAArch64() && "Unsupported arch");
constexpr int InsnSize = 4; // AArch64
std::vector<std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>>>
Insertions;
BinaryBasicBlock *Frontier = getBBAtHotColdSplitPoint(Func);
uint64_t FrontierAddress = Frontier ? BBAddresses[Frontier] : 0;
if (FrontierAddress)
FrontierAddress += Frontier->getNumNonPseudos() * InsnSize;
// Add necessary stubs for branch targets we know we can't fit in the
// instruction
for (BinaryBasicBlock &BB : Func) {
uint64_t DotAddress = BBAddresses[&BB];
// Stubs themselves are relaxed on the next loop
if (Stubs[&Func].count(&BB))
continue;
for (MCInst &Inst : BB) {
if (BC.MIB->isPseudo(Inst))
continue;
if (!shouldInsertStub(BC, Inst)) {
DotAddress += InsnSize;
continue;
}
// Check and relax direct branch or call
if (!needsStub(BB, Inst, DotAddress)) {
DotAddress += InsnSize;
continue;
}
Modified = true;
// Insert stubs close to the patched BB if call, but far away from the
// hot path if a branch, since this branch target is the cold region
// (but first check that the far away stub will be in range).
BinaryBasicBlock *InsertionPoint = &BB;
if (Func.isSimple() && !BC.MIB->isCall(Inst) && FrontierAddress &&
!BB.isCold()) {
int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1;
uint64_t Mask = ~((1ULL << BitsAvail) - 1);
assert(FrontierAddress > DotAddress &&
"Hot code should be before the frontier");
uint64_t PCRelTgt = FrontierAddress - DotAddress;
if (!(PCRelTgt & Mask))
InsertionPoint = Frontier;
}
// Always put stubs at the end of the function if non-simple. We can't
// change the layout of non-simple functions because it has jump tables
// that we do not control.
if (!Func.isSimple())
InsertionPoint = &*std::prev(Func.end());
// Create a stub to handle a far-away target
Insertions.emplace_back(InsertionPoint,
replaceTargetWithStub(BB, Inst, DotAddress,
InsertionPoint == Frontier
? FrontierAddress
: DotAddress));
DotAddress += InsnSize;
}
}
// Relax stubs if necessary
for (BinaryBasicBlock &BB : Func) {
if (!Stubs[&Func].count(&BB) || !BB.isValid())
continue;
Modified |= relaxStub(BB);
}
for (std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>> &Elmt :
Insertions) {
if (!Elmt.second)
continue;
std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs;
NewBBs.emplace_back(std::move(Elmt.second));
Func.insertBasicBlocks(Elmt.first, std::move(NewBBs), true);
}
return Modified;
}
void LongJmpPass::runOnFunctions(BinaryContext &BC) {
outs() << "BOLT-INFO: Starting stub-insertion pass\n";
std::vector<BinaryFunction *> Sorted = BC.getSortedFunctions();
bool Modified;
uint32_t Iterations = 0;
do {
++Iterations;
Modified = false;
tentativeLayout(BC, Sorted);
updateStubGroups();
for (BinaryFunction *Func : Sorted) {
if (relax(*Func)) {
// Don't ruin non-simple functions, they can't afford to have the layout
// changed.
if (Func->isSimple())
Func->fixBranches();
Modified = true;
}
}
} while (Modified);
outs() << "BOLT-INFO: Inserted " << NumHotStubs
<< " stubs in the hot area and " << NumColdStubs
<< " stubs in the cold area. Shared " << NumSharedStubs
<< " times, iterated " << Iterations << " times.\n";
}
} // namespace bolt
} // namespace llvm