llvm-project/bolt/lib/Passes/AsmDump.cpp

282 lines
10 KiB
C++

//===- bolt/Passes/AsmDump.cpp - Dump BinaryFunction into assembly --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmDumpPass class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/AsmDump.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Target/TargetMachine.h"
#include <unordered_set>
#define DEBUG_TYPE "asm-dump"
using namespace llvm;
namespace opts {
extern bool shouldPrint(const bolt::BinaryFunction &Function);
extern cl::OptionCategory BoltCategory;
extern cl::opt<unsigned> Verbosity;
cl::opt<std::string> AsmDump("asm-dump",
cl::desc("dump function into assembly"),
cl::value_desc("dump folder"), cl::ValueOptional,
cl::Hidden, cl::cat(BoltCategory));
} // end namespace opts
namespace llvm {
namespace bolt {
void dumpCFI(const BinaryFunction &BF, const MCInst &Instr, AsmPrinter &MAP) {
const MCCFIInstruction *CFIInstr = BF.getCFIFor(Instr);
switch (CFIInstr->getOperation()) {
// Skip unsupported CFI instructions.
case MCCFIInstruction::OpRememberState:
case MCCFIInstruction::OpRestoreState:
if (opts::Verbosity >= 2)
errs()
<< "BOLT-WARNING: AsmDump: skipping unsupported CFI instruction in "
<< BF << ".\n";
return;
default:
// Emit regular CFI instructions.
MAP.emitCFIInstruction(*CFIInstr);
}
}
void dumpJumpTableFdata(raw_ostream &OS, const BinaryFunction &BF,
const MCInst &Instr, const std::string &BranchLabel) {
StringRef FunctionName = BF.getOneName();
const JumpTable *JT = BF.getJumpTable(Instr);
for (const uint64_t EntryOffset : JT->OffsetEntries) {
auto LI = JT->Labels.find(EntryOffset);
StringRef TargetName = LI->second->getName();
const uint64_t Mispreds = JT->Counts[EntryOffset].Mispreds;
const uint64_t Count = JT->Counts[EntryOffset].Count;
OS << "# FDATA: 1 " << FunctionName << " #" << BranchLabel << "# "
<< "1 " << FunctionName << " #" << TargetName << "# " << Mispreds << " "
<< Count << '\n';
}
}
void dumpTailCallFdata(raw_ostream &OS, const BinaryFunction &BF,
const MCInst &Instr, const std::string &BranchLabel) {
const BinaryContext &BC = BF.getBinaryContext();
StringRef FunctionName = BF.getOneName();
auto CallFreq = BC.MIB->getAnnotationWithDefault<uint64_t>(Instr, "Count");
const MCSymbol *Target = BC.MIB->getTargetSymbol(Instr);
const BinaryFunction *TargetBF = BC.getFunctionForSymbol(Target);
if (!TargetBF)
return;
OS << "# FDATA: 1 " << FunctionName << " #" << BranchLabel << "# "
<< "1 " << TargetBF->getPrintName() << " 0 "
<< "0 " << CallFreq << '\n';
}
void dumpTargetFunctionStub(raw_ostream &OS, const BinaryContext &BC,
const MCSymbol *CalleeSymb,
const BinarySection *&LastCS) {
const BinaryFunction *CalleeFunc = BC.getFunctionForSymbol(CalleeSymb);
if (!CalleeFunc || CalleeFunc->isPLTFunction())
return;
if (CalleeFunc->getOriginSection() != LastCS) {
OS << ".section " << CalleeFunc->getOriginSectionName() << '\n';
LastCS = CalleeFunc->getOriginSection();
}
StringRef CalleeName = CalleeFunc->getOneName();
OS << ".set \"" << CalleeName << "\", 0\n";
}
void dumpJumpTableSymbols(raw_ostream &OS, const JumpTable *JT, AsmPrinter &MAP,
const BinarySection *&LastBS) {
if (&JT->getSection() != LastBS) {
OS << ".section " << JT->getSectionName() << '\n';
LastBS = &JT->getSection();
}
OS << "\"" << JT->getName() << "\":\n";
for (MCSymbol *JTEntry : JT->Entries)
MAP.OutStreamer->emitSymbolValue(JTEntry, JT->OutputEntrySize);
OS << '\n';
}
void dumpBinaryDataSymbols(raw_ostream &OS, const BinaryData *BD,
const BinarySection *&LastBS) {
if (BD->isJumpTable())
return;
if (&BD->getSection() != LastBS) {
OS << ".section " << BD->getSectionName() << '\n';
LastBS = &BD->getSection();
}
OS << "\"" << BD->getName() << "\": ";
OS << '\n';
}
void dumpFunction(const BinaryFunction &BF) {
const BinaryContext &BC = BF.getBinaryContext();
if (!opts::shouldPrint(BF))
return;
// Make sure the new directory exists, creating it if necessary.
if (!opts::AsmDump.empty()) {
if (std::error_code EC = sys::fs::create_directories(opts::AsmDump)) {
errs() << "BOLT-ERROR: could not create directory '" << opts::AsmDump
<< "': " << EC.message() << '\n';
exit(1);
}
}
std::string PrintName = BF.getPrintName();
std::replace(PrintName.begin(), PrintName.end(), '/', '-');
std::string Filename =
opts::AsmDump.empty()
? (PrintName + ".s")
: (opts::AsmDump + sys::path::get_separator() + PrintName + ".s")
.str();
outs() << "BOLT-INFO: Dumping function assembly to " << Filename << "\n";
std::error_code EC;
raw_fd_ostream OS(Filename, EC, sys::fs::OF_None);
if (EC) {
errs() << "BOLT-ERROR: " << EC.message() << ", unable to open " << Filename
<< " for output.\n";
exit(1);
}
OS.SetUnbuffered();
// Create local MC context to isolate the effect of ephemeral assembly
// emission.
BinaryContext::IndependentCodeEmitter MCEInstance =
BC.createIndependentMCCodeEmitter();
MCContext *LocalCtx = MCEInstance.LocalCtx.get();
std::unique_ptr<MCAsmBackend> MAB(
BC.TheTarget->createMCAsmBackend(*BC.STI, *BC.MRI, MCTargetOptions()));
int AsmPrinterVariant = BC.AsmInfo->getAssemblerDialect();
MCInstPrinter *InstructionPrinter(BC.TheTarget->createMCInstPrinter(
*BC.TheTriple, AsmPrinterVariant, *BC.AsmInfo, *BC.MII, *BC.MRI));
auto FOut = std::make_unique<formatted_raw_ostream>(OS);
FOut->SetUnbuffered();
std::unique_ptr<MCStreamer> AsmStreamer(
createAsmStreamer(*LocalCtx, std::move(FOut),
/*isVerboseAsm=*/true,
/*useDwarfDirectory=*/false, InstructionPrinter,
std::move(MCEInstance.MCE), std::move(MAB),
/*ShowInst=*/false));
AsmStreamer->initSections(true, *BC.STI);
std::unique_ptr<TargetMachine> TM(BC.TheTarget->createTargetMachine(
BC.TripleName, "", "", TargetOptions(), None));
std::unique_ptr<AsmPrinter> MAP(
BC.TheTarget->createAsmPrinter(*TM, std::move(AsmStreamer)));
StringRef FunctionName = BF.getOneName();
OS << " .globl " << FunctionName << '\n';
OS << " .type " << FunctionName << ", %function\n";
OS << FunctionName << ":\n";
// FDATA for the entry point
if (uint64_t EntryExecCount = BF.getKnownExecutionCount())
OS << "# FDATA: 0 [unknown] 0 "
<< "1 " << FunctionName << " 0 "
<< "0 " << EntryExecCount << '\n';
// Binary data references from the function.
std::unordered_set<const BinaryData *> BDReferences;
// Function references from the function (to avoid constructing call graph).
std::unordered_set<const MCSymbol *> CallReferences;
MAP->OutStreamer->emitCFIStartProc(/*IsSimple=*/false);
for (BinaryBasicBlock *BB : BF.layout()) {
OS << BB->getName() << ": \n";
const std::string BranchLabel = Twine(BB->getName(), "_br").str();
const MCInst *LastInst = BB->getLastNonPseudoInstr();
for (const MCInst &Instr : *BB) {
// Dump pseudo instructions (CFI)
if (BC.MIB->isPseudo(Instr)) {
if (BC.MIB->isCFI(Instr))
dumpCFI(BF, Instr, *MAP.get());
continue;
}
// Analyze symbol references (data, functions) from the instruction.
bool IsCall = BC.MIB->isCall(Instr);
for (const MCOperand &Operand : MCPlus::primeOperands(Instr)) {
if (Operand.isExpr() &&
Operand.getExpr()->getKind() == MCExpr::SymbolRef) {
std::pair<const MCSymbol *, uint64_t> TSI =
BC.MIB->getTargetSymbolInfo(Operand.getExpr());
const MCSymbol *Symbol = TSI.first;
if (IsCall)
CallReferences.insert(Symbol);
else if (const BinaryData *BD =
BC.getBinaryDataByName(Symbol->getName()))
BDReferences.insert(BD);
}
}
if (&Instr == LastInst && (BB->succ_size() || IsCall))
OS << BranchLabel << ":\n";
BC.InstPrinter->printInst(&Instr, 0, "", *BC.STI, OS);
OS << '\n';
// Dump profile data in FDATA format (as parsed by link_fdata).
if (BC.MIB->getJumpTable(Instr))
dumpJumpTableFdata(OS, BF, Instr, BranchLabel);
else if (BC.MIB->isTailCall(Instr))
dumpTailCallFdata(OS, BF, Instr, BranchLabel);
}
// Dump profile data in FDATA format (as parsed by link_fdata).
for (const BinaryBasicBlock *Succ : BB->successors()) {
const BinaryBasicBlock::BinaryBranchInfo BI = BB->getBranchInfo(*Succ);
if (!BI.MispredictedCount && !BI.Count)
continue;
OS << "# FDATA: 1 " << FunctionName << " #" << BranchLabel << "# "
<< "1 " << FunctionName << " #" << Succ->getName() << "# "
<< BI.MispredictedCount << " " << BI.Count << '\n';
}
OS << '\n';
}
MAP->OutStreamer->emitCFIEndProc();
OS << ".size " << FunctionName << ", .-" << FunctionName << '\n';
const BinarySection *LastSection = BF.getOriginSection();
// Print stubs for all target functions.
for (const MCSymbol *CalleeSymb : CallReferences)
dumpTargetFunctionStub(OS, BC, CalleeSymb, LastSection);
OS << "# Jump tables\n";
// Print all jump tables.
for (auto &JTI : BF.jumpTables())
dumpJumpTableSymbols(OS, JTI.second, *MAP.get(), LastSection);
OS << "# BinaryData\n";
// Print data references.
for (const BinaryData *BD : BDReferences)
dumpBinaryDataSymbols(OS, BD, LastSection);
}
void AsmDumpPass::runOnFunctions(BinaryContext &BC) {
for (const auto &BFIt : BC.getBinaryFunctions())
dumpFunction(BFIt.second);
}
} // namespace bolt
} // namespace llvm