llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp

2477 lines
105 KiB
C++

//===- InstCombineCompares.cpp --------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitICmp and visitFCmp functions.
//
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
/// AddOne - Add one to a ConstantInt
static Constant *AddOne(Constant *C) {
return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}
/// SubOne - Subtract one from a ConstantInt
static Constant *SubOne(ConstantInt *C) {
return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
}
static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
}
static bool HasAddOverflow(ConstantInt *Result,
ConstantInt *In1, ConstantInt *In2,
bool IsSigned) {
if (IsSigned)
if (In2->getValue().isNegative())
return Result->getValue().sgt(In1->getValue());
else
return Result->getValue().slt(In1->getValue());
else
return Result->getValue().ult(In1->getValue());
}
/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
/// overflowed for this type.
static bool AddWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getAdd(In1, In2);
if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
if (HasAddOverflow(ExtractElement(Result, Idx),
ExtractElement(In1, Idx),
ExtractElement(In2, Idx),
IsSigned))
return true;
}
return false;
}
return HasAddOverflow(cast<ConstantInt>(Result),
cast<ConstantInt>(In1), cast<ConstantInt>(In2),
IsSigned);
}
static bool HasSubOverflow(ConstantInt *Result,
ConstantInt *In1, ConstantInt *In2,
bool IsSigned) {
if (IsSigned)
if (In2->getValue().isNegative())
return Result->getValue().slt(In1->getValue());
else
return Result->getValue().sgt(In1->getValue());
else
return Result->getValue().ugt(In1->getValue());
}
/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
/// overflowed for this type.
static bool SubWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getSub(In1, In2);
if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
if (HasSubOverflow(ExtractElement(Result, Idx),
ExtractElement(In1, Idx),
ExtractElement(In2, Idx),
IsSigned))
return true;
}
return false;
}
return HasSubOverflow(cast<ConstantInt>(Result),
cast<ConstantInt>(In1), cast<ConstantInt>(In2),
IsSigned);
}
/// isSignBitCheck - Given an exploded icmp instruction, return true if the
/// comparison only checks the sign bit. If it only checks the sign bit, set
/// TrueIfSigned if the result of the comparison is true when the input value is
/// signed.
static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
bool &TrueIfSigned) {
switch (pred) {
case ICmpInst::ICMP_SLT: // True if LHS s< 0
TrueIfSigned = true;
return RHS->isZero();
case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
TrueIfSigned = true;
return RHS->isAllOnesValue();
case ICmpInst::ICMP_SGT: // True if LHS s> -1
TrueIfSigned = false;
return RHS->isAllOnesValue();
case ICmpInst::ICMP_UGT:
// True if LHS u> RHS and RHS == high-bit-mask - 1
TrueIfSigned = true;
return RHS->getValue() ==
APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
case ICmpInst::ICMP_UGE:
// True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
TrueIfSigned = true;
return RHS->getValue().isSignBit();
default:
return false;
}
}
// isHighOnes - Return true if the constant is of the form 1+0+.
// This is the same as lowones(~X).
static bool isHighOnes(const ConstantInt *CI) {
return (~CI->getValue() + 1).isPowerOf2();
}
/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
/// set of known zero and one bits, compute the maximum and minimum values that
/// could have the specified known zero and known one bits, returning them in
/// min/max.
static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
const APInt& KnownOne,
APInt& Min, APInt& Max) {
assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
KnownZero.getBitWidth() == Min.getBitWidth() &&
KnownZero.getBitWidth() == Max.getBitWidth() &&
"KnownZero, KnownOne and Min, Max must have equal bitwidth.");
APInt UnknownBits = ~(KnownZero|KnownOne);
// The minimum value is when all unknown bits are zeros, EXCEPT for the sign
// bit if it is unknown.
Min = KnownOne;
Max = KnownOne|UnknownBits;
if (UnknownBits.isNegative()) { // Sign bit is unknown
Min.set(Min.getBitWidth()-1);
Max.clear(Max.getBitWidth()-1);
}
}
// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
// a set of known zero and one bits, compute the maximum and minimum values that
// could have the specified known zero and known one bits, returning them in
// min/max.
static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
const APInt &KnownOne,
APInt &Min, APInt &Max) {
assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
KnownZero.getBitWidth() == Min.getBitWidth() &&
KnownZero.getBitWidth() == Max.getBitWidth() &&
"Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
APInt UnknownBits = ~(KnownZero|KnownOne);
// The minimum value is when the unknown bits are all zeros.
Min = KnownOne;
// The maximum value is when the unknown bits are all ones.
Max = KnownOne|UnknownBits;
}
/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
/// cmp pred (load (gep GV, ...)), cmpcst
/// where GV is a global variable with a constant initializer. Try to simplify
/// this into some simple computation that does not need the load. For example
/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
///
/// If AndCst is non-null, then the loaded value is masked with that constant
/// before doing the comparison. This handles cases like "A[i]&4 == 0".
Instruction *InstCombiner::
FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
CmpInst &ICI, ConstantInt *AndCst) {
// We need TD information to know the pointer size unless this is inbounds.
if (!GEP->isInBounds() && TD == 0) return 0;
ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
if (Init == 0 || Init->getNumOperands() > 1024) return 0;
// There are many forms of this optimization we can handle, for now, just do
// the simple index into a single-dimensional array.
//
// Require: GEP GV, 0, i {{, constant indices}}
if (GEP->getNumOperands() < 3 ||
!isa<ConstantInt>(GEP->getOperand(1)) ||
!cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
isa<Constant>(GEP->getOperand(2)))
return 0;
// Check that indices after the variable are constants and in-range for the
// type they index. Collect the indices. This is typically for arrays of
// structs.
SmallVector<unsigned, 4> LaterIndices;
const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (Idx == 0) return 0; // Variable index.
uint64_t IdxVal = Idx->getZExtValue();
if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
if (const StructType *STy = dyn_cast<StructType>(EltTy))
EltTy = STy->getElementType(IdxVal);
else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
if (IdxVal >= ATy->getNumElements()) return 0;
EltTy = ATy->getElementType();
} else {
return 0; // Unknown type.
}
LaterIndices.push_back(IdxVal);
}
enum { Overdefined = -3, Undefined = -2 };
// Variables for our state machines.
// FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
// "i == 47 | i == 87", where 47 is the first index the condition is true for,
// and 87 is the second (and last) index. FirstTrueElement is -2 when
// undefined, otherwise set to the first true element. SecondTrueElement is
// -2 when undefined, -3 when overdefined and >= 0 when that index is true.
int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
// FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
// form "i != 47 & i != 87". Same state transitions as for true elements.
int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
/// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
/// define a state machine that triggers for ranges of values that the index
/// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
/// This is -2 when undefined, -3 when overdefined, and otherwise the last
/// index in the range (inclusive). We use -2 for undefined here because we
/// use relative comparisons and don't want 0-1 to match -1.
int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
// MagicBitvector - This is a magic bitvector where we set a bit if the
// comparison is true for element 'i'. If there are 64 elements or less in
// the array, this will fully represent all the comparison results.
uint64_t MagicBitvector = 0;
// Scan the array and see if one of our patterns matches.
Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
Constant *Elt = Init->getOperand(i);
// If this is indexing an array of structures, get the structure element.
if (!LaterIndices.empty())
Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
LaterIndices.size());
// If the element is masked, handle it.
if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
// Find out if the comparison would be true or false for the i'th element.
Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
CompareRHS, TD);
// If the result is undef for this element, ignore it.
if (isa<UndefValue>(C)) {
// Extend range state machines to cover this element in case there is an
// undef in the middle of the range.
if (TrueRangeEnd == (int)i-1)
TrueRangeEnd = i;
if (FalseRangeEnd == (int)i-1)
FalseRangeEnd = i;
continue;
}
// If we can't compute the result for any of the elements, we have to give
// up evaluating the entire conditional.
if (!isa<ConstantInt>(C)) return 0;
// Otherwise, we know if the comparison is true or false for this element,
// update our state machines.
bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
// State machine for single/double/range index comparison.
if (IsTrueForElt) {
// Update the TrueElement state machine.
if (FirstTrueElement == Undefined)
FirstTrueElement = TrueRangeEnd = i; // First true element.
else {
// Update double-compare state machine.
if (SecondTrueElement == Undefined)
SecondTrueElement = i;
else
SecondTrueElement = Overdefined;
// Update range state machine.
if (TrueRangeEnd == (int)i-1)
TrueRangeEnd = i;
else
TrueRangeEnd = Overdefined;
}
} else {
// Update the FalseElement state machine.
if (FirstFalseElement == Undefined)
FirstFalseElement = FalseRangeEnd = i; // First false element.
else {
// Update double-compare state machine.
if (SecondFalseElement == Undefined)
SecondFalseElement = i;
else
SecondFalseElement = Overdefined;
// Update range state machine.
if (FalseRangeEnd == (int)i-1)
FalseRangeEnd = i;
else
FalseRangeEnd = Overdefined;
}
}
// If this element is in range, update our magic bitvector.
if (i < 64 && IsTrueForElt)
MagicBitvector |= 1ULL << i;
// If all of our states become overdefined, bail out early. Since the
// predicate is expensive, only check it every 8 elements. This is only
// really useful for really huge arrays.
if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
FalseRangeEnd == Overdefined)
return 0;
}
// Now that we've scanned the entire array, emit our new comparison(s). We
// order the state machines in complexity of the generated code.
Value *Idx = GEP->getOperand(2);
// If the index is larger than the pointer size of the target, truncate the
// index down like the GEP would do implicitly. We don't have to do this for
// an inbounds GEP because the index can't be out of range.
if (!GEP->isInBounds() &&
Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
// If the comparison is only true for one or two elements, emit direct
// comparisons.
if (SecondTrueElement != Overdefined) {
// None true -> false.
if (FirstTrueElement == Undefined)
return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
// True for one element -> 'i == 47'.
if (SecondTrueElement == Undefined)
return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
// True for two elements -> 'i == 47 | i == 72'.
Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
return BinaryOperator::CreateOr(C1, C2);
}
// If the comparison is only false for one or two elements, emit direct
// comparisons.
if (SecondFalseElement != Overdefined) {
// None false -> true.
if (FirstFalseElement == Undefined)
return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
// False for one element -> 'i != 47'.
if (SecondFalseElement == Undefined)
return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
// False for two elements -> 'i != 47 & i != 72'.
Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
return BinaryOperator::CreateAnd(C1, C2);
}
// If the comparison can be replaced with a range comparison for the elements
// where it is true, emit the range check.
if (TrueRangeEnd != Overdefined) {
assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
// Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
if (FirstTrueElement) {
Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
Idx = Builder->CreateAdd(Idx, Offs);
}
Value *End = ConstantInt::get(Idx->getType(),
TrueRangeEnd-FirstTrueElement+1);
return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
}
// False range check.
if (FalseRangeEnd != Overdefined) {
assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
// Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
if (FirstFalseElement) {
Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
Idx = Builder->CreateAdd(Idx, Offs);
}
Value *End = ConstantInt::get(Idx->getType(),
FalseRangeEnd-FirstFalseElement);
return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
}
// If a 32-bit or 64-bit magic bitvector captures the entire comparison state
// of this load, replace it with computation that does:
// ((magic_cst >> i) & 1) != 0
if (Init->getNumOperands() <= 32 ||
(TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
const Type *Ty;
if (Init->getNumOperands() <= 32)
Ty = Type::getInt32Ty(Init->getContext());
else
Ty = Type::getInt64Ty(Init->getContext());
Value *V = Builder->CreateIntCast(Idx, Ty, false);
V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
}
return 0;
}
/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
/// be complex, and scales are involved. The above expression would also be
/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
/// This later form is less amenable to optimization though, and we are allowed
/// to generate the first by knowing that pointer arithmetic doesn't overflow.
///
/// If we can't emit an optimized form for this expression, this returns null.
///
static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
InstCombiner &IC) {
TargetData &TD = *IC.getTargetData();
gep_type_iterator GTI = gep_type_begin(GEP);
// Check to see if this gep only has a single variable index. If so, and if
// any constant indices are a multiple of its scale, then we can compute this
// in terms of the scale of the variable index. For example, if the GEP
// implies an offset of "12 + i*4", then we can codegen this as "3 + i",
// because the expression will cross zero at the same point.
unsigned i, e = GEP->getNumOperands();
int64_t Offset = 0;
for (i = 1; i != e; ++i, ++GTI) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
// Compute the aggregate offset of constant indices.
if (CI->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*CI->getSExtValue();
}
} else {
// Found our variable index.
break;
}
}
// If there are no variable indices, we must have a constant offset, just
// evaluate it the general way.
if (i == e) return 0;
Value *VariableIdx = GEP->getOperand(i);
// Determine the scale factor of the variable element. For example, this is
// 4 if the variable index is into an array of i32.
uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
// Verify that there are no other variable indices. If so, emit the hard way.
for (++i, ++GTI; i != e; ++i, ++GTI) {
ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (!CI) return 0;
// Compute the aggregate offset of constant indices.
if (CI->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*CI->getSExtValue();
}
}
// Okay, we know we have a single variable index, which must be a
// pointer/array/vector index. If there is no offset, life is simple, return
// the index.
unsigned IntPtrWidth = TD.getPointerSizeInBits();
if (Offset == 0) {
// Cast to intptrty in case a truncation occurs. If an extension is needed,
// we don't need to bother extending: the extension won't affect where the
// computation crosses zero.
if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
VariableIdx = new TruncInst(VariableIdx,
TD.getIntPtrType(VariableIdx->getContext()),
VariableIdx->getName(), &I);
return VariableIdx;
}
// Otherwise, there is an index. The computation we will do will be modulo
// the pointer size, so get it.
uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
Offset &= PtrSizeMask;
VariableScale &= PtrSizeMask;
// To do this transformation, any constant index must be a multiple of the
// variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
// but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
// multiple of the variable scale.
int64_t NewOffs = Offset / (int64_t)VariableScale;
if (Offset != NewOffs*(int64_t)VariableScale)
return 0;
// Okay, we can do this evaluation. Start by converting the index to intptr.
const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
if (VariableIdx->getType() != IntPtrTy)
VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
true /*SExt*/,
VariableIdx->getName(), &I);
Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
}
/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
/// else. At this point we know that the GEP is on the LHS of the comparison.
Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond,
Instruction &I) {
// Look through bitcasts.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
RHS = BCI->getOperand(0);
Value *PtrBase = GEPLHS->getOperand(0);
if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
// ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
// This transformation (ignoring the base and scales) is valid because we
// know pointers can't overflow since the gep is inbounds. See if we can
// output an optimized form.
Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
// If not, synthesize the offset the hard way.
if (Offset == 0)
Offset = EmitGEPOffset(GEPLHS);
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
Constant::getNullValue(Offset->getType()));
} else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
// If the base pointers are different, but the indices are the same, just
// compare the base pointer.
if (PtrBase != GEPRHS->getOperand(0)) {
bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
GEPRHS->getOperand(0)->getType();
if (IndicesTheSame)
for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
IndicesTheSame = false;
break;
}
// If all indices are the same, just compare the base pointers.
if (IndicesTheSame)
return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
GEPLHS->getOperand(0), GEPRHS->getOperand(0));
// Otherwise, the base pointers are different and the indices are
// different, bail out.
return 0;
}
// If one of the GEPs has all zero indices, recurse.
bool AllZeros = true;
for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
if (!isa<Constant>(GEPLHS->getOperand(i)) ||
!cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
AllZeros = false;
break;
}
if (AllZeros)
return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
ICmpInst::getSwappedPredicate(Cond), I);
// If the other GEP has all zero indices, recurse.
AllZeros = true;
for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
if (!isa<Constant>(GEPRHS->getOperand(i)) ||
!cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
AllZeros = false;
break;
}
if (AllZeros)
return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
// If the GEPs only differ by one index, compare it.
unsigned NumDifferences = 0; // Keep track of # differences.
unsigned DiffOperand = 0; // The operand that differs.
for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
// Irreconcilable differences.
NumDifferences = 2;
break;
} else {
if (NumDifferences++) break;
DiffOperand = i;
}
}
if (NumDifferences == 0) // SAME GEP?
return ReplaceInstUsesWith(I, // No comparison is needed here.
ConstantInt::get(Type::getInt1Ty(I.getContext()),
ICmpInst::isTrueWhenEqual(Cond)));
else if (NumDifferences == 1) {
Value *LHSV = GEPLHS->getOperand(DiffOperand);
Value *RHSV = GEPRHS->getOperand(DiffOperand);
// Make sure we do a signed comparison here.
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
}
}
// Only lower this if the icmp is the only user of the GEP or if we expect
// the result to fold to a constant!
if (TD &&
(isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
(isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
// ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
Value *L = EmitGEPOffset(GEPLHS);
Value *R = EmitGEPOffset(GEPRHS);
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
}
}
return 0;
}
/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
Value *X, ConstantInt *CI,
ICmpInst::Predicate Pred,
Value *TheAdd) {
// If we have X+0, exit early (simplifying logic below) and let it get folded
// elsewhere. icmp X+0, X -> icmp X, X
if (CI->isZero()) {
bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
}
// (X+4) == X -> false.
if (Pred == ICmpInst::ICMP_EQ)
return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
// (X+4) != X -> true.
if (Pred == ICmpInst::ICMP_NE)
return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
// If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
bool isNUW = false, isNSW = false;
if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
isNUW = Add->hasNoUnsignedWrap();
isNSW = Add->hasNoSignedWrap();
}
// From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
// so the values can never be equal. Similiarly for all other "or equals"
// operators.
// (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
// (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
// (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
// If this is an NUW add, then this is always false.
if (isNUW)
return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
Value *R =
ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
}
// (X+1) >u X --> X <u (0-1) --> X != 255
// (X+2) >u X --> X <u (0-2) --> X <u 254
// (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
// If this is an NUW add, then this is always true.
if (isNUW)
return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
}
unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
ConstantInt *SMax = ConstantInt::get(X->getContext(),
APInt::getSignedMaxValue(BitWidth));
// (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
// (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
// (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
// (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
// (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
// (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
// If this is an NSW add, then we have two cases: if the constant is
// positive, then this is always false, if negative, this is always true.
if (isNSW) {
bool isTrue = CI->getValue().isNegative();
return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
}
return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
}
// (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
// (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
// (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
// (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
// (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
// (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
// If this is an NSW add, then we have two cases: if the constant is
// positive, then this is always true, if negative, this is always false.
if (isNSW) {
bool isTrue = !CI->getValue().isNegative();
return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
}
assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
}
/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
/// and CmpRHS are both known to be integer constants.
Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
ConstantInt *DivRHS) {
ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
const APInt &CmpRHSV = CmpRHS->getValue();
// FIXME: If the operand types don't match the type of the divide
// then don't attempt this transform. The code below doesn't have the
// logic to deal with a signed divide and an unsigned compare (and
// vice versa). This is because (x /s C1) <s C2 produces different
// results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
// (x /u C1) <u C2. Simply casting the operands and result won't
// work. :( The if statement below tests that condition and bails
// if it finds it.
bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
return 0;
if (DivRHS->isZero())
return 0; // The ProdOV computation fails on divide by zero.
if (DivIsSigned && DivRHS->isAllOnesValue())
return 0; // The overflow computation also screws up here
if (DivRHS->isOne())
return 0; // Not worth bothering, and eliminates some funny cases
// with INT_MIN.
// Compute Prod = CI * DivRHS. We are essentially solving an equation
// of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
// C2 (CI). By solving for X we can turn this into a range check
// instead of computing a divide.
Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
// Determine if the product overflows by seeing if the product is
// not equal to the divide. Make sure we do the same kind of divide
// as in the LHS instruction that we're folding.
bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
// Get the ICmp opcode
ICmpInst::Predicate Pred = ICI.getPredicate();
// Figure out the interval that is being checked. For example, a comparison
// like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
// Compute this interval based on the constants involved and the signedness of
// the compare/divide. This computes a half-open interval, keeping track of
// whether either value in the interval overflows. After analysis each
// overflow variable is set to 0 if it's corresponding bound variable is valid
// -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
int LoOverflow = 0, HiOverflow = 0;
Constant *LoBound = 0, *HiBound = 0;
if (!DivIsSigned) { // udiv
// e.g. X/5 op 3 --> [15, 20)
LoBound = Prod;
HiOverflow = LoOverflow = ProdOV;
if (!HiOverflow)
HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
} else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
if (CmpRHSV == 0) { // (X / pos) op 0
// Can't overflow. e.g. X/2 op 0 --> [-1, 2)
LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
HiBound = DivRHS;
} else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
HiOverflow = LoOverflow = ProdOV;
if (!HiOverflow)
HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
} else { // (X / pos) op neg
// e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
HiBound = AddOne(Prod);
LoOverflow = HiOverflow = ProdOV ? -1 : 0;
if (!LoOverflow) {
ConstantInt* DivNeg =
cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
}
}
} else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
if (CmpRHSV == 0) { // (X / neg) op 0
// e.g. X/-5 op 0 --> [-4, 5)
LoBound = AddOne(DivRHS);
HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
if (HiBound == DivRHS) { // -INTMIN = INTMIN
HiOverflow = 1; // [INTMIN+1, overflow)
HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
}
} else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
// e.g. X/-5 op 3 --> [-19, -14)
HiBound = AddOne(Prod);
HiOverflow = LoOverflow = ProdOV ? -1 : 0;
if (!LoOverflow)
LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
} else { // (X / neg) op neg
LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
LoOverflow = HiOverflow = ProdOV;
if (!HiOverflow)
HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
}
// Dividing by a negative swaps the condition. LT <-> GT
Pred = ICmpInst::getSwappedPredicate(Pred);
}
Value *X = DivI->getOperand(0);
switch (Pred) {
default: llvm_unreachable("Unhandled icmp opcode!");
case ICmpInst::ICMP_EQ:
if (LoOverflow && HiOverflow)
return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
if (HiOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, LoBound);
if (LoOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, HiBound);
return ReplaceInstUsesWith(ICI,
InsertRangeTest(X, LoBound, HiBound, DivIsSigned,
true));
case ICmpInst::ICMP_NE:
if (LoOverflow && HiOverflow)
return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
if (HiOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, LoBound);
if (LoOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, HiBound);
return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
DivIsSigned, false));
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
if (LoOverflow == +1) // Low bound is greater than input range.
return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
if (LoOverflow == -1) // Low bound is less than input range.
return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
return new ICmpInst(Pred, X, LoBound);
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT:
if (HiOverflow == +1) // High bound greater than input range.
return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
else if (HiOverflow == -1) // High bound less than input range.
return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
if (Pred == ICmpInst::ICMP_UGT)
return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
else
return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
}
}
/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
///
Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
Instruction *LHSI,
ConstantInt *RHS) {
const APInt &RHSV = RHS->getValue();
switch (LHSI->getOpcode()) {
case Instruction::Trunc:
if (ICI.isEquality() && LHSI->hasOneUse()) {
// Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
// of the high bits truncated out of x are known.
unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
// If all the high bits are known, we can do this xform.
if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
// Pull in the high bits from known-ones set.
APInt NewRHS(RHS->getValue());
NewRHS.zext(SrcBits);
NewRHS |= KnownOne;
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
ConstantInt::get(ICI.getContext(), NewRHS));
}
}
break;
case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
// If this is a comparison that tests the signbit (X < 0) or (x > -1),
// fold the xor.
if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
(ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Value *CompareVal = LHSI->getOperand(0);
// If the sign bit of the XorCST is not set, there is no change to
// the operation, just stop using the Xor.
if (!XorCST->getValue().isNegative()) {
ICI.setOperand(0, CompareVal);
Worklist.Add(LHSI);
return &ICI;
}
// Was the old condition true if the operand is positive?
bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
// If so, the new one isn't.
isTrueIfPositive ^= true;
if (isTrueIfPositive)
return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
SubOne(RHS));
else
return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
AddOne(RHS));
}
if (LHSI->hasOneUse()) {
// (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
const APInt &SignBit = XorCST->getValue();
ICmpInst::Predicate Pred = ICI.isSigned()
? ICI.getUnsignedPredicate()
: ICI.getSignedPredicate();
return new ICmpInst(Pred, LHSI->getOperand(0),
ConstantInt::get(ICI.getContext(),
RHSV ^ SignBit));
}
// (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
const APInt &NotSignBit = XorCST->getValue();
ICmpInst::Predicate Pred = ICI.isSigned()
? ICI.getUnsignedPredicate()
: ICI.getSignedPredicate();
Pred = ICI.getSwappedPredicate(Pred);
return new ICmpInst(Pred, LHSI->getOperand(0),
ConstantInt::get(ICI.getContext(),
RHSV ^ NotSignBit));
}
}
}
break;
case Instruction::And: // (icmp pred (and X, AndCST), RHS)
if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
LHSI->getOperand(0)->hasOneUse()) {
ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
// If the LHS is an AND of a truncating cast, we can widen the
// and/compare to be the input width without changing the value
// produced, eliminating a cast.
if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
// We can do this transformation if either the AND constant does not
// have its sign bit set or if it is an equality comparison.
// Extending a relational comparison when we're checking the sign
// bit would not work.
if (Cast->hasOneUse() &&
(ICI.isEquality() ||
(AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
uint32_t BitWidth =
cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
APInt NewCST = AndCST->getValue();
NewCST.zext(BitWidth);
APInt NewCI = RHSV;
NewCI.zext(BitWidth);
Value *NewAnd =
Builder->CreateAnd(Cast->getOperand(0),
ConstantInt::get(ICI.getContext(), NewCST),
LHSI->getName());
return new ICmpInst(ICI.getPredicate(), NewAnd,
ConstantInt::get(ICI.getContext(), NewCI));
}
}
// If this is: (X >> C1) & C2 != C3 (where any shift and any compare
// could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
// happens a LOT in code produced by the C front-end, for bitfield
// access.
BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
if (Shift && !Shift->isShift())
Shift = 0;
ConstantInt *ShAmt;
ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
const Type *AndTy = AndCST->getType(); // Type of the and.
// We can fold this as long as we can't shift unknown bits
// into the mask. This can only happen with signed shift
// rights, as they sign-extend.
if (ShAmt) {
bool CanFold = Shift->isLogicalShift();
if (!CanFold) {
// To test for the bad case of the signed shr, see if any
// of the bits shifted in could be tested after the mask.
uint32_t TyBits = Ty->getPrimitiveSizeInBits();
int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
AndCST->getValue()) == 0)
CanFold = true;
}
if (CanFold) {
Constant *NewCst;
if (Shift->getOpcode() == Instruction::Shl)
NewCst = ConstantExpr::getLShr(RHS, ShAmt);
else
NewCst = ConstantExpr::getShl(RHS, ShAmt);
// Check to see if we are shifting out any of the bits being
// compared.
if (ConstantExpr::get(Shift->getOpcode(),
NewCst, ShAmt) != RHS) {
// If we shifted bits out, the fold is not going to work out.
// As a special case, check to see if this means that the
// result is always true or false now.
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
return ReplaceInstUsesWith(ICI,
ConstantInt::getFalse(ICI.getContext()));
if (ICI.getPredicate() == ICmpInst::ICMP_NE)
return ReplaceInstUsesWith(ICI,
ConstantInt::getTrue(ICI.getContext()));
} else {
ICI.setOperand(1, NewCst);
Constant *NewAndCST;
if (Shift->getOpcode() == Instruction::Shl)
NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
else
NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
LHSI->setOperand(1, NewAndCST);
LHSI->setOperand(0, Shift->getOperand(0));
Worklist.Add(Shift); // Shift is dead.
return &ICI;
}
}
}
// Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
// preferable because it allows the C<<Y expression to be hoisted out
// of a loop if Y is invariant and X is not.
if (Shift && Shift->hasOneUse() && RHSV == 0 &&
ICI.isEquality() && !Shift->isArithmeticShift() &&
!isa<Constant>(Shift->getOperand(0))) {
// Compute C << Y.
Value *NS;
if (Shift->getOpcode() == Instruction::LShr) {
NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
} else {
// Insert a logical shift.
NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
}
// Compute X & (C << Y).
Value *NewAnd =
Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
ICI.setOperand(0, NewAnd);
return &ICI;
}
}
// Try to optimize things like "A[i]&42 == 0" to index computations.
if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
if (GetElementPtrInst *GEP =
dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
!LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
return Res;
}
}
break;
case Instruction::Or: {
if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
break;
Value *P, *Q;
if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
// Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
// -> and (icmp eq P, null), (icmp eq Q, null).
Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
Constant::getNullValue(P->getType()));
Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
Constant::getNullValue(Q->getType()));
Instruction *Op;
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
else
Op = BinaryOperator::CreateOr(ICIP, ICIQ);
return Op;
}
break;
}
case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
if (!ShAmt) break;
uint32_t TypeBits = RHSV.getBitWidth();
// Check that the shift amount is in range. If not, don't perform
// undefined shifts. When the shift is visited it will be
// simplified.
if (ShAmt->uge(TypeBits))
break;
if (ICI.isEquality()) {
// If we are comparing against bits always shifted out, the
// comparison cannot succeed.
Constant *Comp =
ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
ShAmt);
if (Comp != RHS) {// Comparing against a bit that we know is zero.
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Constant *Cst =
ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
return ReplaceInstUsesWith(ICI, Cst);
}
if (LHSI->hasOneUse()) {
// Otherwise strength reduce the shift into an and.
uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Constant *Mask =
ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
TypeBits-ShAmtVal));
Value *And =
Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
return new ICmpInst(ICI.getPredicate(), And,
ConstantInt::get(ICI.getContext(),
RHSV.lshr(ShAmtVal)));
}
}
// Otherwise, if this is a comparison of the sign bit, simplify to and/test.
bool TrueIfSigned = false;
if (LHSI->hasOneUse() &&
isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
// (X << 31) <s 0 --> (X&1) != 0
Constant *Mask = ConstantInt::get(ICI.getContext(), APInt(TypeBits, 1) <<
(TypeBits-ShAmt->getZExtValue()-1));
Value *And =
Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
And, Constant::getNullValue(And->getType()));
}
break;
}
case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
case Instruction::AShr: {
// Only handle equality comparisons of shift-by-constant.
ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
if (!ShAmt || !ICI.isEquality()) break;
// Check that the shift amount is in range. If not, don't perform
// undefined shifts. When the shift is visited it will be
// simplified.
uint32_t TypeBits = RHSV.getBitWidth();
if (ShAmt->uge(TypeBits))
break;
uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
// If we are comparing against bits always shifted out, the
// comparison cannot succeed.
APInt Comp = RHSV << ShAmtVal;
if (LHSI->getOpcode() == Instruction::LShr)
Comp = Comp.lshr(ShAmtVal);
else
Comp = Comp.ashr(ShAmtVal);
if (Comp != RHSV) { // Comparing against a bit that we know is zero.
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
IsICMP_NE);
return ReplaceInstUsesWith(ICI, Cst);
}
// Otherwise, check to see if the bits shifted out are known to be zero.
// If so, we can compare against the unshifted value:
// (X & 4) >> 1 == 2 --> (X & 4) == 4.
if (LHSI->hasOneUse() &&
MaskedValueIsZero(LHSI->getOperand(0),
APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
ConstantExpr::getShl(RHS, ShAmt));
}
if (LHSI->hasOneUse()) {
// Otherwise strength reduce the shift into an and.
APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
Value *And = Builder->CreateAnd(LHSI->getOperand(0),
Mask, LHSI->getName()+".mask");
return new ICmpInst(ICI.getPredicate(), And,
ConstantExpr::getShl(RHS, ShAmt));
}
break;
}
case Instruction::SDiv:
case Instruction::UDiv:
// Fold: icmp pred ([us]div X, C1), C2 -> range test
// Fold this div into the comparison, producing a range check.
// Determine, based on the divide type, what the range is being
// checked. If there is an overflow on the low or high side, remember
// it, otherwise compute the range [low, hi) bounding the new value.
// See: InsertRangeTest above for the kinds of replacements possible.
if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
DivRHS))
return R;
break;
case Instruction::Add:
// Fold: icmp pred (add X, C1), C2
if (!ICI.isEquality()) {
ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
if (!LHSC) break;
const APInt &LHSV = LHSC->getValue();
ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
.subtract(LHSV);
if (ICI.isSigned()) {
if (CR.getLower().isSignBit()) {
return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
ConstantInt::get(ICI.getContext(),CR.getUpper()));
} else if (CR.getUpper().isSignBit()) {
return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
ConstantInt::get(ICI.getContext(),CR.getLower()));
}
} else {
if (CR.getLower().isMinValue()) {
return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
ConstantInt::get(ICI.getContext(),CR.getUpper()));
} else if (CR.getUpper().isMinValue()) {
return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
ConstantInt::get(ICI.getContext(),CR.getLower()));
}
}
}
break;
}
// Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
if (ICI.isEquality()) {
bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
// If the first operand is (add|sub|and|or|xor|rem) with a constant, and
// the second operand is a constant, simplify a bit.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
switch (BO->getOpcode()) {
case Instruction::SRem:
// If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
Value *NewRem =
Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
BO->getName());
return new ICmpInst(ICI.getPredicate(), NewRem,
Constant::getNullValue(BO->getType()));
}
}
break;
case Instruction::Add:
// Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
if (BO->hasOneUse())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
ConstantExpr::getSub(RHS, BOp1C));
} else if (RHSV == 0) {
// Replace ((add A, B) != 0) with (A != -B) if A or B is
// efficiently invertible, or if the add has just this one use.
Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
if (Value *NegVal = dyn_castNegVal(BOp1))
return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
else if (Value *NegVal = dyn_castNegVal(BOp0))
return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
else if (BO->hasOneUse()) {
Value *Neg = Builder->CreateNeg(BOp1);
Neg->takeName(BO);
return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
}
}
break;
case Instruction::Xor:
// For the xor case, we can xor two constants together, eliminating
// the explicit xor.
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
ConstantExpr::getXor(RHS, BOC));
// FALLTHROUGH
case Instruction::Sub:
// Replace (([sub|xor] A, B) != 0) with (A != B)
if (RHSV == 0)
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
BO->getOperand(1));
break;
case Instruction::Or:
// If bits are being or'd in that are not present in the constant we
// are comparing against, then the comparison could never succeed!
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
Constant *NotCI = ConstantExpr::getNot(RHS);
if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
return ReplaceInstUsesWith(ICI,
ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
isICMP_NE));
}
break;
case Instruction::And:
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
// If bits are being compared against that are and'd out, then the
// comparison can never succeed!
if ((RHSV & ~BOC->getValue()) != 0)
return ReplaceInstUsesWith(ICI,
ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
isICMP_NE));
// If we have ((X & C) == C), turn it into ((X & C) != 0).
if (RHS == BOC && RHSV.isPowerOf2())
return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
ICmpInst::ICMP_NE, LHSI,
Constant::getNullValue(RHS->getType()));
// Replace (and X, (1 << size(X)-1) != 0) with x s< 0
if (BOC->getValue().isSignBit()) {
Value *X = BO->getOperand(0);
Constant *Zero = Constant::getNullValue(X->getType());
ICmpInst::Predicate pred = isICMP_NE ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
return new ICmpInst(pred, X, Zero);
}
// ((X & ~7) == 0) --> X < 8
if (RHSV == 0 && isHighOnes(BOC)) {
Value *X = BO->getOperand(0);
Constant *NegX = ConstantExpr::getNeg(BOC);
ICmpInst::Predicate pred = isICMP_NE ?
ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
return new ICmpInst(pred, X, NegX);
}
}
default: break;
}
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
// Handle icmp {eq|ne} <intrinsic>, intcst.
switch (II->getIntrinsicID()) {
case Intrinsic::bswap:
Worklist.Add(II);
ICI.setOperand(0, II->getOperand(1));
ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
return &ICI;
case Intrinsic::ctlz:
case Intrinsic::cttz:
// ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
if (RHSV == RHS->getType()->getBitWidth()) {
Worklist.Add(II);
ICI.setOperand(0, II->getOperand(1));
ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
return &ICI;
}
break;
case Intrinsic::ctpop:
// popcount(A) == 0 -> A == 0 and likewise for !=
if (RHS->isZero()) {
Worklist.Add(II);
ICI.setOperand(0, II->getOperand(1));
ICI.setOperand(1, RHS);
return &ICI;
}
break;
default:
break;
}
}
}
return 0;
}
/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
/// We only handle extending casts so far.
///
Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
Value *LHSCIOp = LHSCI->getOperand(0);
const Type *SrcTy = LHSCIOp->getType();
const Type *DestTy = LHSCI->getType();
Value *RHSCIOp;
// Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
// integer type is the same size as the pointer type.
if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
TD->getPointerSizeInBits() ==
cast<IntegerType>(DestTy)->getBitWidth()) {
Value *RHSOp = 0;
if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
} else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
RHSOp = RHSC->getOperand(0);
// If the pointer types don't match, insert a bitcast.
if (LHSCIOp->getType() != RHSOp->getType())
RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
}
if (RHSOp)
return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
}
// The code below only handles extension cast instructions, so far.
// Enforce this.
if (LHSCI->getOpcode() != Instruction::ZExt &&
LHSCI->getOpcode() != Instruction::SExt)
return 0;
bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
bool isSignedCmp = ICI.isSigned();
if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
// Not an extension from the same type?
RHSCIOp = CI->getOperand(0);
if (RHSCIOp->getType() != LHSCIOp->getType())
return 0;
// If the signedness of the two casts doesn't agree (i.e. one is a sext
// and the other is a zext), then we can't handle this.
if (CI->getOpcode() != LHSCI->getOpcode())
return 0;
// Deal with equality cases early.
if (ICI.isEquality())
return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
// A signed comparison of sign extended values simplifies into a
// signed comparison.
if (isSignedCmp && isSignedExt)
return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
// The other three cases all fold into an unsigned comparison.
return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
}
// If we aren't dealing with a constant on the RHS, exit early
ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
if (!CI)
return 0;
// Compute the constant that would happen if we truncated to SrcTy then
// reextended to DestTy.
Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
Res1, DestTy);
// If the re-extended constant didn't change...
if (Res2 == CI) {
// Deal with equality cases early.
if (ICI.isEquality())
return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
// A signed comparison of sign extended values simplifies into a
// signed comparison.
if (isSignedExt && isSignedCmp)
return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
// The other three cases all fold into an unsigned comparison.
return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
}
// The re-extended constant changed so the constant cannot be represented
// in the shorter type. Consequently, we cannot emit a simple comparison.
// First, handle some easy cases. We know the result cannot be equal at this
// point so handle the ICI.isEquality() cases
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
if (ICI.getPredicate() == ICmpInst::ICMP_NE)
return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
// Evaluate the comparison for LT (we invert for GT below). LE and GE cases
// should have been folded away previously and not enter in here.
Value *Result;
if (isSignedCmp) {
// We're performing a signed comparison.
if (cast<ConstantInt>(CI)->getValue().isNegative())
Result = ConstantInt::getFalse(ICI.getContext()); // X < (small) --> false
else
Result = ConstantInt::getTrue(ICI.getContext()); // X < (large) --> true
} else {
// We're performing an unsigned comparison.
if (isSignedExt) {
// We're performing an unsigned comp with a sign extended value.
// This is true if the input is >= 0. [aka >s -1]
Constant *NegOne = Constant::getAllOnesValue(SrcTy);
Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
} else {
// Unsigned extend & unsigned compare -> always true.
Result = ConstantInt::getTrue(ICI.getContext());
}
}
// Finally, return the value computed.
if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
ICI.getPredicate() == ICmpInst::ICMP_SLT)
return ReplaceInstUsesWith(ICI, Result);
assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
"ICmp should be folded!");
if (Constant *CI = dyn_cast<Constant>(Result))
return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
return BinaryOperator::CreateNot(Result);
}
Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
bool Changed = false;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
/// Orders the operands of the compare so that they are listed from most
/// complex to least complex. This puts constants before unary operators,
/// before binary operators.
if (getComplexity(Op0) < getComplexity(Op1)) {
I.swapOperands();
std::swap(Op0, Op1);
Changed = true;
}
if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
const Type *Ty = Op0->getType();
// icmp's with boolean values can always be turned into bitwise operations
if (Ty->isIntegerTy(1)) {
switch (I.getPredicate()) {
default: llvm_unreachable("Invalid icmp instruction!");
case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
return BinaryOperator::CreateNot(Xor);
}
case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
return BinaryOperator::CreateXor(Op0, Op1);
case ICmpInst::ICMP_UGT:
std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
// FALL THROUGH
case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
return BinaryOperator::CreateAnd(Not, Op1);
}
case ICmpInst::ICMP_SGT:
std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
// FALL THROUGH
case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
return BinaryOperator::CreateAnd(Not, Op0);
}
case ICmpInst::ICMP_UGE:
std::swap(Op0, Op1); // Change icmp uge -> icmp ule
// FALL THROUGH
case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
return BinaryOperator::CreateOr(Not, Op1);
}
case ICmpInst::ICMP_SGE:
std::swap(Op0, Op1); // Change icmp sge -> icmp sle
// FALL THROUGH
case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
return BinaryOperator::CreateOr(Not, Op0);
}
}
}
unsigned BitWidth = 0;
if (TD)
BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
else if (Ty->isIntOrIntVectorTy())
BitWidth = Ty->getScalarSizeInBits();
bool isSignBit = false;
// See if we are doing a comparison with a constant.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Value *A = 0, *B = 0;
// (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
if (I.isEquality() && CI->isZero() &&
match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
// (icmp cond A B) if cond is equality
return new ICmpInst(I.getPredicate(), A, B);
}
// If we have an icmp le or icmp ge instruction, turn it into the
// appropriate icmp lt or icmp gt instruction. This allows us to rely on
// them being folded in the code below. The SimplifyICmpInst code has
// already handled the edge cases for us, so we just assert on them.
switch (I.getPredicate()) {
default: break;
case ICmpInst::ICMP_ULE:
assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
ConstantInt::get(CI->getContext(), CI->getValue()+1));
case ICmpInst::ICMP_SLE:
assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
ConstantInt::get(CI->getContext(), CI->getValue()+1));
case ICmpInst::ICMP_UGE:
assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
ConstantInt::get(CI->getContext(), CI->getValue()-1));
case ICmpInst::ICMP_SGE:
assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
ConstantInt::get(CI->getContext(), CI->getValue()-1));
}
// If this comparison is a normal comparison, it demands all
// bits, if it is a sign bit comparison, it only demands the sign bit.
bool UnusedBit;
isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
}
// See if we can fold the comparison based on range information we can get
// by checking whether bits are known to be zero or one in the input.
if (BitWidth != 0) {
APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
if (SimplifyDemandedBits(I.getOperandUse(0),
isSignBit ? APInt::getSignBit(BitWidth)
: APInt::getAllOnesValue(BitWidth),
Op0KnownZero, Op0KnownOne, 0))
return &I;
if (SimplifyDemandedBits(I.getOperandUse(1),
APInt::getAllOnesValue(BitWidth),
Op1KnownZero, Op1KnownOne, 0))
return &I;
// Given the known and unknown bits, compute a range that the LHS could be
// in. Compute the Min, Max and RHS values based on the known bits. For the
// EQ and NE we use unsigned values.
APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
if (I.isSigned()) {
ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
Op0Min, Op0Max);
ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
Op1Min, Op1Max);
} else {
ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
Op0Min, Op0Max);
ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
Op1Min, Op1Max);
}
// If Min and Max are known to be the same, then SimplifyDemandedBits
// figured out that the LHS is a constant. Just constant fold this now so
// that code below can assume that Min != Max.
if (!isa<Constant>(Op0) && Op0Min == Op0Max)
return new ICmpInst(I.getPredicate(),
ConstantInt::get(I.getContext(), Op0Min), Op1);
if (!isa<Constant>(Op1) && Op1Min == Op1Max)
return new ICmpInst(I.getPredicate(), Op0,
ConstantInt::get(I.getContext(), Op1Min));
// Based on the range information we know about the LHS, see if we can
// simplify this comparison. For example, (x&4) < 8 is always true.
switch (I.getPredicate()) {
default: llvm_unreachable("Unknown icmp opcode!");
case ICmpInst::ICMP_EQ:
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
break;
case ICmpInst::ICMP_NE:
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
break;
case ICmpInst::ICMP_ULT:
if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
ConstantInt::get(CI->getContext(), CI->getValue()-1));
// (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
if (CI->isMinValue(true))
return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
Constant::getAllOnesValue(Op0->getType()));
}
break;
case ICmpInst::ICMP_UGT:
if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
ConstantInt::get(CI->getContext(), CI->getValue()+1));
// (x >u 2147483647) -> (x <s 0) -> true if sign bit set
if (CI->isMaxValue(true))
return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
Constant::getNullValue(Op0->getType()));
}
break;
case ICmpInst::ICMP_SLT:
if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
ConstantInt::get(CI->getContext(), CI->getValue()-1));
}
break;
case ICmpInst::ICMP_SGT:
if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
ConstantInt::get(CI->getContext(), CI->getValue()+1));
}
break;
case ICmpInst::ICMP_SGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
break;
case ICmpInst::ICMP_SLE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
break;
case ICmpInst::ICMP_UGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
break;
case ICmpInst::ICMP_ULE:
assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
break;
}
// Turn a signed comparison into an unsigned one if both operands
// are known to have the same sign.
if (I.isSigned() &&
((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
(Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
}
// Test if the ICmpInst instruction is used exclusively by a select as
// part of a minimum or maximum operation. If so, refrain from doing
// any other folding. This helps out other analyses which understand
// non-obfuscated minimum and maximum idioms, such as ScalarEvolution
// and CodeGen. And in this case, at least one of the comparison
// operands has at least one user besides the compare (the select),
// which would often largely negate the benefit of folding anyway.
if (I.hasOneUse())
if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
(SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
return 0;
// See if we are doing a comparison between a constant and an instruction that
// can be folded into the comparison.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
// Since the RHS is a ConstantInt (CI), if the left hand side is an
// instruction, see if that instruction also has constants so that the
// instruction can be folded into the icmp
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
return Res;
}
// Handle icmp with constant (but not simple integer constant) RHS
if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
switch (LHSI->getOpcode()) {
case Instruction::GetElementPtr:
// icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
if (RHSC->isNullValue() &&
cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
Constant::getNullValue(LHSI->getOperand(0)->getType()));
break;
case Instruction::PHI:
// Only fold icmp into the PHI if the phi and icmp are in the same
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
if (Instruction *NV = FoldOpIntoPhi(I, true))
return NV;
break;
case Instruction::Select: {
// If either operand of the select is a constant, we can fold the
// comparison into the select arms, which will cause one to be
// constant folded and the select turned into a bitwise or.
Value *Op1 = 0, *Op2 = 0;
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
// We only want to perform this transformation if it will not lead to
// additional code. This is true if either both sides of the select
// fold to a constant (in which case the icmp is replaced with a select
// which will usually simplify) or this is the only user of the
// select (in which case we are trading a select+icmp for a simpler
// select+icmp).
if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
if (!Op1)
Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
RHSC, I.getName());
if (!Op2)
Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
RHSC, I.getName());
return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
}
break;
}
case Instruction::Call:
// If we have (malloc != null), and if the malloc has a single use, we
// can assume it is successful and remove the malloc.
if (isMalloc(LHSI) && LHSI->hasOneUse() &&
isa<ConstantPointerNull>(RHSC)) {
// Need to explicitly erase malloc call here, instead of adding it to
// Worklist, because it won't get DCE'd from the Worklist since
// isInstructionTriviallyDead() returns false for function calls.
// It is OK to replace LHSI/MallocCall with Undef because the
// instruction that uses it will be erased via Worklist.
if (extractMallocCall(LHSI)) {
LHSI->replaceAllUsesWith(UndefValue::get(LHSI->getType()));
EraseInstFromFunction(*LHSI);
return ReplaceInstUsesWith(I,
ConstantInt::get(Type::getInt1Ty(I.getContext()),
!I.isTrueWhenEqual()));
}
if (CallInst* MallocCall = extractMallocCallFromBitCast(LHSI))
if (MallocCall->hasOneUse()) {
MallocCall->replaceAllUsesWith(
UndefValue::get(MallocCall->getType()));
EraseInstFromFunction(*MallocCall);
Worklist.Add(LHSI); // The malloc's bitcast use.
return ReplaceInstUsesWith(I,
ConstantInt::get(Type::getInt1Ty(I.getContext()),
!I.isTrueWhenEqual()));
}
}
break;
case Instruction::IntToPtr:
// icmp pred inttoptr(X), null -> icmp pred X, 0
if (RHSC->isNullValue() && TD &&
TD->getIntPtrType(RHSC->getContext()) ==
LHSI->getOperand(0)->getType())
return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
Constant::getNullValue(LHSI->getOperand(0)->getType()));
break;
case Instruction::Load:
// Try to optimize things like "A[i] > 4" to index computations.
if (GetElementPtrInst *GEP =
dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
!cast<LoadInst>(LHSI)->isVolatile())
if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
return Res;
}
break;
}
}
// If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
return NI;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
if (Instruction *NI = FoldGEPICmp(GEP, Op0,
ICmpInst::getSwappedPredicate(I.getPredicate()), I))
return NI;
// Test to see if the operands of the icmp are casted versions of other
// values. If the ptr->ptr cast can be stripped off both arguments, we do so
// now.
if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
if (Op0->getType()->isPointerTy() &&
(isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
// We keep moving the cast from the left operand over to the right
// operand, where it can often be eliminated completely.
Op0 = CI->getOperand(0);
// If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
// so eliminate it as well.
if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
Op1 = CI2->getOperand(0);
// If Op1 is a constant, we can fold the cast into the constant.
if (Op0->getType() != Op1->getType()) {
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
} else {
// Otherwise, cast the RHS right before the icmp
Op1 = Builder->CreateBitCast(Op1, Op0->getType());
}
}
return new ICmpInst(I.getPredicate(), Op0, Op1);
}
}
if (isa<CastInst>(Op0)) {
// Handle the special case of: icmp (cast bool to X), <cst>
// This comes up when you have code like
// int X = A < B;
// if (X) ...
// For generality, we handle any zero-extension of any operand comparison
// with a constant or another cast from the same type.
if (isa<Constant>(Op1) || isa<CastInst>(Op1))
if (Instruction *R = visitICmpInstWithCastAndCast(I))
return R;
}
// See if it's the same type of instruction on the left and right.
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
switch (Op0I->getOpcode()) {
default: break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Xor:
if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
Op1I->getOperand(0));
// icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
if (CI->getValue().isSignBit()) {
ICmpInst::Predicate Pred = I.isSigned()
? I.getUnsignedPredicate()
: I.getSignedPredicate();
return new ICmpInst(Pred, Op0I->getOperand(0),
Op1I->getOperand(0));
}
if (CI->getValue().isMaxSignedValue()) {
ICmpInst::Predicate Pred = I.isSigned()
? I.getUnsignedPredicate()
: I.getSignedPredicate();
Pred = I.getSwappedPredicate(Pred);
return new ICmpInst(Pred, Op0I->getOperand(0),
Op1I->getOperand(0));
}
}
break;
case Instruction::Mul:
if (!I.isEquality())
break;
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
// a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
// Mask = -1 >> count-trailing-zeros(Cst).
if (!CI->isZero() && !CI->isOne()) {
const APInt &AP = CI->getValue();
ConstantInt *Mask = ConstantInt::get(I.getContext(),
APInt::getLowBitsSet(AP.getBitWidth(),
AP.getBitWidth() -
AP.countTrailingZeros()));
Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
return new ICmpInst(I.getPredicate(), And1, And2);
}
}
break;
}
}
}
}
// ~x < ~y --> y < x
{ Value *A, *B;
if (match(Op0, m_Not(m_Value(A))) &&
match(Op1, m_Not(m_Value(B))))
return new ICmpInst(I.getPredicate(), B, A);
}
if (I.isEquality()) {
Value *A, *B, *C, *D;
// -x == -y --> x == y
if (match(Op0, m_Neg(m_Value(A))) &&
match(Op1, m_Neg(m_Value(B))))
return new ICmpInst(I.getPredicate(), A, B);
if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
Value *OtherVal = A == Op1 ? B : A;
return new ICmpInst(I.getPredicate(), OtherVal,
Constant::getNullValue(A->getType()));
}
if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
// A^c1 == C^c2 --> A == C^(c1^c2)
ConstantInt *C1, *C2;
if (match(B, m_ConstantInt(C1)) &&
match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
Constant *NC = ConstantInt::get(I.getContext(),
C1->getValue() ^ C2->getValue());
Value *Xor = Builder->CreateXor(C, NC, "tmp");
return new ICmpInst(I.getPredicate(), A, Xor);
}
// A^B == A^D -> B == D
if (A == C) return new ICmpInst(I.getPredicate(), B, D);
if (A == D) return new ICmpInst(I.getPredicate(), B, C);
if (B == C) return new ICmpInst(I.getPredicate(), A, D);
if (B == D) return new ICmpInst(I.getPredicate(), A, C);
}
}
if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
(A == Op0 || B == Op0)) {
// A == (A^B) -> B == 0
Value *OtherVal = A == Op0 ? B : A;
return new ICmpInst(I.getPredicate(), OtherVal,
Constant::getNullValue(A->getType()));
}
// (A-B) == A -> B == 0
if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
return new ICmpInst(I.getPredicate(), B,
Constant::getNullValue(B->getType()));
// A == (A-B) -> B == 0
if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
return new ICmpInst(I.getPredicate(), B,
Constant::getNullValue(B->getType()));
// (X&Z) == (Y&Z) -> (X^Y) & Z == 0
if (Op0->hasOneUse() && Op1->hasOneUse() &&
match(Op0, m_And(m_Value(A), m_Value(B))) &&
match(Op1, m_And(m_Value(C), m_Value(D)))) {
Value *X = 0, *Y = 0, *Z = 0;
if (A == C) {
X = B; Y = D; Z = A;
} else if (A == D) {
X = B; Y = C; Z = A;
} else if (B == C) {
X = A; Y = D; Z = B;
} else if (B == D) {
X = A; Y = C; Z = B;
}
if (X) { // Build (X^Y) & Z
Op1 = Builder->CreateXor(X, Y, "tmp");
Op1 = Builder->CreateAnd(Op1, Z, "tmp");
I.setOperand(0, Op1);
I.setOperand(1, Constant::getNullValue(Op1->getType()));
return &I;
}
}
}
{
Value *X; ConstantInt *Cst;
// icmp X+Cst, X
if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
// icmp X, X+Cst
if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
}
return Changed ? &I : 0;
}
/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
///
Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
Instruction *LHSI,
Constant *RHSC) {
if (!isa<ConstantFP>(RHSC)) return 0;
const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
// Get the width of the mantissa. We don't want to hack on conversions that
// might lose information from the integer, e.g. "i64 -> float"
int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
if (MantissaWidth == -1) return 0; // Unknown.
// Check to see that the input is converted from an integer type that is small
// enough that preserves all bits. TODO: check here for "known" sign bits.
// This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
// If this is a uitofp instruction, we need an extra bit to hold the sign.
bool LHSUnsigned = isa<UIToFPInst>(LHSI);
if (LHSUnsigned)
++InputSize;
// If the conversion would lose info, don't hack on this.
if ((int)InputSize > MantissaWidth)
return 0;
// Otherwise, we can potentially simplify the comparison. We know that it
// will always come through as an integer value and we know the constant is
// not a NAN (it would have been previously simplified).
assert(!RHS.isNaN() && "NaN comparison not already folded!");
ICmpInst::Predicate Pred;
switch (I.getPredicate()) {
default: llvm_unreachable("Unexpected predicate!");
case FCmpInst::FCMP_UEQ:
case FCmpInst::FCMP_OEQ:
Pred = ICmpInst::ICMP_EQ;
break;
case FCmpInst::FCMP_UGT:
case FCmpInst::FCMP_OGT:
Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
break;
case FCmpInst::FCMP_UGE:
case FCmpInst::FCMP_OGE:
Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
break;
case FCmpInst::FCMP_ULT:
case FCmpInst::FCMP_OLT:
Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
break;
case FCmpInst::FCMP_ULE:
case FCmpInst::FCMP_OLE:
Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
break;
case FCmpInst::FCMP_UNE:
case FCmpInst::FCMP_ONE:
Pred = ICmpInst::ICMP_NE;
break;
case FCmpInst::FCMP_ORD:
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
case FCmpInst::FCMP_UNO:
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
}
const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
// Now we know that the APFloat is a normal number, zero or inf.
// See if the FP constant is too large for the integer. For example,
// comparing an i8 to 300.0.
unsigned IntWidth = IntTy->getScalarSizeInBits();
if (!LHSUnsigned) {
// If the RHS value is > SignedMax, fold the comparison. This handles +INF
// and large values.
APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
APFloat::rmNearestTiesToEven);
if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
Pred == ICmpInst::ICMP_SLE)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
}
} else {
// If the RHS value is > UnsignedMax, fold the comparison. This handles
// +INF and large values.
APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
APFloat::rmNearestTiesToEven);
if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
Pred == ICmpInst::ICMP_ULE)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
}
}
if (!LHSUnsigned) {
// See if the RHS value is < SignedMin.
APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
APFloat::rmNearestTiesToEven);
if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
Pred == ICmpInst::ICMP_SGE)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
}
}
// Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
// [0, UMAX], but it may still be fractional. See if it is fractional by
// casting the FP value to the integer value and back, checking for equality.
// Don't do this for zero, because -0.0 is not fractional.
Constant *RHSInt = LHSUnsigned
? ConstantExpr::getFPToUI(RHSC, IntTy)
: ConstantExpr::getFPToSI(RHSC, IntTy);
if (!RHS.isZero()) {
bool Equal = LHSUnsigned
? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
: ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
if (!Equal) {
// If we had a comparison against a fractional value, we have to adjust
// the compare predicate and sometimes the value. RHSC is rounded towards
// zero at this point.
switch (Pred) {
default: llvm_unreachable("Unexpected integer comparison!");
case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
case ICmpInst::ICMP_ULE:
// (float)int <= 4.4 --> int <= 4
// (float)int <= -4.4 --> false
if (RHS.isNegative())
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
break;
case ICmpInst::ICMP_SLE:
// (float)int <= 4.4 --> int <= 4
// (float)int <= -4.4 --> int < -4
if (RHS.isNegative())
Pred = ICmpInst::ICMP_SLT;
break;
case ICmpInst::ICMP_ULT:
// (float)int < -4.4 --> false
// (float)int < 4.4 --> int <= 4
if (RHS.isNegative())
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
Pred = ICmpInst::ICMP_ULE;
break;
case ICmpInst::ICMP_SLT:
// (float)int < -4.4 --> int < -4
// (float)int < 4.4 --> int <= 4
if (!RHS.isNegative())
Pred = ICmpInst::ICMP_SLE;
break;
case ICmpInst::ICMP_UGT:
// (float)int > 4.4 --> int > 4
// (float)int > -4.4 --> true
if (RHS.isNegative())
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
break;
case ICmpInst::ICMP_SGT:
// (float)int > 4.4 --> int > 4
// (float)int > -4.4 --> int >= -4
if (RHS.isNegative())
Pred = ICmpInst::ICMP_SGE;
break;
case ICmpInst::ICMP_UGE:
// (float)int >= -4.4 --> true
// (float)int >= 4.4 --> int > 4
if (!RHS.isNegative())
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
Pred = ICmpInst::ICMP_UGT;
break;
case ICmpInst::ICMP_SGE:
// (float)int >= -4.4 --> int >= -4
// (float)int >= 4.4 --> int > 4
if (!RHS.isNegative())
Pred = ICmpInst::ICMP_SGT;
break;
}
}
}
// Lower this FP comparison into an appropriate integer version of the
// comparison.
return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
}
Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
bool Changed = false;
/// Orders the operands of the compare so that they are listed from most
/// complex to least complex. This puts constants before unary operators,
/// before binary operators.
if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
I.swapOperands();
Changed = true;
}
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
// Simplify 'fcmp pred X, X'
if (Op0 == Op1) {
switch (I.getPredicate()) {
default: llvm_unreachable("Unknown predicate!");
case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
case FCmpInst::FCMP_ULT: // True if unordered or less than
case FCmpInst::FCMP_UGT: // True if unordered or greater than
case FCmpInst::FCMP_UNE: // True if unordered or not equal
// Canonicalize these to be 'fcmp uno %X, 0.0'.
I.setPredicate(FCmpInst::FCMP_UNO);
I.setOperand(1, Constant::getNullValue(Op0->getType()));
return &I;
case FCmpInst::FCMP_ORD: // True if ordered (no nans)
case FCmpInst::FCMP_OEQ: // True if ordered and equal
case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
// Canonicalize these to be 'fcmp ord %X, 0.0'.
I.setPredicate(FCmpInst::FCMP_ORD);
I.setOperand(1, Constant::getNullValue(Op0->getType()));
return &I;
}
}
// Handle fcmp with constant RHS
if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
switch (LHSI->getOpcode()) {
case Instruction::PHI:
// Only fold fcmp into the PHI if the phi and fcmp are in the same
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
if (Instruction *NV = FoldOpIntoPhi(I, true))
return NV;
break;
case Instruction::SIToFP:
case Instruction::UIToFP:
if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
return NV;
break;
case Instruction::Select: {
// If either operand of the select is a constant, we can fold the
// comparison into the select arms, which will cause one to be
// constant folded and the select turned into a bitwise or.
Value *Op1 = 0, *Op2 = 0;
if (LHSI->hasOneUse()) {
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
// Fold the known value into the constant operand.
Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
// Insert a new FCmp of the other select operand.
Op2 = Builder->CreateFCmp(I.getPredicate(),
LHSI->getOperand(2), RHSC, I.getName());
} else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
// Fold the known value into the constant operand.
Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
// Insert a new FCmp of the other select operand.
Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
RHSC, I.getName());
}
}
if (Op1)
return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
break;
}
case Instruction::Load:
if (GetElementPtrInst *GEP =
dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
!cast<LoadInst>(LHSI)->isVolatile())
if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
return Res;
}
break;
}
}
return Changed ? &I : 0;
}