llvm-project/mlir/lib/Analysis/Verifier.cpp

305 lines
10 KiB
C++

//===- Verifier.cpp - MLIR Verifier Implementation ------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the verify() methods on the various IR types, performing
// (potentially expensive) checks on the holistic structure of the code. This
// can be used for detecting bugs in compiler transformations and hand written
// .mlir files.
//
// The checks in this file are only for things that can occur as part of IR
// transformations: e.g. violation of dominance information, malformed operation
// attributes, etc. MLIR supports transformations moving IR through locally
// invalid states (e.g. unlinking an instruction from an instruction before
// re-inserting it in a new place), but each transformation must complete with
// the IR in a valid form.
//
// This should not check for things that are always wrong by construction (e.g.
// affine maps or other immutable structures that are incorrect), because those
// are not mutable and can be checked at time of construction.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Dominance.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Instruction.h"
#include "mlir/IR/Module.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
namespace {
/// This class encapsulates all the state used to verify a function body. It is
/// a pervasive truth that this file treats "true" as an error that needs to be
/// recovered from, and "false" as success.
///
class FuncVerifier {
public:
bool failure(const Twine &message, const Instruction &value) {
return value.emitError(message);
}
bool failure(const Twine &message, const Function &fn) {
return fn.emitError(message);
}
bool failure(const Twine &message, const Block &bb) {
// Take the location information for the first instruction in the block.
if (!bb.empty())
return failure(message, bb.front());
// Worst case, fall back to using the function's location.
return failure(message, fn);
}
bool verifyAttribute(Attribute attr, const Instruction &op);
bool verify();
bool verifyBlock(const Block &block, bool isTopLevel);
bool verifyOperation(const Instruction &op);
bool verifyDominance(const Block &block);
bool verifyInstDominance(const Instruction &inst);
explicit FuncVerifier(const Function &fn) : fn(fn) {}
private:
/// The function being checked.
const Function &fn;
/// Dominance information for this function, when checking dominance.
DominanceInfo *domInfo = nullptr;
};
} // end anonymous namespace
bool FuncVerifier::verify() {
llvm::PrettyStackTraceFormat fmt("MLIR Verifier: func @%s",
fn.getName().c_str());
// External functions have nothing more to check.
if (fn.empty())
return false;
// Verify the first block has no predecessors.
auto *firstBB = &fn.front();
if (!firstBB->hasNoPredecessors())
return failure("entry block of function may not have predecessors", fn);
// Verify that the argument list of the function and the arg list of the first
// block line up.
auto fnInputTypes = fn.getType().getInputs();
if (fnInputTypes.size() != firstBB->getNumArguments())
return failure("first block of function must have " +
Twine(fnInputTypes.size()) +
" arguments to match function signature",
fn);
for (unsigned i = 0, e = firstBB->getNumArguments(); i != e; ++i)
if (fnInputTypes[i] != firstBB->getArgument(i)->getType())
return failure(
"type of argument #" + Twine(i) +
" must match corresponding argument in function signature",
fn);
for (auto &block : fn) {
if (verifyBlock(block, /*isTopLevel*/ true))
return true;
}
// Since everything looks structurally ok to this point, we do a dominance
// check. We do this as a second pass since malformed CFG's can cause
// dominator analysis constructure to crash and we want the verifier to be
// resilient to malformed code.
DominanceInfo theDomInfo(const_cast<Function *>(&fn));
domInfo = &theDomInfo;
for (auto &block : fn) {
if (verifyDominance(block))
return true;
}
domInfo = nullptr;
return false;
}
// Check that function attributes are all well formed.
bool FuncVerifier::verifyAttribute(Attribute attr, const Instruction &op) {
if (!attr.isOrContainsFunction())
return false;
// If we have a function attribute, check that it is non-null and in the
// same module as the operation that refers to it.
if (auto fnAttr = attr.dyn_cast<FunctionAttr>()) {
if (!fnAttr.getValue())
return failure("attribute refers to deallocated function!", op);
if (fnAttr.getValue()->getModule() != fn.getModule())
return failure("attribute refers to function '" +
Twine(fnAttr.getValue()->getName()) +
"' defined in another module!",
op);
return false;
}
// Otherwise, we must have an array attribute, remap the elements.
for (auto elt : attr.cast<ArrayAttr>().getValue()) {
if (verifyAttribute(elt, op))
return true;
}
return false;
}
// Returns if the given block is allowed to have no terminator.
static bool canBlockHaveNoTerminator(const Block &block) {
// Allow the first block of an operation region to have no terminator if it is
// the only block in the region.
auto *parentList = block.getParent();
return parentList->getContainingInst() &&
std::next(parentList->begin()) == parentList->end();
}
bool FuncVerifier::verifyBlock(const Block &block, bool isTopLevel) {
for (auto *arg : block.getArguments()) {
if (arg->getOwner() != &block)
return failure("block argument not owned by block", block);
}
// Verify that this block has a terminator.
if (block.empty()) {
if (canBlockHaveNoTerminator(block))
return false;
return failure("block with no terminator", block);
}
// Verify the non-terminator instructions separately so that we can verify
// they has no successors.
for (auto &inst : llvm::make_range(block.begin(), std::prev(block.end()))) {
if (inst.getNumSuccessors() != 0)
return failure(
"instruction with block successors must terminate its parent block",
inst);
if (verifyOperation(inst))
return true;
}
// Verify the terminator.
if (verifyOperation(block.back()))
return true;
if (block.back().isKnownNonTerminator() && !canBlockHaveNoTerminator(block))
return failure("block with no terminator", block);
// Verify that this block is not branching to a block of a different
// region.
for (const Block *successor : block.getSuccessors())
if (successor->getParent() != block.getParent())
return failure("branching to block of a different region", block.back());
return false;
}
/// Check the invariants of the specified operation.
bool FuncVerifier::verifyOperation(const Instruction &op) {
if (op.getFunction() != &fn)
return failure("operation in the wrong function", op);
// Check that operands are non-nil and structurally ok.
for (const auto *operand : op.getOperands()) {
if (!operand)
return failure("null operand found", op);
if (operand->getFunction() != &fn)
return failure("reference to operand defined in another function", op);
}
// Verify all attributes are ok. We need to check Function attributes, since
// they are actually mutable (the function they refer to can be deleted), and
// we have to check array attributes that can refer to them.
for (auto attr : op.getAttrs()) {
if (verifyAttribute(attr.second, op))
return true;
}
// If we can get operation info for this, check the custom hook.
if (auto *opInfo = op.getAbstractOperation()) {
if (opInfo->verifyInvariants(&op))
return true;
}
// Verify that all child blocks are ok.
for (auto &blockList : op.getBlockLists())
for (auto &b : blockList)
if (verifyBlock(b, /*isTopLevel=*/false))
return true;
return false;
}
bool FuncVerifier::verifyDominance(const Block &block) {
for (auto &inst : block) {
// Check that all operands on the instruction are ok.
if (verifyInstDominance(inst))
return true;
if (verifyOperation(inst))
return true;
for (auto &blockList : inst.getBlockLists())
for (auto &block : blockList)
if (verifyDominance(block))
return true;
}
return false;
}
bool FuncVerifier::verifyInstDominance(const Instruction &inst) {
// Check that operands properly dominate this use.
for (unsigned operandNo = 0, e = inst.getNumOperands(); operandNo != e;
++operandNo) {
auto *op = inst.getOperand(operandNo);
if (domInfo->properlyDominates(op, &inst))
continue;
inst.emitError("operand #" + Twine(operandNo) +
" does not dominate this use");
if (auto *useInst = op->getDefiningInst())
useInst->emitNote("operand defined here");
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Entrypoints
//===----------------------------------------------------------------------===//
/// Perform (potentially expensive) checks of invariants, used to detect
/// compiler bugs. On error, this reports the error through the MLIRContext and
/// returns true.
bool Function::verify() const { return FuncVerifier(*this).verify(); }
/// Perform (potentially expensive) checks of invariants, used to detect
/// compiler bugs. On error, this reports the error through the MLIRContext and
/// returns true.
bool Module::verify() const {
/// Check that each function is correct.
for (auto &fn : *this) {
if (fn.verify())
return true;
}
return false;
}