llvm-project/llvm/lib/Target/AArch64/AArch64LegalizerInfo.cpp

438 lines
15 KiB
C++

//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AArch64LegalizerInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
using namespace llvm;
/// FIXME: The following static functions are SizeChangeStrategy functions
/// that are meant to temporarily mimic the behaviour of the old legalization
/// based on doubling/halving non-legal types as closely as possible. This is
/// not entirly possible as only legalizing the types that are exactly a power
/// of 2 times the size of the legal types would require specifying all those
/// sizes explicitly.
/// In practice, not specifying those isn't a problem, and the below functions
/// should disappear quickly as we add support for legalizing non-power-of-2
/// sized types further.
static void
addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result,
const LegalizerInfo::SizeAndActionsVec &v) {
for (unsigned i = 0; i < v.size(); ++i) {
result.push_back(v[i]);
if (i + 1 < v[i].first && i + 1 < v.size() &&
v[i + 1].first != v[i].first + 1)
result.push_back({v[i].first + 1, LegalizerInfo::Unsupported});
}
}
static LegalizerInfo::SizeAndActionsVec
widen_1_narrow_128_ToLargest(const LegalizerInfo::SizeAndActionsVec &v) {
assert(v.size() >= 1);
assert(v[0].first > 2);
LegalizerInfo::SizeAndActionsVec result = {{1, LegalizerInfo::WidenScalar},
{2, LegalizerInfo::Unsupported}};
addAndInterleaveWithUnsupported(result, v);
auto Largest = result.back().first;
assert(Largest + 1 < 128);
result.push_back({Largest + 1, LegalizerInfo::Unsupported});
result.push_back({128, LegalizerInfo::NarrowScalar});
result.push_back({129, LegalizerInfo::Unsupported});
return result;
}
static LegalizerInfo::SizeAndActionsVec
widen_16(const LegalizerInfo::SizeAndActionsVec &v) {
assert(v.size() >= 1);
assert(v[0].first > 17);
LegalizerInfo::SizeAndActionsVec result = {{1, LegalizerInfo::Unsupported},
{16, LegalizerInfo::WidenScalar},
{17, LegalizerInfo::Unsupported}};
addAndInterleaveWithUnsupported(result, v);
auto Largest = result.back().first;
result.push_back({Largest + 1, LegalizerInfo::Unsupported});
return result;
}
static LegalizerInfo::SizeAndActionsVec
widen_1_8(const LegalizerInfo::SizeAndActionsVec &v) {
assert(v.size() >= 1);
assert(v[0].first > 9);
LegalizerInfo::SizeAndActionsVec result = {
{1, LegalizerInfo::WidenScalar}, {2, LegalizerInfo::Unsupported},
{8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported}};
addAndInterleaveWithUnsupported(result, v);
auto Largest = result.back().first;
result.push_back({Largest + 1, LegalizerInfo::Unsupported});
return result;
}
static LegalizerInfo::SizeAndActionsVec
widen_1_8_16(const LegalizerInfo::SizeAndActionsVec &v) {
assert(v.size() >= 1);
assert(v[0].first > 17);
LegalizerInfo::SizeAndActionsVec result = {
{1, LegalizerInfo::WidenScalar}, {2, LegalizerInfo::Unsupported},
{8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported},
{16, LegalizerInfo::WidenScalar}, {17, LegalizerInfo::Unsupported}};
addAndInterleaveWithUnsupported(result, v);
auto Largest = result.back().first;
result.push_back({Largest + 1, LegalizerInfo::Unsupported});
return result;
}
static LegalizerInfo::SizeAndActionsVec
widen_1_8_16_narrowToLargest(const LegalizerInfo::SizeAndActionsVec &v) {
assert(v.size() >= 1);
assert(v[0].first > 17);
LegalizerInfo::SizeAndActionsVec result = {
{1, LegalizerInfo::WidenScalar}, {2, LegalizerInfo::Unsupported},
{8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported},
{16, LegalizerInfo::WidenScalar}, {17, LegalizerInfo::Unsupported}};
addAndInterleaveWithUnsupported(result, v);
auto Largest = result.back().first;
result.push_back({Largest + 1, LegalizerInfo::NarrowScalar});
return result;
}
static LegalizerInfo::SizeAndActionsVec
widen_1_8_16_32(const LegalizerInfo::SizeAndActionsVec &v) {
assert(v.size() >= 1);
assert(v[0].first > 33);
LegalizerInfo::SizeAndActionsVec result = {
{1, LegalizerInfo::WidenScalar}, {2, LegalizerInfo::Unsupported},
{8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported},
{16, LegalizerInfo::WidenScalar}, {17, LegalizerInfo::Unsupported},
{32, LegalizerInfo::WidenScalar}, {33, LegalizerInfo::Unsupported}};
addAndInterleaveWithUnsupported(result, v);
auto Largest = result.back().first;
result.push_back({Largest + 1, LegalizerInfo::Unsupported});
return result;
}
AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST) {
using namespace TargetOpcode;
const LLT p0 = LLT::pointer(0, 64);
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
const LLT v2s32 = LLT::vector(2, 32);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
for (auto Ty : {p0, s1, s8, s16, s32, s64})
setAction({G_IMPLICIT_DEF, Ty}, Legal);
for (auto Ty : {s16, s32, s64, p0})
setAction({G_PHI, Ty}, Legal);
setLegalizeScalarToDifferentSizeStrategy(G_PHI, 0, widen_1_8);
for (auto Ty : { s32, s64 })
setAction({G_BSWAP, Ty}, Legal);
for (unsigned BinOp : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR, G_SHL}) {
// These operations naturally get the right answer when used on
// GPR32, even if the actual type is narrower.
for (auto Ty : {s32, s64, v2s32, v4s32, v2s64})
setAction({BinOp, Ty}, Legal);
if (BinOp != G_ADD)
setLegalizeScalarToDifferentSizeStrategy(BinOp, 0,
widen_1_8_16_narrowToLargest);
}
setAction({G_GEP, p0}, Legal);
setAction({G_GEP, 1, s64}, Legal);
setLegalizeScalarToDifferentSizeStrategy(G_GEP, 1, widen_1_8_16_32);
setAction({G_PTR_MASK, p0}, Legal);
for (unsigned BinOp : {G_LSHR, G_ASHR, G_SDIV, G_UDIV}) {
for (auto Ty : {s32, s64})
setAction({BinOp, Ty}, Legal);
setLegalizeScalarToDifferentSizeStrategy(BinOp, 0, widen_1_8_16);
}
for (unsigned BinOp : {G_SREM, G_UREM})
for (auto Ty : { s1, s8, s16, s32, s64 })
setAction({BinOp, Ty}, Lower);
for (unsigned Op : {G_SMULO, G_UMULO}) {
setAction({Op, 0, s64}, Lower);
setAction({Op, 1, s1}, Legal);
}
for (unsigned Op : {G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_SMULH, G_UMULH}) {
for (auto Ty : { s32, s64 })
setAction({Op, Ty}, Legal);
setAction({Op, 1, s1}, Legal);
}
for (unsigned BinOp : {G_FADD, G_FSUB, G_FMA, G_FMUL, G_FDIV})
for (auto Ty : {s32, s64})
setAction({BinOp, Ty}, Legal);
for (unsigned BinOp : {G_FREM, G_FPOW}) {
setAction({BinOp, s32}, Libcall);
setAction({BinOp, s64}, Libcall);
}
for (auto Ty : {s32, s64, p0}) {
setAction({G_INSERT, Ty}, Legal);
setAction({G_INSERT, 1, Ty}, Legal);
}
setLegalizeScalarToDifferentSizeStrategy(G_INSERT, 0,
widen_1_8_16_narrowToLargest);
for (auto Ty : {s1, s8, s16}) {
setAction({G_INSERT, 1, Ty}, Legal);
// FIXME: Can't widen the sources because that violates the constraints on
// G_INSERT (It seems entirely reasonable that inputs shouldn't overlap).
}
for (auto Ty : {s1, s8, s16, s32, s64, p0})
setAction({G_EXTRACT, Ty}, Legal);
for (auto Ty : {s32, s64})
setAction({G_EXTRACT, 1, Ty}, Legal);
for (unsigned MemOp : {G_LOAD, G_STORE}) {
for (auto Ty : {s8, s16, s32, s64, p0, v2s32})
setAction({MemOp, Ty}, Legal);
setLegalizeScalarToDifferentSizeStrategy(MemOp, 0,
widen_1_narrow_128_ToLargest);
// And everything's fine in addrspace 0.
setAction({MemOp, 1, p0}, Legal);
}
// Constants
for (auto Ty : {s32, s64}) {
setAction({TargetOpcode::G_CONSTANT, Ty}, Legal);
setAction({TargetOpcode::G_FCONSTANT, Ty}, Legal);
}
setAction({G_CONSTANT, p0}, Legal);
setLegalizeScalarToDifferentSizeStrategy(G_CONSTANT, 0, widen_1_8_16);
setLegalizeScalarToDifferentSizeStrategy(G_FCONSTANT, 0, widen_16);
setAction({G_ICMP, 1, s32}, Legal);
setAction({G_ICMP, 1, s64}, Legal);
setAction({G_ICMP, 1, p0}, Legal);
setLegalizeScalarToDifferentSizeStrategy(G_ICMP, 0, widen_1_8_16);
setLegalizeScalarToDifferentSizeStrategy(G_FCMP, 0, widen_1_8_16);
setLegalizeScalarToDifferentSizeStrategy(G_ICMP, 1, widen_1_8_16);
setAction({G_ICMP, s32}, Legal);
setAction({G_FCMP, s32}, Legal);
setAction({G_FCMP, 1, s32}, Legal);
setAction({G_FCMP, 1, s64}, Legal);
// Extensions
for (auto Ty : { s1, s8, s16, s32, s64 }) {
setAction({G_ZEXT, Ty}, Legal);
setAction({G_SEXT, Ty}, Legal);
setAction({G_ANYEXT, Ty}, Legal);
}
// FP conversions
for (auto Ty : { s16, s32 }) {
setAction({G_FPTRUNC, Ty}, Legal);
setAction({G_FPEXT, 1, Ty}, Legal);
}
for (auto Ty : { s32, s64 }) {
setAction({G_FPTRUNC, 1, Ty}, Legal);
setAction({G_FPEXT, Ty}, Legal);
}
// Conversions
for (auto Ty : { s32, s64 }) {
setAction({G_FPTOSI, 0, Ty}, Legal);
setAction({G_FPTOUI, 0, Ty}, Legal);
setAction({G_SITOFP, 1, Ty}, Legal);
setAction({G_UITOFP, 1, Ty}, Legal);
}
setLegalizeScalarToDifferentSizeStrategy(G_FPTOSI, 0, widen_1_8_16);
setLegalizeScalarToDifferentSizeStrategy(G_FPTOUI, 0, widen_1_8_16);
setLegalizeScalarToDifferentSizeStrategy(G_SITOFP, 1, widen_1_8_16);
setLegalizeScalarToDifferentSizeStrategy(G_UITOFP, 1, widen_1_8_16);
for (auto Ty : { s32, s64 }) {
setAction({G_FPTOSI, 1, Ty}, Legal);
setAction({G_FPTOUI, 1, Ty}, Legal);
setAction({G_SITOFP, 0, Ty}, Legal);
setAction({G_UITOFP, 0, Ty}, Legal);
}
// Control-flow
for (auto Ty : {s1, s8, s16, s32})
setAction({G_BRCOND, Ty}, Legal);
setAction({G_BRINDIRECT, p0}, Legal);
// Select
setLegalizeScalarToDifferentSizeStrategy(G_SELECT, 0, widen_1_8_16);
for (auto Ty : {s32, s64, p0})
setAction({G_SELECT, Ty}, Legal);
setAction({G_SELECT, 1, s1}, Legal);
// Pointer-handling
setAction({G_FRAME_INDEX, p0}, Legal);
setAction({G_GLOBAL_VALUE, p0}, Legal);
for (auto Ty : {s1, s8, s16, s32, s64})
setAction({G_PTRTOINT, 0, Ty}, Legal);
setAction({G_PTRTOINT, 1, p0}, Legal);
setAction({G_INTTOPTR, 0, p0}, Legal);
setAction({G_INTTOPTR, 1, s64}, Legal);
// Casts for 32 and 64-bit width type are just copies.
// Same for 128-bit width type, except they are on the FPR bank.
for (auto Ty : {s1, s8, s16, s32, s64, s128}) {
setAction({G_BITCAST, 0, Ty}, Legal);
setAction({G_BITCAST, 1, Ty}, Legal);
}
// For the sake of copying bits around, the type does not really
// matter as long as it fits a register.
for (int EltSize = 8; EltSize <= 64; EltSize *= 2) {
setAction({G_BITCAST, 0, LLT::vector(128/EltSize, EltSize)}, Legal);
setAction({G_BITCAST, 1, LLT::vector(128/EltSize, EltSize)}, Legal);
if (EltSize >= 64)
continue;
setAction({G_BITCAST, 0, LLT::vector(64/EltSize, EltSize)}, Legal);
setAction({G_BITCAST, 1, LLT::vector(64/EltSize, EltSize)}, Legal);
if (EltSize >= 32)
continue;
setAction({G_BITCAST, 0, LLT::vector(32/EltSize, EltSize)}, Legal);
setAction({G_BITCAST, 1, LLT::vector(32/EltSize, EltSize)}, Legal);
}
setAction({G_VASTART, p0}, Legal);
// va_list must be a pointer, but most sized types are pretty easy to handle
// as the destination.
setAction({G_VAARG, 1, p0}, Legal);
for (auto Ty : {s8, s16, s32, s64, p0})
setAction({G_VAARG, Ty}, Custom);
if (ST.hasLSE()) {
for (auto Ty : {s8, s16, s32, s64})
setAction({G_ATOMIC_CMPXCHG, Ty}, Legal);
setAction({G_ATOMIC_CMPXCHG, 1, p0}, Legal);
for (unsigned Op :
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX}) {
for (auto Ty : {s8, s16, s32, s64}) {
setAction({Op, Ty}, Legal);
}
setAction({Op, 1, p0}, Legal);
}
}
computeTables();
}
bool AArch64LegalizerInfo::legalizeCustom(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
switch (MI.getOpcode()) {
default:
// No idea what to do.
return false;
case TargetOpcode::G_VAARG:
return legalizeVaArg(MI, MRI, MIRBuilder);
}
llvm_unreachable("expected switch to return");
}
bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
MIRBuilder.setInstr(MI);
MachineFunction &MF = MIRBuilder.getMF();
unsigned Align = MI.getOperand(2).getImm();
unsigned Dst = MI.getOperand(0).getReg();
unsigned ListPtr = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(ListPtr);
LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
unsigned List = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildLoad(
List, ListPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
PtrSize, /* Align = */ PtrSize));
unsigned DstPtr;
if (Align > PtrSize) {
// Realign the list to the actual required alignment.
auto AlignMinus1 = MIRBuilder.buildConstant(IntPtrTy, Align - 1);
unsigned ListTmp = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(ListTmp, List, AlignMinus1->getOperand(0).getReg());
DstPtr = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildPtrMask(DstPtr, ListTmp, Log2_64(Align));
} else
DstPtr = List;
uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8;
MIRBuilder.buildLoad(
Dst, DstPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
ValSize, std::max(Align, PtrSize)));
unsigned SizeReg = MRI.createGenericVirtualRegister(IntPtrTy);
MIRBuilder.buildConstant(SizeReg, alignTo(ValSize, PtrSize));
unsigned NewList = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(NewList, DstPtr, SizeReg);
MIRBuilder.buildStore(
NewList, ListPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
PtrSize, /* Align = */ PtrSize));
MI.eraseFromParent();
return true;
}