llvm-project/libcxx/test/support/filesystem_test_helper.h

724 lines
24 KiB
C++

#ifndef FILESYSTEM_TEST_HELPER_H
#define FILESYSTEM_TEST_HELPER_H
#include "filesystem_include.h"
#include <sys/stat.h> // for stat, mkdir, mkfifo
#ifndef _WIN32
#include <unistd.h> // for ftruncate, link, symlink, getcwd, chdir
#include <sys/statvfs.h>
#else
#include <io.h>
#include <direct.h>
#include <windows.h> // for CreateSymbolicLink, CreateHardLink
#endif
#include <cassert>
#include <cstdio> // for printf
#include <string>
#include <chrono>
#include <vector>
#include "make_string.h"
#include "test_macros.h"
#include "rapid-cxx-test.h"
#include "format_string.h"
// For creating socket files
#if !defined(__FreeBSD__) && !defined(__APPLE__) && !defined(_WIN32)
# include <sys/socket.h>
# include <sys/un.h>
#endif
namespace utils {
#ifdef _WIN32
inline int mkdir(const char* path, int mode) { (void)mode; return ::_mkdir(path); }
inline int ftruncate(int fd, off_t length) { return ::_chsize(fd, length); }
inline int symlink(const char* oldname, const char* newname, bool is_dir) {
DWORD flags = is_dir ? SYMBOLIC_LINK_FLAG_DIRECTORY : 0;
if (CreateSymbolicLinkA(newname, oldname,
flags | SYMBOLIC_LINK_FLAG_ALLOW_UNPRIVILEGED_CREATE))
return 0;
if (GetLastError() != ERROR_INVALID_PARAMETER)
return 1;
return !CreateSymbolicLinkA(newname, oldname, flags);
}
inline int link(const char *oldname, const char* newname) {
return !CreateHardLinkA(newname, oldname, NULL);
}
inline int setenv(const char *var, const char *val, int overwrite) {
(void)overwrite;
return ::_putenv((std::string(var) + "=" + std::string(val)).c_str());
}
inline int unsetenv(const char *var) {
return ::_putenv((std::string(var) + "=").c_str());
}
inline bool space(std::string path, std::uintmax_t &capacity,
std::uintmax_t &free, std::uintmax_t &avail) {
ULARGE_INTEGER FreeBytesAvailableToCaller, TotalNumberOfBytes,
TotalNumberOfFreeBytes;
if (!GetDiskFreeSpaceExA(path.c_str(), &FreeBytesAvailableToCaller,
&TotalNumberOfBytes, &TotalNumberOfFreeBytes))
return false;
capacity = TotalNumberOfBytes.QuadPart;
free = TotalNumberOfFreeBytes.QuadPart;
avail = FreeBytesAvailableToCaller.QuadPart;
assert(capacity > 0);
assert(free > 0);
assert(avail > 0);
return true;
}
#else
using ::mkdir;
using ::ftruncate;
inline int symlink(const char* oldname, const char* newname, bool is_dir) { (void)is_dir; return ::symlink(oldname, newname); }
using ::link;
using ::setenv;
using ::unsetenv;
inline bool space(std::string path, std::uintmax_t &capacity,
std::uintmax_t &free, std::uintmax_t &avail) {
struct statvfs expect;
if (::statvfs(path.c_str(), &expect) == -1)
return false;
assert(expect.f_bavail > 0);
assert(expect.f_bfree > 0);
assert(expect.f_bsize > 0);
assert(expect.f_blocks > 0);
assert(expect.f_frsize > 0);
auto do_mult = [&](std::uintmax_t val) {
std::uintmax_t fsize = expect.f_frsize;
std::uintmax_t new_val = val * fsize;
assert(new_val / fsize == val); // Test for overflow
return new_val;
};
capacity = do_mult(expect.f_blocks);
free = do_mult(expect.f_bfree);
avail = do_mult(expect.f_bavail);
return true;
}
#endif
inline std::string getcwd() {
// Assume that path lengths are not greater than this.
// This should be fine for testing purposes.
char buf[4096];
char* ret = ::getcwd(buf, sizeof(buf));
assert(ret && "getcwd failed");
return std::string(ret);
}
inline bool exists(std::string const& path) {
struct ::stat tmp;
return ::stat(path.c_str(), &tmp) == 0;
}
} // end namespace utils
struct scoped_test_env
{
scoped_test_env() : test_root(available_cwd_path()) {
#ifdef _WIN32
// Windows mkdir can create multiple recursive directories
// if needed.
std::string cmd = "mkdir " + test_root.string();
#else
std::string cmd = "mkdir -p " + test_root.string();
#endif
int ret = std::system(cmd.c_str());
assert(ret == 0);
// Ensure that the root_path is fully resolved, i.e. it contains no
// symlinks. The filesystem tests depend on that. We do this after
// creating the root_path, because `fs::canonical` requires the
// path to exist.
test_root = fs::canonical(test_root);
}
~scoped_test_env() {
#ifdef _WIN32
std::string cmd = "rmdir /s /q " + test_root.string();
int ret = std::system(cmd.c_str());
assert(ret == 0);
#else
std::string cmd = "chmod -R 777 " + test_root.string();
int ret = std::system(cmd.c_str());
assert(ret == 0);
cmd = "rm -r " + test_root.string();
ret = std::system(cmd.c_str());
assert(ret == 0);
#endif
}
scoped_test_env(scoped_test_env const &) = delete;
scoped_test_env & operator=(scoped_test_env const &) = delete;
fs::path make_env_path(std::string p) { return sanitize_path(p); }
std::string sanitize_path(std::string raw) {
assert(raw.find("..") == std::string::npos);
std::string root = test_root.string();
if (root.compare(0, root.size(), raw, 0, root.size()) != 0) {
assert(raw.front() != '\\');
fs::path tmp(test_root);
tmp /= raw;
return tmp.string();
}
return raw;
}
// Purposefully using a size potentially larger than off_t here so we can
// test the behavior of libc++fs when it is built with _FILE_OFFSET_BITS=64
// but the caller is not (std::filesystem also uses uintmax_t rather than
// off_t). On a 32-bit system this allows us to create a file larger than
// 2GB.
std::string create_file(fs::path filename_path, uintmax_t size = 0) {
std::string filename = filename_path.string();
#if defined(__LP64__) || defined(_WIN32)
auto large_file_fopen = fopen;
auto large_file_ftruncate = utils::ftruncate;
using large_file_offset_t = off_t;
#else
auto large_file_fopen = fopen64;
auto large_file_ftruncate = ftruncate64;
using large_file_offset_t = off64_t;
#endif
filename = sanitize_path(std::move(filename));
if (size >
static_cast<typename std::make_unsigned<large_file_offset_t>::type>(
std::numeric_limits<large_file_offset_t>::max())) {
fprintf(stderr, "create_file(%s, %ju) too large\n",
filename.c_str(), size);
abort();
}
#ifndef _WIN32
#define FOPEN_CLOEXEC_FLAG "e"
#else
#define FOPEN_CLOEXEC_FLAG ""
#endif
FILE* file = large_file_fopen(filename.c_str(), "w" FOPEN_CLOEXEC_FLAG);
if (file == nullptr) {
fprintf(stderr, "fopen %s failed: %s\n", filename.c_str(),
strerror(errno));
abort();
}
if (large_file_ftruncate(
fileno(file), static_cast<large_file_offset_t>(size)) == -1) {
fprintf(stderr, "ftruncate %s %ju failed: %s\n", filename.c_str(),
size, strerror(errno));
fclose(file);
abort();
}
fclose(file);
return filename;
}
std::string create_dir(fs::path filename_path) {
std::string filename = filename_path.string();
filename = sanitize_path(std::move(filename));
int ret = utils::mkdir(filename.c_str(), 0777); // rwxrwxrwx mode
assert(ret == 0);
return filename;
}
std::string create_file_dir_symlink(fs::path source_path,
fs::path to_path,
bool sanitize_source = true,
bool is_dir = false) {
std::string source = source_path.string();
std::string to = to_path.string();
if (sanitize_source)
source = sanitize_path(std::move(source));
to = sanitize_path(std::move(to));
int ret = utils::symlink(source.c_str(), to.c_str(), is_dir);
assert(ret == 0);
return to;
}
std::string create_symlink(fs::path source_path,
fs::path to_path,
bool sanitize_source = true) {
return create_file_dir_symlink(source_path, to_path, sanitize_source,
false);
}
std::string create_directory_symlink(fs::path source_path,
fs::path to_path,
bool sanitize_source = true) {
return create_file_dir_symlink(source_path, to_path, sanitize_source,
true);
}
std::string create_hardlink(fs::path source_path, fs::path to_path) {
std::string source = source_path.string();
std::string to = to_path.string();
source = sanitize_path(std::move(source));
to = sanitize_path(std::move(to));
int ret = utils::link(source.c_str(), to.c_str());
assert(ret == 0);
return to;
}
#ifndef _WIN32
std::string create_fifo(std::string file) {
file = sanitize_path(std::move(file));
int ret = ::mkfifo(file.c_str(), 0666); // rw-rw-rw- mode
assert(ret == 0);
return file;
}
#endif
// Some platforms doesn't support socket files so we shouldn't even
// allow tests to call this unguarded.
#if !defined(__FreeBSD__) && !defined(__APPLE__) && !defined(_WIN32)
std::string create_socket(std::string file) {
file = sanitize_path(std::move(file));
::sockaddr_un address;
address.sun_family = AF_UNIX;
assert(file.size() <= sizeof(address.sun_path));
::strncpy(address.sun_path, file.c_str(), sizeof(address.sun_path));
int fd = ::socket(AF_UNIX, SOCK_STREAM, 0);
::bind(fd, reinterpret_cast<::sockaddr*>(&address), sizeof(address));
return file;
}
#endif
fs::path test_root;
private:
// This could potentially introduce a filesystem race if multiple
// scoped_test_envs were created concurrently in the same test (hence
// sharing the same cwd). However, it is fairly unlikely to happen as
// we generally don't use scoped_test_env from multiple threads, so
// this is deemed acceptable.
// The cwd.filename() itself isn't unique across all tests in the suite,
// so start the numbering from a hash of the full cwd, to avoid
// different tests interfering with each other.
static inline fs::path available_cwd_path() {
fs::path const cwd = utils::getcwd();
fs::path const tmp = fs::temp_directory_path();
std::string base = cwd.filename().string();
size_t i = std::hash<std::string>()(cwd.string());
fs::path p = tmp / (base + "-static_env." + std::to_string(i));
while (utils::exists(p.string())) {
p = tmp / (base + "-static_env." + std::to_string(++i));
}
return p;
}
};
/// This class generates the following tree:
///
/// static_test_env
/// ├── bad_symlink -> dne
/// ├── dir1
/// │   ├── dir2
/// │   │   ├── afile3
/// │   │   ├── dir3
/// │   │   │   └── file5
/// │   │   ├── file4
/// │   │   └── symlink_to_dir3 -> dir3
/// │   ├── file1
/// │   └── file2
/// ├── empty_file
/// ├── non_empty_file
/// ├── symlink_to_dir -> dir1
/// └── symlink_to_empty_file -> empty_file
///
class static_test_env {
scoped_test_env env_;
public:
static_test_env() {
env_.create_symlink("dne", "bad_symlink", false);
env_.create_dir("dir1");
env_.create_dir("dir1/dir2");
env_.create_file("dir1/dir2/afile3");
env_.create_dir("dir1/dir2/dir3");
env_.create_file("dir1/dir2/dir3/file5");
env_.create_file("dir1/dir2/file4");
env_.create_directory_symlink("dir3", "dir1/dir2/symlink_to_dir3", false);
env_.create_file("dir1/file1");
env_.create_file("dir1/file2", 42);
env_.create_file("empty_file");
env_.create_file("non_empty_file", 42);
env_.create_directory_symlink("dir1", "symlink_to_dir", false);
env_.create_symlink("empty_file", "symlink_to_empty_file", false);
}
const fs::path Root = env_.test_root;
fs::path makePath(fs::path const& p) const {
// env_path is expected not to contain symlinks.
fs::path const& env_path = Root;
return env_path / p;
}
const std::vector<fs::path> TestFileList = {
makePath("empty_file"),
makePath("non_empty_file"),
makePath("dir1/file1"),
makePath("dir1/file2")
};
const std::vector<fs::path> TestDirList = {
makePath("dir1"),
makePath("dir1/dir2"),
makePath("dir1/dir2/dir3")
};
const fs::path File = TestFileList[0];
const fs::path Dir = TestDirList[0];
const fs::path Dir2 = TestDirList[1];
const fs::path Dir3 = TestDirList[2];
const fs::path SymlinkToFile = makePath("symlink_to_empty_file");
const fs::path SymlinkToDir = makePath("symlink_to_dir");
const fs::path BadSymlink = makePath("bad_symlink");
const fs::path DNE = makePath("DNE");
const fs::path EmptyFile = TestFileList[0];
const fs::path NonEmptyFile = TestFileList[1];
const fs::path CharFile = "/dev/null"; // Hopefully this exists
const std::vector<fs::path> DirIterationList = {
makePath("dir1/dir2"),
makePath("dir1/file1"),
makePath("dir1/file2")
};
const std::vector<fs::path> DirIterationListDepth1 = {
makePath("dir1/dir2/afile3"),
makePath("dir1/dir2/dir3"),
makePath("dir1/dir2/symlink_to_dir3"),
makePath("dir1/dir2/file4"),
};
const std::vector<fs::path> RecDirIterationList = {
makePath("dir1/dir2"),
makePath("dir1/file1"),
makePath("dir1/file2"),
makePath("dir1/dir2/afile3"),
makePath("dir1/dir2/dir3"),
makePath("dir1/dir2/symlink_to_dir3"),
makePath("dir1/dir2/file4"),
makePath("dir1/dir2/dir3/file5")
};
const std::vector<fs::path> RecDirFollowSymlinksIterationList = {
makePath("dir1/dir2"),
makePath("dir1/file1"),
makePath("dir1/file2"),
makePath("dir1/dir2/afile3"),
makePath("dir1/dir2/dir3"),
makePath("dir1/dir2/file4"),
makePath("dir1/dir2/dir3/file5"),
makePath("dir1/dir2/symlink_to_dir3"),
makePath("dir1/dir2/symlink_to_dir3/file5"),
};
};
struct CWDGuard {
std::string oldCwd_;
CWDGuard() : oldCwd_(utils::getcwd()) { }
~CWDGuard() {
int ret = ::chdir(oldCwd_.c_str());
assert(ret == 0 && "chdir failed");
}
CWDGuard(CWDGuard const&) = delete;
CWDGuard& operator=(CWDGuard const&) = delete;
};
// Misc test types
const MultiStringType PathList[] = {
MKSTR(""),
MKSTR(" "),
MKSTR("//"),
MKSTR("."),
MKSTR(".."),
MKSTR("foo"),
MKSTR("/"),
MKSTR("/foo"),
MKSTR("foo/"),
MKSTR("/foo/"),
MKSTR("foo/bar"),
MKSTR("/foo/bar"),
MKSTR("//net"),
MKSTR("//net/foo"),
MKSTR("///foo///"),
MKSTR("///foo///bar"),
MKSTR("/."),
MKSTR("./"),
MKSTR("/.."),
MKSTR("../"),
MKSTR("foo/."),
MKSTR("foo/.."),
MKSTR("foo/./"),
MKSTR("foo/./bar"),
MKSTR("foo/../"),
MKSTR("foo/../bar"),
MKSTR("c:"),
MKSTR("c:/"),
MKSTR("c:foo"),
MKSTR("c:/foo"),
MKSTR("c:foo/"),
MKSTR("c:/foo/"),
MKSTR("c:/foo/bar"),
MKSTR("prn:"),
MKSTR("c:\\"),
MKSTR("c:\\foo"),
MKSTR("c:foo\\"),
MKSTR("c:\\foo\\"),
MKSTR("c:\\foo/"),
MKSTR("c:/foo\\bar"),
MKSTR("//"),
MKSTR("/finally/we/need/one/really/really/really/really/really/really/really/long/string")
};
const unsigned PathListSize = sizeof(PathList) / sizeof(MultiStringType);
template <class Iter>
Iter IterEnd(Iter B) {
using VT = typename std::iterator_traits<Iter>::value_type;
for (; *B != VT{}; ++B)
;
return B;
}
template <class CharT>
const CharT* StrEnd(CharT const* P) {
return IterEnd(P);
}
template <class CharT>
std::size_t StrLen(CharT const* P) {
return StrEnd(P) - P;
}
// Testing the allocation behavior of the code_cvt functions requires
// *knowing* that the allocation was not done by "path::__str_".
// This hack forces path to allocate enough memory.
inline void PathReserve(fs::path& p, std::size_t N) {
auto const& native_ref = p.native();
const_cast<fs::path::string_type&>(native_ref).reserve(N);
}
template <class Iter1, class Iter2>
bool checkCollectionsEqual(
Iter1 start1, Iter1 const end1
, Iter2 start2, Iter2 const end2
)
{
while (start1 != end1 && start2 != end2) {
if (*start1 != *start2) {
return false;
}
++start1; ++start2;
}
return (start1 == end1 && start2 == end2);
}
template <class Iter1, class Iter2>
bool checkCollectionsEqualBackwards(
Iter1 const start1, Iter1 end1
, Iter2 const start2, Iter2 end2
)
{
while (start1 != end1 && start2 != end2) {
--end1; --end2;
if (*end1 != *end2) {
return false;
}
}
return (start1 == end1 && start2 == end2);
}
// We often need to test that the error_code was cleared if no error occurs
// this function returns an error_code which is set to an error that will
// never be returned by the filesystem functions.
inline std::error_code GetTestEC(unsigned Idx = 0) {
using std::errc;
auto GetErrc = [&]() {
switch (Idx) {
case 0:
return errc::address_family_not_supported;
case 1:
return errc::address_not_available;
case 2:
return errc::address_in_use;
case 3:
return errc::argument_list_too_long;
default:
assert(false && "Idx out of range");
std::abort();
}
};
return std::make_error_code(GetErrc());
}
inline bool ErrorIsImp(const std::error_code& ec,
std::vector<std::errc> const& errors) {
std::error_condition cond = ec.default_error_condition();
for (auto errc : errors) {
if (cond.value() == static_cast<int>(errc))
return true;
}
return false;
}
template <class... ErrcT>
inline bool ErrorIs(const std::error_code& ec, std::errc First, ErrcT... Rest) {
std::vector<std::errc> errors = {First, Rest...};
return ErrorIsImp(ec, errors);
}
// Provide our own Sleep routine since std::this_thread::sleep_for is not
// available in single-threaded mode.
template <class Dur> void SleepFor(Dur dur) {
using namespace std::chrono;
#if defined(_LIBCPP_HAS_NO_MONOTONIC_CLOCK)
using Clock = system_clock;
#else
using Clock = steady_clock;
#endif
const auto wake_time = Clock::now() + dur;
while (Clock::now() < wake_time)
;
}
inline bool PathEq(fs::path const& LHS, fs::path const& RHS) {
return LHS.native() == RHS.native();
}
inline bool PathEqIgnoreSep(fs::path LHS, fs::path RHS) {
LHS.make_preferred();
RHS.make_preferred();
return LHS.native() == RHS.native();
}
inline fs::perms NormalizeExpectedPerms(fs::perms P) {
#ifdef _WIN32
// On Windows, fs::perms only maps down to one bit stored in the filesystem,
// a boolean readonly flag.
// Normalize permissions to the format it gets returned; all fs entries are
// read+exec for all users; writable ones also have the write bit set for
// all users.
P |= fs::perms::owner_read | fs::perms::group_read | fs::perms::others_read;
P |= fs::perms::owner_exec | fs::perms::group_exec | fs::perms::others_exec;
fs::perms Write =
fs::perms::owner_write | fs::perms::group_write | fs::perms::others_write;
if ((P & Write) != fs::perms::none)
P |= Write;
#endif
return P;
}
struct ExceptionChecker {
std::errc expected_err;
fs::path expected_path1;
fs::path expected_path2;
unsigned num_paths;
const char* func_name;
std::string opt_message;
explicit ExceptionChecker(std::errc first_err, const char* fun_name,
std::string opt_msg = {})
: expected_err{first_err}, num_paths(0), func_name(fun_name),
opt_message(opt_msg) {}
explicit ExceptionChecker(fs::path p, std::errc first_err,
const char* fun_name, std::string opt_msg = {})
: expected_err(first_err), expected_path1(p), num_paths(1),
func_name(fun_name), opt_message(opt_msg) {}
explicit ExceptionChecker(fs::path p1, fs::path p2, std::errc first_err,
const char* fun_name, std::string opt_msg = {})
: expected_err(first_err), expected_path1(p1), expected_path2(p2),
num_paths(2), func_name(fun_name), opt_message(opt_msg) {}
void operator()(fs::filesystem_error const& Err) {
TEST_CHECK(ErrorIsImp(Err.code(), {expected_err}));
TEST_CHECK(Err.path1() == expected_path1);
TEST_CHECK(Err.path2() == expected_path2);
LIBCPP_ONLY(check_libcxx_string(Err));
}
void check_libcxx_string(fs::filesystem_error const& Err) {
std::string message = std::make_error_code(expected_err).message();
std::string additional_msg = "";
if (!opt_message.empty()) {
additional_msg = opt_message + ": ";
}
auto transform_path = [](const fs::path& p) {
return "\"" + p.string() + "\"";
};
std::string format = [&]() -> std::string {
switch (num_paths) {
case 0:
return format_string("filesystem error: in %s: %s%s", func_name,
additional_msg, message);
case 1:
return format_string("filesystem error: in %s: %s%s [%s]", func_name,
additional_msg, message,
transform_path(expected_path1).c_str());
case 2:
return format_string("filesystem error: in %s: %s%s [%s] [%s]",
func_name, additional_msg, message,
transform_path(expected_path1).c_str(),
transform_path(expected_path2).c_str());
default:
TEST_CHECK(false && "unexpected case");
return "";
}
}();
TEST_CHECK(format == Err.what());
if (format != Err.what()) {
fprintf(stderr,
"filesystem_error::what() does not match expected output:\n");
fprintf(stderr, " expected: \"%s\"\n", format.c_str());
fprintf(stderr, " actual: \"%s\"\n\n", Err.what());
}
}
ExceptionChecker(ExceptionChecker const&) = delete;
ExceptionChecker& operator=(ExceptionChecker const&) = delete;
};
inline fs::path GetWindowsInaccessibleDir() {
// Only makes sense on windows, but the code can be compiled for
// any platform.
const fs::path dir("C:\\System Volume Information");
std::error_code ec;
const fs::path root("C:\\");
for (const auto &ent : fs::directory_iterator(root, ec)) {
if (ent != dir)
continue;
// Basic sanity checks on the directory_entry
if (!ent.exists() || !ent.is_directory()) {
fprintf(stderr, "The expected inaccessible directory \"%s\" was found "
"but doesn't behave as expected, skipping tests "
"regarding it\n", dir.string().c_str());
return fs::path();
}
// Check that it indeed is inaccessible as expected
(void)fs::exists(ent, ec);
if (!ec) {
fprintf(stderr, "The expected inaccessible directory \"%s\" was found "
"but seems to be accessible, skipping tests "
"regarding it\n", dir.string().c_str());
return fs::path();
}
return ent;
}
fprintf(stderr, "No inaccessible directory \"%s\" found, skipping tests "
"regarding it\n", dir.string().c_str());
return fs::path();
}
#endif /* FILESYSTEM_TEST_HELPER_HPP */