llvm-project/bolt/lib/Passes/HFSort.cpp

290 lines
8.4 KiB
C++

//===- bolt/Passes/HFSort.cpp - Cluster functions by hotness --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of HFSort algorithm for function ordering:
// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/HFSort.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <unordered_set>
#define DEBUG_TYPE "hfsort"
namespace opts {
extern llvm::cl::opt<unsigned> Verbosity;
}
namespace llvm {
namespace bolt {
using NodeId = CallGraph::NodeId;
using Arc = CallGraph::Arc;
using Node = CallGraph::Node;
namespace {
// The number of pages to reserve for the functions with highest
// density (samples / size). The functions put in these pages are not
// considered for clustering.
constexpr uint32_t FrozenPages = 0;
// The minimum approximate probability of a callee being called from a
// particular arc to consider merging with the caller's cluster.
constexpr double MinArcProbability = 0.1;
// This is a factor to determine by how much a caller cluster is
// willing to degrade it's density by merging a callee.
constexpr int CallerDegradeFactor = 8;
} // namespace
////////////////////////////////////////////////////////////////////////////////
Cluster::Cluster(NodeId Id, const Node &Func)
: Samples(Func.samples()), Size(Func.size()),
Density((double)Samples / Size) {
Targets.push_back(Id);
}
Cluster::Cluster(const std::vector<NodeId> &Nodes, const CallGraph &Cg) {
Samples = 0;
Size = 0;
for (NodeId TargetId : Nodes) {
Targets.push_back(TargetId);
Samples += Cg.samples(TargetId);
Size += Cg.size(TargetId);
}
Density = (double)Samples / Size;
}
std::string Cluster::toString() const {
std::string Str;
raw_string_ostream CS(Str);
bool PrintComma = false;
CS << "funcs = [";
for (const NodeId &Target : Targets) {
if (PrintComma)
CS << ", ";
CS << Target;
PrintComma = true;
}
CS << "]";
return CS.str();
}
namespace {
void freezeClusters(const CallGraph &Cg, std::vector<Cluster> &Clusters) {
uint32_t TotalSize = 0;
std::sort(Clusters.begin(), Clusters.end(), compareClustersDensity);
for (Cluster &C : Clusters) {
uint32_t NewSize = TotalSize + C.size();
if (NewSize > FrozenPages * HugePageSize)
break;
C.freeze();
TotalSize = NewSize;
LLVM_DEBUG(NodeId Fid = C.target(0);
dbgs() << format(
"freezing cluster for func %d, size = %u, samples = %lu)\n",
Fid, Cg.size(Fid), Cg.samples(Fid)););
}
}
} // namespace
void Cluster::reverseTargets() { std::reverse(Targets.begin(), Targets.end()); }
void Cluster::merge(const Cluster &Other, const double Aw) {
Targets.insert(Targets.end(), Other.Targets.begin(), Other.Targets.end());
Size += Other.Size;
Samples += Other.Samples;
Density = (double)Samples / Size;
}
void Cluster::merge(const Cluster &Other,
const std::vector<CallGraph::NodeId> &Targets_) {
Targets = Targets_;
Size += Other.Size;
Samples += Other.Samples;
Density = (double)Samples / Size;
}
void Cluster::clear() {
Id = -1u;
Size = 0;
Samples = 0;
Density = 0.0;
Targets.clear();
Frozen = false;
}
std::vector<Cluster> clusterize(const CallGraph &Cg) {
std::vector<NodeId> SortedFuncs;
// indexed by NodeId, keeps it's current cluster
std::vector<Cluster *> FuncCluster(Cg.numNodes(), nullptr);
std::vector<Cluster> Clusters;
Clusters.reserve(Cg.numNodes());
for (NodeId F = 0; F < Cg.numNodes(); F++) {
if (Cg.samples(F) == 0)
continue;
Clusters.emplace_back(F, Cg.getNode(F));
SortedFuncs.push_back(F);
}
freezeClusters(Cg, Clusters);
// The size and order of Clusters is fixed until we reshuffle it immediately
// before returning.
for (Cluster &Cluster : Clusters)
FuncCluster[Cluster.targets().front()] = &Cluster;
std::sort(SortedFuncs.begin(), SortedFuncs.end(),
[&](const NodeId F1, const NodeId F2) {
const CallGraph::Node &Func1 = Cg.getNode(F1);
const CallGraph::Node &Func2 = Cg.getNode(F2);
return Func1.samples() * Func2.size() > // TODO: is this correct?
Func2.samples() * Func1.size();
});
// Process each function, and consider merging its cluster with the
// one containing its most likely predecessor.
for (const NodeId Fid : SortedFuncs) {
Cluster *Cluster = FuncCluster[Fid];
if (Cluster->frozen())
continue;
// Find best predecessor.
NodeId BestPred = CallGraph::InvalidId;
double BestProb = 0;
for (const NodeId Src : Cg.predecessors(Fid)) {
const Arc &Arc = *Cg.findArc(Src, Fid);
if (BestPred == CallGraph::InvalidId ||
Arc.normalizedWeight() > BestProb) {
BestPred = Arc.src();
BestProb = Arc.normalizedWeight();
}
}
// Check if the merge is good for the callee.
// Don't merge if the probability of getting to the callee from the
// caller is too low.
if (BestProb < MinArcProbability)
continue;
assert(BestPred != CallGraph::InvalidId);
class Cluster *PredCluster = FuncCluster[BestPred];
// Skip if no predCluster (predecessor w/ no samples), or if same
// as cluster, of it's frozen.
if (PredCluster == nullptr || PredCluster == Cluster ||
PredCluster->frozen())
continue;
// Skip if merged cluster would be bigger than the threshold.
if (Cluster->size() + PredCluster->size() > MaxClusterSize)
continue;
// Check if the merge is good for the caller.
// Don't merge if the caller's density is significantly better
// than the density resulting from the merge.
const double NewDensity =
((double)PredCluster->samples() + Cluster->samples()) /
(PredCluster->size() + Cluster->size());
if (PredCluster->density() > NewDensity * CallerDegradeFactor) {
continue;
}
LLVM_DEBUG(if (opts::Verbosity > 1) {
dbgs() << format("merging %s -> %s: %u\n",
PredCluster->toString().c_str(),
Cluster->toString().c_str(), Cg.samples(Fid));
});
for (NodeId F : Cluster->targets())
FuncCluster[F] = PredCluster;
PredCluster->merge(*Cluster);
Cluster->clear();
}
// Return the set of Clusters that are left, which are the ones that
// didn't get merged (so their first func is its original func).
std::vector<Cluster> SortedClusters;
std::unordered_set<Cluster *> Visited;
for (const NodeId Func : SortedFuncs) {
Cluster *Cluster = FuncCluster[Func];
if (!Cluster || Visited.count(Cluster) == 1 || Cluster->target(0) != Func)
continue;
SortedClusters.emplace_back(std::move(*Cluster));
Visited.insert(Cluster);
}
std::sort(SortedClusters.begin(), SortedClusters.end(),
compareClustersDensity);
return SortedClusters;
}
std::vector<Cluster> randomClusters(const CallGraph &Cg) {
std::vector<NodeId> FuncIds(Cg.numNodes(), 0);
std::vector<Cluster> Clusters;
Clusters.reserve(Cg.numNodes());
for (NodeId F = 0; F < Cg.numNodes(); F++) {
if (Cg.samples(F) == 0)
continue;
Clusters.emplace_back(F, Cg.getNode(F));
}
std::sort(
Clusters.begin(), Clusters.end(),
[](const Cluster &A, const Cluster &B) { return A.size() < B.size(); });
auto pickMergeCluster = [&Clusters](const size_t Idx) {
size_t MaxIdx = Idx + 1;
while (MaxIdx < Clusters.size() &&
Clusters[Idx].size() + Clusters[MaxIdx].size() <= MaxClusterSize)
++MaxIdx;
if (MaxIdx - Idx > 1) {
size_t MergeIdx = (std::rand() % (MaxIdx - Idx - 1)) + Idx + 1;
assert(Clusters[MergeIdx].size() + Clusters[Idx].size() <=
MaxClusterSize);
return MergeIdx;
}
return Clusters.size();
};
size_t Idx = 0;
while (Idx < Clusters.size()) {
size_t MergeIdx = pickMergeCluster(Idx);
if (MergeIdx == Clusters.size()) {
++Idx;
} else {
Clusters[Idx].merge(Clusters[MergeIdx]);
Clusters.erase(Clusters.begin() + MergeIdx);
}
}
return Clusters;
}
} // namespace bolt
} // namespace llvm