llvm-project/llvm/lib/AsmParser/LLLexer.cpp

857 lines
26 KiB
C++

//===- LLLexer.cpp - Lexer for .ll Files ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implement the Lexer for .ll files.
//
//===----------------------------------------------------------------------===//
#include "LLLexer.h"
#include "ParserInternals.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/MathExtras.h"
#include <list>
#include "llvmAsmParser.h"
#include <cstring>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Helper functions.
//===----------------------------------------------------------------------===//
// atoull - Convert an ascii string of decimal digits into the unsigned long
// long representation... this does not have to do input error checking,
// because we know that the input will be matched by a suitable regex...
//
static uint64_t atoull(const char *Buffer, const char *End) {
uint64_t Result = 0;
for (; Buffer != End; Buffer++) {
uint64_t OldRes = Result;
Result *= 10;
Result += *Buffer-'0';
if (Result < OldRes) { // Uh, oh, overflow detected!!!
GenerateError("constant bigger than 64 bits detected!");
return 0;
}
}
return Result;
}
static uint64_t HexIntToVal(const char *Buffer, const char *End) {
uint64_t Result = 0;
for (; Buffer != End; ++Buffer) {
uint64_t OldRes = Result;
Result *= 16;
char C = *Buffer;
if (C >= '0' && C <= '9')
Result += C-'0';
else if (C >= 'A' && C <= 'F')
Result += C-'A'+10;
else if (C >= 'a' && C <= 'f')
Result += C-'a'+10;
if (Result < OldRes) { // Uh, oh, overflow detected!!!
GenerateError("constant bigger than 64 bits detected!");
return 0;
}
}
return Result;
}
// HexToFP - Convert the ascii string in hexadecimal format to the floating
// point representation of it.
//
static double HexToFP(const char *Buffer, const char *End) {
return BitsToDouble(HexIntToVal(Buffer, End)); // Cast Hex constant to double
}
static void HexToIntPair(const char *Buffer, const char *End, uint64_t Pair[2]){
Pair[0] = 0;
for (int i=0; i<16; i++, Buffer++) {
assert(Buffer != End);
Pair[0] *= 16;
char C = *Buffer;
if (C >= '0' && C <= '9')
Pair[0] += C-'0';
else if (C >= 'A' && C <= 'F')
Pair[0] += C-'A'+10;
else if (C >= 'a' && C <= 'f')
Pair[0] += C-'a'+10;
}
Pair[1] = 0;
for (int i=0; i<16 && Buffer != End; i++, Buffer++) {
Pair[1] *= 16;
char C = *Buffer;
if (C >= '0' && C <= '9')
Pair[1] += C-'0';
else if (C >= 'A' && C <= 'F')
Pair[1] += C-'A'+10;
else if (C >= 'a' && C <= 'f')
Pair[1] += C-'a'+10;
}
if (Buffer != End)
GenerateError("constant bigger than 128 bits detected!");
}
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character.
static void UnEscapeLexed(std::string &Str) {
if (Str.empty()) return;
char *Buffer = &Str[0], *EndBuffer = Buffer+Str.size();
char *BOut = Buffer;
for (char *BIn = Buffer; BIn != EndBuffer; ) {
if (BIn[0] == '\\') {
if (BIn < EndBuffer-1 && BIn[1] == '\\') {
*BOut++ = '\\'; // Two \ becomes one
BIn += 2;
} else if (BIn < EndBuffer-2 && isxdigit(BIn[1]) && isxdigit(BIn[2])) {
char Tmp = BIn[3]; BIn[3] = 0; // Terminate string
*BOut = (char)strtol(BIn+1, 0, 16); // Convert to number
BIn[3] = Tmp; // Restore character
BIn += 3; // Skip over handled chars
++BOut;
} else {
*BOut++ = *BIn++;
}
} else {
*BOut++ = *BIn++;
}
}
Str.resize(BOut-Buffer);
}
/// isLabelChar - Return true for [-a-zA-Z$._0-9].
static bool isLabelChar(char C) {
return isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_';
}
/// isLabelTail - Return true if this pointer points to a valid end of a label.
static const char *isLabelTail(const char *CurPtr) {
while (1) {
if (CurPtr[0] == ':') return CurPtr+1;
if (!isLabelChar(CurPtr[0])) return 0;
++CurPtr;
}
}
//===----------------------------------------------------------------------===//
// Lexer definition.
//===----------------------------------------------------------------------===//
// FIXME: REMOVE THIS.
#define YYEOF 0
#define YYERROR -2
LLLexer::LLLexer(MemoryBuffer *StartBuf) : CurLineNo(1), CurBuf(StartBuf) {
CurPtr = CurBuf->getBufferStart();
}
std::string LLLexer::getFilename() const {
return CurBuf->getBufferIdentifier();
}
int LLLexer::getNextChar() {
char CurChar = *CurPtr++;
switch (CurChar) {
default: return (unsigned char)CurChar;
case 0:
// A nul character in the stream is either the end of the current buffer or
// a random nul in the file. Disambiguate that here.
if (CurPtr-1 != CurBuf->getBufferEnd())
return 0; // Just whitespace.
// Otherwise, return end of file.
--CurPtr; // Another call to lex will return EOF again.
return EOF;
case '\n':
case '\r':
// Handle the newline character by ignoring it and incrementing the line
// count. However, be careful about 'dos style' files with \n\r in them.
// Only treat a \n\r or \r\n as a single line.
if ((*CurPtr == '\n' || (*CurPtr == '\r')) &&
*CurPtr != CurChar)
++CurPtr; // Eat the two char newline sequence.
++CurLineNo;
return '\n';
}
}
int LLLexer::LexToken() {
TokStart = CurPtr;
int CurChar = getNextChar();
switch (CurChar) {
default:
// Handle letters: [a-zA-Z_]
if (isalpha(CurChar) || CurChar == '_')
return LexIdentifier();
return CurChar;
case EOF: return YYEOF;
case 0:
case ' ':
case '\t':
case '\n':
case '\r':
// Ignore whitespace.
return LexToken();
case '+': return LexPositive();
case '@': return LexAt();
case '%': return LexPercent();
case '"': return LexQuote();
case '.':
if (const char *Ptr = isLabelTail(CurPtr)) {
CurPtr = Ptr;
llvmAsmlval.StrVal = new std::string(TokStart, CurPtr-1);
return LABELSTR;
}
if (CurPtr[0] == '.' && CurPtr[1] == '.') {
CurPtr += 2;
return DOTDOTDOT;
}
return '.';
case '$':
if (const char *Ptr = isLabelTail(CurPtr)) {
CurPtr = Ptr;
llvmAsmlval.StrVal = new std::string(TokStart, CurPtr-1);
return LABELSTR;
}
return '$';
case ';':
SkipLineComment();
return LexToken();
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case '-':
return LexDigitOrNegative();
}
}
void LLLexer::SkipLineComment() {
while (1) {
if (CurPtr[0] == '\n' || CurPtr[0] == '\r' || getNextChar() == EOF)
return;
}
}
/// LexAt - Lex all tokens that start with an @ character:
/// AtStringConstant @\"[^\"]*\"
/// GlobalVarName @[-a-zA-Z$._][-a-zA-Z$._0-9]*
/// GlobalVarID @[0-9]+
int LLLexer::LexAt() {
// Handle AtStringConstant: @\"[^\"]*\"
if (CurPtr[0] == '"') {
++CurPtr;
while (1) {
int CurChar = getNextChar();
if (CurChar == EOF) {
GenerateError("End of file in global variable name");
return YYERROR;
}
if (CurChar == '"') {
llvmAsmlval.StrVal = new std::string(TokStart+2, CurPtr-1);
UnEscapeLexed(*llvmAsmlval.StrVal);
return ATSTRINGCONSTANT;
}
}
}
// Handle GlobalVarName: @[-a-zA-Z$._][-a-zA-Z$._0-9]*
if (isalpha(CurPtr[0]) || CurPtr[0] == '-' || CurPtr[0] == '$' ||
CurPtr[0] == '.' || CurPtr[0] == '_') {
++CurPtr;
while (isalnum(CurPtr[0]) || CurPtr[0] == '-' || CurPtr[0] == '$' ||
CurPtr[0] == '.' || CurPtr[0] == '_')
++CurPtr;
llvmAsmlval.StrVal = new std::string(TokStart+1, CurPtr); // Skip @
return GLOBALVAR;
}
// Handle GlobalVarID: @[0-9]+
if (isdigit(CurPtr[0])) {
for (++CurPtr; isdigit(CurPtr[0]); ++CurPtr)
/*empty*/;
uint64_t Val = atoull(TokStart+1, CurPtr);
if ((unsigned)Val != Val)
GenerateError("Invalid value number (too large)!");
llvmAsmlval.UIntVal = unsigned(Val);
return GLOBALVAL_ID;
}
return '@';
}
/// LexPercent - Lex all tokens that start with a % character:
/// PctStringConstant %\"[^\"]*\"
/// LocalVarName %[-a-zA-Z$._][-a-zA-Z$._0-9]*
/// LocalVarID %[0-9]+
int LLLexer::LexPercent() {
// Handle PctStringConstant: %\"[^\"]*\"
if (CurPtr[0] == '"') {
++CurPtr;
while (1) {
int CurChar = getNextChar();
if (CurChar == EOF) {
GenerateError("End of file in local variable name");
return YYERROR;
}
if (CurChar == '"') {
llvmAsmlval.StrVal = new std::string(TokStart+2, CurPtr-1);
UnEscapeLexed(*llvmAsmlval.StrVal);
return PCTSTRINGCONSTANT;
}
}
}
// Handle LocalVarName: %[-a-zA-Z$._][-a-zA-Z$._0-9]*
if (isalpha(CurPtr[0]) || CurPtr[0] == '-' || CurPtr[0] == '$' ||
CurPtr[0] == '.' || CurPtr[0] == '_') {
++CurPtr;
while (isalnum(CurPtr[0]) || CurPtr[0] == '-' || CurPtr[0] == '$' ||
CurPtr[0] == '.' || CurPtr[0] == '_')
++CurPtr;
llvmAsmlval.StrVal = new std::string(TokStart+1, CurPtr); // Skip %
return LOCALVAR;
}
// Handle LocalVarID: %[0-9]+
if (isdigit(CurPtr[0])) {
for (++CurPtr; isdigit(CurPtr[0]); ++CurPtr)
/*empty*/;
uint64_t Val = atoull(TokStart+1, CurPtr);
if ((unsigned)Val != Val)
GenerateError("Invalid value number (too large)!");
llvmAsmlval.UIntVal = unsigned(Val);
return LOCALVAL_ID;
}
return '%';
}
/// LexQuote - Lex all tokens that start with a " character:
/// QuoteLabel "[^"]+":
/// StringConstant "[^"]*"
int LLLexer::LexQuote() {
while (1) {
int CurChar = getNextChar();
if (CurChar == EOF) {
GenerateError("End of file in quoted string");
return YYERROR;
}
if (CurChar != '"') continue;
if (CurPtr[0] != ':') {
llvmAsmlval.StrVal = new std::string(TokStart+1, CurPtr-1);
UnEscapeLexed(*llvmAsmlval.StrVal);
return STRINGCONSTANT;
}
++CurPtr;
llvmAsmlval.StrVal = new std::string(TokStart+1, CurPtr-2);
UnEscapeLexed(*llvmAsmlval.StrVal);
return LABELSTR;
}
}
static bool JustWhitespaceNewLine(const char *&Ptr) {
const char *ThisPtr = Ptr;
while (*ThisPtr == ' ' || *ThisPtr == '\t')
++ThisPtr;
if (*ThisPtr == '\n' || *ThisPtr == '\r') {
Ptr = ThisPtr;
return true;
}
return false;
}
/// LexIdentifier: Handle several related productions:
/// Label [-a-zA-Z$._0-9]+:
/// IntegerType i[0-9]+
/// Keyword sdiv, float, ...
/// HexIntConstant [us]0x[0-9A-Fa-f]+
int LLLexer::LexIdentifier() {
const char *StartChar = CurPtr;
const char *IntEnd = CurPtr[-1] == 'i' ? 0 : StartChar;
const char *KeywordEnd = 0;
for (; isLabelChar(*CurPtr); ++CurPtr) {
// If we decide this is an integer, remember the end of the sequence.
if (!IntEnd && !isdigit(*CurPtr)) IntEnd = CurPtr;
if (!KeywordEnd && !isalnum(*CurPtr) && *CurPtr != '_') KeywordEnd = CurPtr;
}
// If we stopped due to a colon, this really is a label.
if (*CurPtr == ':') {
llvmAsmlval.StrVal = new std::string(StartChar-1, CurPtr++);
return LABELSTR;
}
// Otherwise, this wasn't a label. If this was valid as an integer type,
// return it.
if (IntEnd == 0) IntEnd = CurPtr;
if (IntEnd != StartChar) {
CurPtr = IntEnd;
uint64_t NumBits = atoull(StartChar, CurPtr);
if (NumBits < IntegerType::MIN_INT_BITS ||
NumBits > IntegerType::MAX_INT_BITS) {
GenerateError("Bitwidth for integer type out of range!");
return YYERROR;
}
const Type* Ty = IntegerType::get(NumBits);
llvmAsmlval.PrimType = Ty;
return INTTYPE;
}
// Otherwise, this was a letter sequence. See which keyword this is.
if (KeywordEnd == 0) KeywordEnd = CurPtr;
CurPtr = KeywordEnd;
--StartChar;
unsigned Len = CurPtr-StartChar;
#define KEYWORD(STR, TOK) \
if (Len == strlen(STR) && !memcmp(StartChar, STR, strlen(STR))) return TOK;
KEYWORD("begin", BEGINTOK);
KEYWORD("end", ENDTOK);
KEYWORD("true", TRUETOK);
KEYWORD("false", FALSETOK);
KEYWORD("declare", DECLARE);
KEYWORD("define", DEFINE);
KEYWORD("global", GLOBAL);
KEYWORD("constant", CONSTANT);
KEYWORD("internal", INTERNAL);
KEYWORD("linkonce", LINKONCE);
KEYWORD("weak", WEAK);
KEYWORD("appending", APPENDING);
KEYWORD("dllimport", DLLIMPORT);
KEYWORD("dllexport", DLLEXPORT);
KEYWORD("common", COMMON);
KEYWORD("default", DEFAULT);
KEYWORD("hidden", HIDDEN);
KEYWORD("protected", PROTECTED);
KEYWORD("extern_weak", EXTERN_WEAK);
KEYWORD("external", EXTERNAL);
KEYWORD("thread_local", THREAD_LOCAL);
KEYWORD("zeroinitializer", ZEROINITIALIZER);
KEYWORD("undef", UNDEF);
KEYWORD("null", NULL_TOK);
KEYWORD("to", TO);
KEYWORD("tail", TAIL);
KEYWORD("target", TARGET);
KEYWORD("triple", TRIPLE);
KEYWORD("deplibs", DEPLIBS);
KEYWORD("datalayout", DATALAYOUT);
KEYWORD("volatile", VOLATILE);
KEYWORD("align", ALIGN);
KEYWORD("addrspace", ADDRSPACE);
KEYWORD("section", SECTION);
KEYWORD("alias", ALIAS);
KEYWORD("module", MODULE);
KEYWORD("asm", ASM_TOK);
KEYWORD("sideeffect", SIDEEFFECT);
KEYWORD("gc", GC);
KEYWORD("cc", CC_TOK);
KEYWORD("ccc", CCC_TOK);
KEYWORD("fastcc", FASTCC_TOK);
KEYWORD("coldcc", COLDCC_TOK);
KEYWORD("x86_stdcallcc", X86_STDCALLCC_TOK);
KEYWORD("x86_fastcallcc", X86_FASTCALLCC_TOK);
KEYWORD("signext", SIGNEXT);
KEYWORD("zeroext", ZEROEXT);
KEYWORD("inreg", INREG);
KEYWORD("sret", SRET);
KEYWORD("nounwind", NOUNWIND);
KEYWORD("noreturn", NORETURN);
KEYWORD("noalias", NOALIAS);
KEYWORD("byval", BYVAL);
KEYWORD("nest", NEST);
KEYWORD("readnone", READNONE);
KEYWORD("readonly", READONLY);
KEYWORD("noinline", NOINLINE);
KEYWORD("alwaysinline", ALWAYSINLINE);
KEYWORD("optsize", OPTSIZE);
KEYWORD("ssp", SSP);
KEYWORD("sspreq", SSPREQ);
KEYWORD("type", TYPE);
KEYWORD("opaque", OPAQUE);
KEYWORD("eq" , EQ);
KEYWORD("ne" , NE);
KEYWORD("slt", SLT);
KEYWORD("sgt", SGT);
KEYWORD("sle", SLE);
KEYWORD("sge", SGE);
KEYWORD("ult", ULT);
KEYWORD("ugt", UGT);
KEYWORD("ule", ULE);
KEYWORD("uge", UGE);
KEYWORD("oeq", OEQ);
KEYWORD("one", ONE);
KEYWORD("olt", OLT);
KEYWORD("ogt", OGT);
KEYWORD("ole", OLE);
KEYWORD("oge", OGE);
KEYWORD("ord", ORD);
KEYWORD("uno", UNO);
KEYWORD("ueq", UEQ);
KEYWORD("une", UNE);
#undef KEYWORD
// Keywords for types.
#define TYPEKEYWORD(STR, LLVMTY, TOK) \
if (Len == strlen(STR) && !memcmp(StartChar, STR, strlen(STR))) { \
llvmAsmlval.PrimType = LLVMTY; return TOK; }
TYPEKEYWORD("void", Type::VoidTy, VOID);
TYPEKEYWORD("float", Type::FloatTy, FLOAT);
TYPEKEYWORD("double", Type::DoubleTy, DOUBLE);
TYPEKEYWORD("x86_fp80", Type::X86_FP80Ty, X86_FP80);
TYPEKEYWORD("fp128", Type::FP128Ty, FP128);
TYPEKEYWORD("ppc_fp128", Type::PPC_FP128Ty, PPC_FP128);
TYPEKEYWORD("label", Type::LabelTy, LABEL);
#undef TYPEKEYWORD
// Handle special forms for autoupgrading. Drop these in LLVM 3.0. This is
// to avoid conflicting with the sext/zext instructions, below.
if (Len == 4 && !memcmp(StartChar, "sext", 4)) {
// Scan CurPtr ahead, seeing if there is just whitespace before the newline.
if (JustWhitespaceNewLine(CurPtr))
return SIGNEXT;
} else if (Len == 4 && !memcmp(StartChar, "zext", 4)) {
// Scan CurPtr ahead, seeing if there is just whitespace before the newline.
if (JustWhitespaceNewLine(CurPtr))
return ZEROEXT;
}
// Keywords for instructions.
#define INSTKEYWORD(STR, type, Enum, TOK) \
if (Len == strlen(STR) && !memcmp(StartChar, STR, strlen(STR))) { \
llvmAsmlval.type = Instruction::Enum; return TOK; }
INSTKEYWORD("add", BinaryOpVal, Add, ADD);
INSTKEYWORD("sub", BinaryOpVal, Sub, SUB);
INSTKEYWORD("mul", BinaryOpVal, Mul, MUL);
INSTKEYWORD("udiv", BinaryOpVal, UDiv, UDIV);
INSTKEYWORD("sdiv", BinaryOpVal, SDiv, SDIV);
INSTKEYWORD("fdiv", BinaryOpVal, FDiv, FDIV);
INSTKEYWORD("urem", BinaryOpVal, URem, UREM);
INSTKEYWORD("srem", BinaryOpVal, SRem, SREM);
INSTKEYWORD("frem", BinaryOpVal, FRem, FREM);
INSTKEYWORD("shl", BinaryOpVal, Shl, SHL);
INSTKEYWORD("lshr", BinaryOpVal, LShr, LSHR);
INSTKEYWORD("ashr", BinaryOpVal, AShr, ASHR);
INSTKEYWORD("and", BinaryOpVal, And, AND);
INSTKEYWORD("or", BinaryOpVal, Or , OR );
INSTKEYWORD("xor", BinaryOpVal, Xor, XOR);
INSTKEYWORD("icmp", OtherOpVal, ICmp, ICMP);
INSTKEYWORD("fcmp", OtherOpVal, FCmp, FCMP);
INSTKEYWORD("vicmp", OtherOpVal, VICmp, VICMP);
INSTKEYWORD("vfcmp", OtherOpVal, VFCmp, VFCMP);
INSTKEYWORD("phi", OtherOpVal, PHI, PHI_TOK);
INSTKEYWORD("call", OtherOpVal, Call, CALL);
INSTKEYWORD("trunc", CastOpVal, Trunc, TRUNC);
INSTKEYWORD("zext", CastOpVal, ZExt, ZEXT);
INSTKEYWORD("sext", CastOpVal, SExt, SEXT);
INSTKEYWORD("fptrunc", CastOpVal, FPTrunc, FPTRUNC);
INSTKEYWORD("fpext", CastOpVal, FPExt, FPEXT);
INSTKEYWORD("uitofp", CastOpVal, UIToFP, UITOFP);
INSTKEYWORD("sitofp", CastOpVal, SIToFP, SITOFP);
INSTKEYWORD("fptoui", CastOpVal, FPToUI, FPTOUI);
INSTKEYWORD("fptosi", CastOpVal, FPToSI, FPTOSI);
INSTKEYWORD("inttoptr", CastOpVal, IntToPtr, INTTOPTR);
INSTKEYWORD("ptrtoint", CastOpVal, PtrToInt, PTRTOINT);
INSTKEYWORD("bitcast", CastOpVal, BitCast, BITCAST);
INSTKEYWORD("select", OtherOpVal, Select, SELECT);
INSTKEYWORD("va_arg", OtherOpVal, VAArg , VAARG);
INSTKEYWORD("ret", TermOpVal, Ret, RET);
INSTKEYWORD("br", TermOpVal, Br, BR);
INSTKEYWORD("switch", TermOpVal, Switch, SWITCH);
INSTKEYWORD("invoke", TermOpVal, Invoke, INVOKE);
INSTKEYWORD("unwind", TermOpVal, Unwind, UNWIND);
INSTKEYWORD("unreachable", TermOpVal, Unreachable, UNREACHABLE);
INSTKEYWORD("malloc", MemOpVal, Malloc, MALLOC);
INSTKEYWORD("alloca", MemOpVal, Alloca, ALLOCA);
INSTKEYWORD("free", MemOpVal, Free, FREE);
INSTKEYWORD("load", MemOpVal, Load, LOAD);
INSTKEYWORD("store", MemOpVal, Store, STORE);
INSTKEYWORD("getelementptr", MemOpVal, GetElementPtr, GETELEMENTPTR);
INSTKEYWORD("extractelement", OtherOpVal, ExtractElement, EXTRACTELEMENT);
INSTKEYWORD("insertelement", OtherOpVal, InsertElement, INSERTELEMENT);
INSTKEYWORD("shufflevector", OtherOpVal, ShuffleVector, SHUFFLEVECTOR);
INSTKEYWORD("getresult", OtherOpVal, ExtractValue, GETRESULT);
INSTKEYWORD("extractvalue", OtherOpVal, ExtractValue, EXTRACTVALUE);
INSTKEYWORD("insertvalue", OtherOpVal, InsertValue, INSERTVALUE);
#undef INSTKEYWORD
// Check for [us]0x[0-9A-Fa-f]+ which are Hexadecimal constant generated by
// the CFE to avoid forcing it to deal with 64-bit numbers.
if ((TokStart[0] == 'u' || TokStart[0] == 's') &&
TokStart[1] == '0' && TokStart[2] == 'x' && isxdigit(TokStart[3])) {
int len = CurPtr-TokStart-3;
uint32_t bits = len * 4;
APInt Tmp(bits, TokStart+3, len, 16);
uint32_t activeBits = Tmp.getActiveBits();
if (activeBits > 0 && activeBits < bits)
Tmp.trunc(activeBits);
if (Tmp.getBitWidth() > 64) {
llvmAsmlval.APIntVal = new APInt(Tmp);
return TokStart[0] == 's' ? ESAPINTVAL : EUAPINTVAL;
} else if (TokStart[0] == 's') {
llvmAsmlval.SInt64Val = Tmp.getSExtValue();
return ESINT64VAL;
} else {
llvmAsmlval.UInt64Val = Tmp.getZExtValue();
return EUINT64VAL;
}
}
// If this is "cc1234", return this as just "cc".
if (TokStart[0] == 'c' && TokStart[1] == 'c') {
CurPtr = TokStart+2;
return CC_TOK;
}
// If this starts with "call", return it as CALL. This is to support old
// broken .ll files. FIXME: remove this with LLVM 3.0.
if (CurPtr-TokStart > 4 && !memcmp(TokStart, "call", 4)) {
CurPtr = TokStart+4;
llvmAsmlval.OtherOpVal = Instruction::Call;
return CALL;
}
// Finally, if this isn't known, return just a single character.
CurPtr = TokStart+1;
return TokStart[0];
}
/// Lex0x: Handle productions that start with 0x, knowing that it matches and
/// that this is not a label:
/// HexFPConstant 0x[0-9A-Fa-f]+
/// HexFP80Constant 0xK[0-9A-Fa-f]+
/// HexFP128Constant 0xL[0-9A-Fa-f]+
/// HexPPC128Constant 0xM[0-9A-Fa-f]+
int LLLexer::Lex0x() {
CurPtr = TokStart + 2;
char Kind;
if (CurPtr[0] >= 'K' && CurPtr[0] <= 'M') {
Kind = *CurPtr++;
} else {
Kind = 'J';
}
if (!isxdigit(CurPtr[0])) {
// Bad token, return it as just zero.
CurPtr = TokStart+1;
return '0';
}
while (isxdigit(CurPtr[0]))
++CurPtr;
if (Kind == 'J') {
// HexFPConstant - Floating point constant represented in IEEE format as a
// hexadecimal number for when exponential notation is not precise enough.
// Float and double only.
llvmAsmlval.FPVal = new APFloat(HexToFP(TokStart+2, CurPtr));
return FPVAL;
}
uint64_t Pair[2];
HexToIntPair(TokStart+3, CurPtr, Pair);
switch (Kind) {
default: assert(0 && "Unknown kind!");
case 'K':
// F80HexFPConstant - x87 long double in hexadecimal format (10 bytes)
llvmAsmlval.FPVal = new APFloat(APInt(80, 2, Pair));
return FPVAL;
case 'L':
// F128HexFPConstant - IEEE 128-bit in hexadecimal format (16 bytes)
llvmAsmlval.FPVal = new APFloat(APInt(128, 2, Pair), true);
return FPVAL;
case 'M':
// PPC128HexFPConstant - PowerPC 128-bit in hexadecimal format (16 bytes)
llvmAsmlval.FPVal = new APFloat(APInt(128, 2, Pair));
return FPVAL;
}
}
/// LexIdentifier: Handle several related productions:
/// Label [-a-zA-Z$._0-9]+:
/// NInteger -[0-9]+
/// FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
/// PInteger [0-9]+
/// HexFPConstant 0x[0-9A-Fa-f]+
/// HexFP80Constant 0xK[0-9A-Fa-f]+
/// HexFP128Constant 0xL[0-9A-Fa-f]+
/// HexPPC128Constant 0xM[0-9A-Fa-f]+
int LLLexer::LexDigitOrNegative() {
// If the letter after the negative is a number, this is probably a label.
if (!isdigit(TokStart[0]) && !isdigit(CurPtr[0])) {
// Okay, this is not a number after the -, it's probably a label.
if (const char *End = isLabelTail(CurPtr)) {
llvmAsmlval.StrVal = new std::string(TokStart, End-1);
CurPtr = End;
return LABELSTR;
}
return CurPtr[-1];
}
// At this point, it is either a label, int or fp constant.
// Skip digits, we have at least one.
for (; isdigit(CurPtr[0]); ++CurPtr)
/*empty*/;
// Check to see if this really is a label afterall, e.g. "-1:".
if (isLabelChar(CurPtr[0]) || CurPtr[0] == ':') {
if (const char *End = isLabelTail(CurPtr)) {
llvmAsmlval.StrVal = new std::string(TokStart, End-1);
CurPtr = End;
return LABELSTR;
}
}
// If the next character is a '.', then it is a fp value, otherwise its
// integer.
if (CurPtr[0] != '.') {
if (TokStart[0] == '0' && TokStart[1] == 'x')
return Lex0x();
unsigned Len = CurPtr-TokStart;
uint32_t numBits = ((Len * 64) / 19) + 2;
APInt Tmp(numBits, TokStart, Len, 10);
if (TokStart[0] == '-') {
uint32_t minBits = Tmp.getMinSignedBits();
if (minBits > 0 && minBits < numBits)
Tmp.trunc(minBits);
if (Tmp.getBitWidth() > 64) {
llvmAsmlval.APIntVal = new APInt(Tmp);
return ESAPINTVAL;
} else {
llvmAsmlval.SInt64Val = Tmp.getSExtValue();
return ESINT64VAL;
}
} else {
uint32_t activeBits = Tmp.getActiveBits();
if (activeBits > 0 && activeBits < numBits)
Tmp.trunc(activeBits);
if (Tmp.getBitWidth() > 64) {
llvmAsmlval.APIntVal = new APInt(Tmp);
return EUAPINTVAL;
} else {
llvmAsmlval.UInt64Val = Tmp.getZExtValue();
return EUINT64VAL;
}
}
}
++CurPtr;
// Skip over [0-9]*([eE][-+]?[0-9]+)?
while (isdigit(CurPtr[0])) ++CurPtr;
if (CurPtr[0] == 'e' || CurPtr[0] == 'E') {
if (isdigit(CurPtr[1]) ||
((CurPtr[1] == '-' || CurPtr[1] == '+') && isdigit(CurPtr[2]))) {
CurPtr += 2;
while (isdigit(CurPtr[0])) ++CurPtr;
}
}
llvmAsmlval.FPVal = new APFloat(atof(TokStart));
return FPVAL;
}
/// FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
int LLLexer::LexPositive() {
// If the letter after the negative is a number, this is probably not a
// label.
if (!isdigit(CurPtr[0]))
return CurPtr[-1];
// Skip digits.
for (++CurPtr; isdigit(CurPtr[0]); ++CurPtr)
/*empty*/;
// At this point, we need a '.'.
if (CurPtr[0] != '.') {
CurPtr = TokStart+1;
return TokStart[0];
}
++CurPtr;
// Skip over [0-9]*([eE][-+]?[0-9]+)?
while (isdigit(CurPtr[0])) ++CurPtr;
if (CurPtr[0] == 'e' || CurPtr[0] == 'E') {
if (isdigit(CurPtr[1]) ||
((CurPtr[1] == '-' || CurPtr[1] == '+') && isdigit(CurPtr[2]))) {
CurPtr += 2;
while (isdigit(CurPtr[0])) ++CurPtr;
}
}
llvmAsmlval.FPVal = new APFloat(atof(TokStart));
return FPVAL;
}
//===----------------------------------------------------------------------===//
// Define the interface to this file.
//===----------------------------------------------------------------------===//
static LLLexer *TheLexer;
void InitLLLexer(llvm::MemoryBuffer *MB) {
assert(TheLexer == 0 && "LL Lexer isn't reentrant yet");
TheLexer = new LLLexer(MB);
}
int llvmAsmlex() {
return TheLexer->LexToken();
}
const char *LLLgetTokenStart() { return TheLexer->getTokStart(); }
unsigned LLLgetTokenLength() { return TheLexer->getTokLength(); }
std::string LLLgetFilename() { return TheLexer->getFilename(); }
unsigned LLLgetLineNo() { return TheLexer->getLineNo(); }
void FreeLexer() {
delete TheLexer;
TheLexer = 0;
}