forked from OSchip/llvm-project
694 lines
20 KiB
C++
694 lines
20 KiB
C++
//===-- tsan_rtl.cc -------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
// Main file (entry points) for the TSan run-time.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "sanitizer_common/sanitizer_atomic.h"
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "sanitizer_common/sanitizer_libc.h"
|
|
#include "sanitizer_common/sanitizer_stackdepot.h"
|
|
#include "sanitizer_common/sanitizer_placement_new.h"
|
|
#include "sanitizer_common/sanitizer_symbolizer.h"
|
|
#include "tsan_defs.h"
|
|
#include "tsan_platform.h"
|
|
#include "tsan_rtl.h"
|
|
#include "tsan_mman.h"
|
|
#include "tsan_suppressions.h"
|
|
#include "tsan_symbolize.h"
|
|
|
|
volatile int __tsan_resumed = 0;
|
|
|
|
extern "C" void __tsan_resume() {
|
|
__tsan_resumed = 1;
|
|
}
|
|
|
|
namespace __tsan {
|
|
|
|
#ifndef TSAN_GO
|
|
THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
|
|
#endif
|
|
static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
|
|
|
|
// Can be overriden by a front-end.
|
|
bool CPP_WEAK OnFinalize(bool failed) {
|
|
return failed;
|
|
}
|
|
|
|
static Context *ctx;
|
|
Context *CTX() {
|
|
return ctx;
|
|
}
|
|
|
|
static char thread_registry_placeholder[sizeof(ThreadRegistry)];
|
|
|
|
static ThreadContextBase *CreateThreadContext(u32 tid) {
|
|
// Map thread trace when context is created.
|
|
MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event));
|
|
MapThreadTrace(GetThreadTraceHeader(tid), sizeof(Trace));
|
|
new(ThreadTrace(tid)) Trace();
|
|
void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
|
|
return new(mem) ThreadContext(tid);
|
|
}
|
|
|
|
#ifndef TSAN_GO
|
|
static const u32 kThreadQuarantineSize = 16;
|
|
#else
|
|
static const u32 kThreadQuarantineSize = 64;
|
|
#endif
|
|
|
|
Context::Context()
|
|
: initialized()
|
|
, report_mtx(MutexTypeReport, StatMtxReport)
|
|
, nreported()
|
|
, nmissed_expected()
|
|
, thread_registry(new(thread_registry_placeholder) ThreadRegistry(
|
|
CreateThreadContext, kMaxTid, kThreadQuarantineSize))
|
|
, racy_stacks(MBlockRacyStacks)
|
|
, racy_addresses(MBlockRacyAddresses)
|
|
, fired_suppressions(MBlockRacyAddresses) {
|
|
}
|
|
|
|
// The objects are allocated in TLS, so one may rely on zero-initialization.
|
|
ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
|
|
uptr stk_addr, uptr stk_size,
|
|
uptr tls_addr, uptr tls_size)
|
|
: fast_state(tid, epoch)
|
|
// Do not touch these, rely on zero initialization,
|
|
// they may be accessed before the ctor.
|
|
// , fast_ignore_reads()
|
|
// , fast_ignore_writes()
|
|
// , in_rtl()
|
|
, shadow_stack_pos(&shadow_stack[0])
|
|
#ifndef TSAN_GO
|
|
, jmp_bufs(MBlockJmpBuf)
|
|
#endif
|
|
, tid(tid)
|
|
, unique_id(unique_id)
|
|
, stk_addr(stk_addr)
|
|
, stk_size(stk_size)
|
|
, tls_addr(tls_addr)
|
|
, tls_size(tls_size) {
|
|
}
|
|
|
|
static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
|
|
uptr n_threads;
|
|
uptr n_running_threads;
|
|
ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
|
|
InternalScopedBuffer<char> buf(4096);
|
|
internal_snprintf(buf.data(), buf.size(), "%d: nthr=%d nlive=%d\n",
|
|
i, n_threads, n_running_threads);
|
|
internal_write(fd, buf.data(), internal_strlen(buf.data()));
|
|
WriteMemoryProfile(buf.data(), buf.size());
|
|
internal_write(fd, buf.data(), internal_strlen(buf.data()));
|
|
}
|
|
|
|
static void BackgroundThread(void *arg) {
|
|
ScopedInRtl in_rtl;
|
|
Context *ctx = CTX();
|
|
const u64 kMs2Ns = 1000 * 1000;
|
|
|
|
fd_t mprof_fd = kInvalidFd;
|
|
if (flags()->profile_memory && flags()->profile_memory[0]) {
|
|
InternalScopedBuffer<char> filename(4096);
|
|
internal_snprintf(filename.data(), filename.size(), "%s.%d",
|
|
flags()->profile_memory, GetPid());
|
|
mprof_fd = OpenFile(filename.data(), true);
|
|
if (mprof_fd == kInvalidFd) {
|
|
Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
|
|
&filename[0]);
|
|
}
|
|
}
|
|
|
|
u64 last_flush = NanoTime();
|
|
for (int i = 0; ; i++) {
|
|
SleepForSeconds(1);
|
|
u64 now = NanoTime();
|
|
|
|
// Flush memory if requested.
|
|
if (flags()->flush_memory_ms) {
|
|
if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
|
|
FlushShadowMemory();
|
|
last_flush = NanoTime();
|
|
}
|
|
}
|
|
|
|
// Write memory profile if requested.
|
|
if (mprof_fd != kInvalidFd)
|
|
MemoryProfiler(ctx, mprof_fd, i);
|
|
|
|
#ifndef TSAN_GO
|
|
// Flush symbolizer cache if requested.
|
|
if (flags()->flush_symbolizer_ms > 0) {
|
|
u64 last = atomic_load(&ctx->last_symbolize_time_ns,
|
|
memory_order_relaxed);
|
|
if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
|
|
Lock l(&ctx->report_mtx);
|
|
SpinMutexLock l2(&CommonSanitizerReportMutex);
|
|
SymbolizeFlush();
|
|
atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void DontNeedShadowFor(uptr addr, uptr size) {
|
|
uptr shadow_beg = MemToShadow(addr);
|
|
uptr shadow_end = MemToShadow(addr + size);
|
|
FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
|
|
}
|
|
|
|
void MapShadow(uptr addr, uptr size) {
|
|
MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier);
|
|
}
|
|
|
|
void MapThreadTrace(uptr addr, uptr size) {
|
|
DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
|
|
CHECK_GE(addr, kTraceMemBegin);
|
|
CHECK_LE(addr + size, kTraceMemBegin + kTraceMemSize);
|
|
if (addr != (uptr)MmapFixedNoReserve(addr, size)) {
|
|
Printf("FATAL: ThreadSanitizer can not mmap thread trace\n");
|
|
Die();
|
|
}
|
|
}
|
|
|
|
void Initialize(ThreadState *thr) {
|
|
// Thread safe because done before all threads exist.
|
|
static bool is_initialized = false;
|
|
if (is_initialized)
|
|
return;
|
|
is_initialized = true;
|
|
SanitizerToolName = "ThreadSanitizer";
|
|
// Install tool-specific callbacks in sanitizer_common.
|
|
SetCheckFailedCallback(TsanCheckFailed);
|
|
|
|
ScopedInRtl in_rtl;
|
|
#ifndef TSAN_GO
|
|
InitializeAllocator();
|
|
#endif
|
|
InitializeInterceptors();
|
|
const char *env = InitializePlatform();
|
|
InitializeMutex();
|
|
InitializeDynamicAnnotations();
|
|
ctx = new(ctx_placeholder) Context;
|
|
#ifndef TSAN_GO
|
|
InitializeShadowMemory();
|
|
#endif
|
|
InitializeFlags(&ctx->flags, env);
|
|
// Setup correct file descriptor for error reports.
|
|
if (internal_strcmp(flags()->log_path, "stdout") == 0)
|
|
__sanitizer_set_report_fd(kStdoutFd);
|
|
else if (internal_strcmp(flags()->log_path, "stderr") == 0)
|
|
__sanitizer_set_report_fd(kStderrFd);
|
|
else
|
|
__sanitizer_set_report_path(flags()->log_path);
|
|
InitializeSuppressions();
|
|
#ifndef TSAN_GO
|
|
// Initialize external symbolizer before internal threads are started.
|
|
const char *external_symbolizer = flags()->external_symbolizer_path;
|
|
if (external_symbolizer != 0 && external_symbolizer[0] != '\0') {
|
|
if (!InitializeExternalSymbolizer(external_symbolizer)) {
|
|
Printf("Failed to start external symbolizer: '%s'\n",
|
|
external_symbolizer);
|
|
Die();
|
|
}
|
|
}
|
|
#endif
|
|
internal_start_thread(&BackgroundThread, 0);
|
|
|
|
if (ctx->flags.verbosity)
|
|
Printf("***** Running under ThreadSanitizer v2 (pid %d) *****\n",
|
|
GetPid());
|
|
|
|
// Initialize thread 0.
|
|
int tid = ThreadCreate(thr, 0, 0, true);
|
|
CHECK_EQ(tid, 0);
|
|
ThreadStart(thr, tid, GetPid());
|
|
CHECK_EQ(thr->in_rtl, 1);
|
|
ctx->initialized = true;
|
|
|
|
if (flags()->stop_on_start) {
|
|
Printf("ThreadSanitizer is suspended at startup (pid %d)."
|
|
" Call __tsan_resume().\n",
|
|
GetPid());
|
|
while (__tsan_resumed == 0) {}
|
|
}
|
|
}
|
|
|
|
int Finalize(ThreadState *thr) {
|
|
ScopedInRtl in_rtl;
|
|
Context *ctx = __tsan::ctx;
|
|
bool failed = false;
|
|
|
|
if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
|
|
SleepForMillis(flags()->atexit_sleep_ms);
|
|
|
|
// Wait for pending reports.
|
|
ctx->report_mtx.Lock();
|
|
CommonSanitizerReportMutex.Lock();
|
|
CommonSanitizerReportMutex.Unlock();
|
|
ctx->report_mtx.Unlock();
|
|
|
|
#ifndef TSAN_GO
|
|
if (ctx->flags.verbosity)
|
|
AllocatorPrintStats();
|
|
#endif
|
|
|
|
ThreadFinalize(thr);
|
|
|
|
if (ctx->nreported) {
|
|
failed = true;
|
|
#ifndef TSAN_GO
|
|
Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
|
|
#else
|
|
Printf("Found %d data race(s)\n", ctx->nreported);
|
|
#endif
|
|
}
|
|
|
|
if (ctx->nmissed_expected) {
|
|
failed = true;
|
|
Printf("ThreadSanitizer: missed %d expected races\n",
|
|
ctx->nmissed_expected);
|
|
}
|
|
|
|
if (flags()->print_suppressions)
|
|
PrintMatchedSuppressions();
|
|
#ifndef TSAN_GO
|
|
if (flags()->print_benign)
|
|
PrintMatchedBenignRaces();
|
|
#endif
|
|
|
|
failed = OnFinalize(failed);
|
|
|
|
StatAggregate(ctx->stat, thr->stat);
|
|
StatOutput(ctx->stat);
|
|
return failed ? flags()->exitcode : 0;
|
|
}
|
|
|
|
#ifndef TSAN_GO
|
|
u32 CurrentStackId(ThreadState *thr, uptr pc) {
|
|
if (thr->shadow_stack_pos == 0) // May happen during bootstrap.
|
|
return 0;
|
|
if (pc) {
|
|
thr->shadow_stack_pos[0] = pc;
|
|
thr->shadow_stack_pos++;
|
|
}
|
|
u32 id = StackDepotPut(thr->shadow_stack,
|
|
thr->shadow_stack_pos - thr->shadow_stack);
|
|
if (pc)
|
|
thr->shadow_stack_pos--;
|
|
return id;
|
|
}
|
|
#endif
|
|
|
|
void TraceSwitch(ThreadState *thr) {
|
|
thr->nomalloc++;
|
|
ScopedInRtl in_rtl;
|
|
Trace *thr_trace = ThreadTrace(thr->tid);
|
|
Lock l(&thr_trace->mtx);
|
|
unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
|
|
TraceHeader *hdr = &thr_trace->headers[trace];
|
|
hdr->epoch0 = thr->fast_state.epoch();
|
|
hdr->stack0.ObtainCurrent(thr, 0);
|
|
hdr->mset0 = thr->mset;
|
|
thr->nomalloc--;
|
|
}
|
|
|
|
Trace *ThreadTrace(int tid) {
|
|
return (Trace*)GetThreadTraceHeader(tid);
|
|
}
|
|
|
|
uptr TraceTopPC(ThreadState *thr) {
|
|
Event *events = (Event*)GetThreadTrace(thr->tid);
|
|
uptr pc = events[thr->fast_state.GetTracePos()];
|
|
return pc;
|
|
}
|
|
|
|
uptr TraceSize() {
|
|
return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
|
|
}
|
|
|
|
uptr TraceParts() {
|
|
return TraceSize() / kTracePartSize;
|
|
}
|
|
|
|
#ifndef TSAN_GO
|
|
extern "C" void __tsan_trace_switch() {
|
|
TraceSwitch(cur_thread());
|
|
}
|
|
|
|
extern "C" void __tsan_report_race() {
|
|
ReportRace(cur_thread());
|
|
}
|
|
#endif
|
|
|
|
ALWAYS_INLINE
|
|
Shadow LoadShadow(u64 *p) {
|
|
u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
|
|
return Shadow(raw);
|
|
}
|
|
|
|
ALWAYS_INLINE
|
|
void StoreShadow(u64 *sp, u64 s) {
|
|
atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
|
|
}
|
|
|
|
ALWAYS_INLINE
|
|
void StoreIfNotYetStored(u64 *sp, u64 *s) {
|
|
StoreShadow(sp, *s);
|
|
*s = 0;
|
|
}
|
|
|
|
static inline void HandleRace(ThreadState *thr, u64 *shadow_mem,
|
|
Shadow cur, Shadow old) {
|
|
thr->racy_state[0] = cur.raw();
|
|
thr->racy_state[1] = old.raw();
|
|
thr->racy_shadow_addr = shadow_mem;
|
|
#ifndef TSAN_GO
|
|
HACKY_CALL(__tsan_report_race);
|
|
#else
|
|
ReportRace(thr);
|
|
#endif
|
|
}
|
|
|
|
static inline bool OldIsInSameSynchEpoch(Shadow old, ThreadState *thr) {
|
|
return old.epoch() >= thr->fast_synch_epoch;
|
|
}
|
|
|
|
static inline bool HappensBefore(Shadow old, ThreadState *thr) {
|
|
return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
|
|
}
|
|
|
|
ALWAYS_INLINE USED
|
|
void MemoryAccessImpl(ThreadState *thr, uptr addr,
|
|
int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
|
|
u64 *shadow_mem, Shadow cur) {
|
|
StatInc(thr, StatMop);
|
|
StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
|
|
StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
|
|
|
|
// This potentially can live in an MMX/SSE scratch register.
|
|
// The required intrinsics are:
|
|
// __m128i _mm_move_epi64(__m128i*);
|
|
// _mm_storel_epi64(u64*, __m128i);
|
|
u64 store_word = cur.raw();
|
|
|
|
// scan all the shadow values and dispatch to 4 categories:
|
|
// same, replace, candidate and race (see comments below).
|
|
// we consider only 3 cases regarding access sizes:
|
|
// equal, intersect and not intersect. initially I considered
|
|
// larger and smaller as well, it allowed to replace some
|
|
// 'candidates' with 'same' or 'replace', but I think
|
|
// it's just not worth it (performance- and complexity-wise).
|
|
|
|
Shadow old(0);
|
|
if (kShadowCnt == 1) {
|
|
int idx = 0;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
} else if (kShadowCnt == 2) {
|
|
int idx = 0;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
idx = 1;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
} else if (kShadowCnt == 4) {
|
|
int idx = 0;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
idx = 1;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
idx = 2;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
idx = 3;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
} else if (kShadowCnt == 8) {
|
|
int idx = 0;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
idx = 1;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
idx = 2;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
idx = 3;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
idx = 4;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
idx = 5;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
idx = 6;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
idx = 7;
|
|
#include "tsan_update_shadow_word_inl.h"
|
|
} else {
|
|
CHECK(false);
|
|
}
|
|
|
|
// we did not find any races and had already stored
|
|
// the current access info, so we are done
|
|
if (LIKELY(store_word == 0))
|
|
return;
|
|
// choose a random candidate slot and replace it
|
|
StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
|
|
StatInc(thr, StatShadowReplace);
|
|
return;
|
|
RACE:
|
|
HandleRace(thr, shadow_mem, cur, old);
|
|
return;
|
|
}
|
|
|
|
ALWAYS_INLINE USED
|
|
void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
|
|
int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
|
|
u64 *shadow_mem = (u64*)MemToShadow(addr);
|
|
DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
|
|
" is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
|
|
(int)thr->fast_state.tid(), (void*)pc, (void*)addr,
|
|
(int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
|
|
(uptr)shadow_mem[0], (uptr)shadow_mem[1],
|
|
(uptr)shadow_mem[2], (uptr)shadow_mem[3]);
|
|
#if TSAN_DEBUG
|
|
if (!IsAppMem(addr)) {
|
|
Printf("Access to non app mem %zx\n", addr);
|
|
DCHECK(IsAppMem(addr));
|
|
}
|
|
if (!IsShadowMem((uptr)shadow_mem)) {
|
|
Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
|
|
DCHECK(IsShadowMem((uptr)shadow_mem));
|
|
}
|
|
#endif
|
|
|
|
if (*shadow_mem == kShadowRodata) {
|
|
// Access to .rodata section, no races here.
|
|
// Measurements show that it can be 10-20% of all memory accesses.
|
|
StatInc(thr, StatMop);
|
|
StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
|
|
StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
|
|
StatInc(thr, StatMopRodata);
|
|
return;
|
|
}
|
|
|
|
FastState fast_state = thr->fast_state;
|
|
if (fast_state.GetIgnoreBit())
|
|
return;
|
|
fast_state.IncrementEpoch();
|
|
thr->fast_state = fast_state;
|
|
Shadow cur(fast_state);
|
|
cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
|
|
cur.SetWrite(kAccessIsWrite);
|
|
cur.SetAtomic(kIsAtomic);
|
|
|
|
// We must not store to the trace if we do not store to the shadow.
|
|
// That is, this call must be moved somewhere below.
|
|
TraceAddEvent(thr, fast_state, EventTypeMop, pc);
|
|
|
|
MemoryAccessImpl(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
|
|
shadow_mem, cur);
|
|
}
|
|
|
|
static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
|
|
u64 val) {
|
|
(void)thr;
|
|
(void)pc;
|
|
if (size == 0)
|
|
return;
|
|
// FIXME: fix me.
|
|
uptr offset = addr % kShadowCell;
|
|
if (offset) {
|
|
offset = kShadowCell - offset;
|
|
if (size <= offset)
|
|
return;
|
|
addr += offset;
|
|
size -= offset;
|
|
}
|
|
DCHECK_EQ(addr % 8, 0);
|
|
// If a user passes some insane arguments (memset(0)),
|
|
// let it just crash as usual.
|
|
if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
|
|
return;
|
|
// Don't want to touch lots of shadow memory.
|
|
// If a program maps 10MB stack, there is no need reset the whole range.
|
|
size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
|
|
if (size < 64*1024) {
|
|
u64 *p = (u64*)MemToShadow(addr);
|
|
CHECK(IsShadowMem((uptr)p));
|
|
CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
|
|
// FIXME: may overwrite a part outside the region
|
|
for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
|
|
p[i++] = val;
|
|
for (uptr j = 1; j < kShadowCnt; j++)
|
|
p[i++] = 0;
|
|
}
|
|
} else {
|
|
// The region is big, reset only beginning and end.
|
|
const uptr kPageSize = 4096;
|
|
u64 *begin = (u64*)MemToShadow(addr);
|
|
u64 *end = begin + size / kShadowCell * kShadowCnt;
|
|
u64 *p = begin;
|
|
// Set at least first kPageSize/2 to page boundary.
|
|
while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
|
|
*p++ = val;
|
|
for (uptr j = 1; j < kShadowCnt; j++)
|
|
*p++ = 0;
|
|
}
|
|
// Reset middle part.
|
|
u64 *p1 = p;
|
|
p = RoundDown(end, kPageSize);
|
|
UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
|
|
MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1);
|
|
// Set the ending.
|
|
while (p < end) {
|
|
*p++ = val;
|
|
for (uptr j = 1; j < kShadowCnt; j++)
|
|
*p++ = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
|
|
MemoryRangeSet(thr, pc, addr, size, 0);
|
|
}
|
|
|
|
void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
|
|
// Processing more than 1k (4k of shadow) is expensive,
|
|
// can cause excessive memory consumption (user does not necessary touch
|
|
// the whole range) and most likely unnecessary.
|
|
if (size > 1024)
|
|
size = 1024;
|
|
CHECK_EQ(thr->is_freeing, false);
|
|
thr->is_freeing = true;
|
|
MemoryAccessRange(thr, pc, addr, size, true);
|
|
thr->is_freeing = false;
|
|
thr->fast_state.IncrementEpoch();
|
|
TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
|
|
Shadow s(thr->fast_state);
|
|
s.ClearIgnoreBit();
|
|
s.MarkAsFreed();
|
|
s.SetWrite(true);
|
|
s.SetAddr0AndSizeLog(0, 3);
|
|
MemoryRangeSet(thr, pc, addr, size, s.raw());
|
|
}
|
|
|
|
void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
|
|
thr->fast_state.IncrementEpoch();
|
|
TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
|
|
Shadow s(thr->fast_state);
|
|
s.ClearIgnoreBit();
|
|
s.SetWrite(true);
|
|
s.SetAddr0AndSizeLog(0, 3);
|
|
MemoryRangeSet(thr, pc, addr, size, s.raw());
|
|
}
|
|
|
|
ALWAYS_INLINE USED
|
|
void FuncEntry(ThreadState *thr, uptr pc) {
|
|
DCHECK_EQ(thr->in_rtl, 0);
|
|
StatInc(thr, StatFuncEnter);
|
|
DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
|
|
thr->fast_state.IncrementEpoch();
|
|
TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
|
|
|
|
// Shadow stack maintenance can be replaced with
|
|
// stack unwinding during trace switch (which presumably must be faster).
|
|
DCHECK_GE(thr->shadow_stack_pos, &thr->shadow_stack[0]);
|
|
#ifndef TSAN_GO
|
|
DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]);
|
|
#else
|
|
if (thr->shadow_stack_pos == thr->shadow_stack_end) {
|
|
const int sz = thr->shadow_stack_end - thr->shadow_stack;
|
|
const int newsz = 2 * sz;
|
|
uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
|
|
newsz * sizeof(uptr));
|
|
internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
|
|
internal_free(thr->shadow_stack);
|
|
thr->shadow_stack = newstack;
|
|
thr->shadow_stack_pos = newstack + sz;
|
|
thr->shadow_stack_end = newstack + newsz;
|
|
}
|
|
#endif
|
|
thr->shadow_stack_pos[0] = pc;
|
|
thr->shadow_stack_pos++;
|
|
}
|
|
|
|
ALWAYS_INLINE USED
|
|
void FuncExit(ThreadState *thr) {
|
|
DCHECK_EQ(thr->in_rtl, 0);
|
|
StatInc(thr, StatFuncExit);
|
|
DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
|
|
thr->fast_state.IncrementEpoch();
|
|
TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
|
|
|
|
DCHECK_GT(thr->shadow_stack_pos, &thr->shadow_stack[0]);
|
|
#ifndef TSAN_GO
|
|
DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]);
|
|
#endif
|
|
thr->shadow_stack_pos--;
|
|
}
|
|
|
|
void IgnoreCtl(ThreadState *thr, bool write, bool begin) {
|
|
DPrintf("#%d: IgnoreCtl(%d, %d)\n", thr->tid, write, begin);
|
|
thr->ignore_reads_and_writes += begin ? 1 : -1;
|
|
CHECK_GE(thr->ignore_reads_and_writes, 0);
|
|
if (thr->ignore_reads_and_writes)
|
|
thr->fast_state.SetIgnoreBit();
|
|
else
|
|
thr->fast_state.ClearIgnoreBit();
|
|
}
|
|
|
|
bool MD5Hash::operator==(const MD5Hash &other) const {
|
|
return hash[0] == other.hash[0] && hash[1] == other.hash[1];
|
|
}
|
|
|
|
#if TSAN_DEBUG
|
|
void build_consistency_debug() {}
|
|
#else
|
|
void build_consistency_release() {}
|
|
#endif
|
|
|
|
#if TSAN_COLLECT_STATS
|
|
void build_consistency_stats() {}
|
|
#else
|
|
void build_consistency_nostats() {}
|
|
#endif
|
|
|
|
#if TSAN_SHADOW_COUNT == 1
|
|
void build_consistency_shadow1() {}
|
|
#elif TSAN_SHADOW_COUNT == 2
|
|
void build_consistency_shadow2() {}
|
|
#elif TSAN_SHADOW_COUNT == 4
|
|
void build_consistency_shadow4() {}
|
|
#else
|
|
void build_consistency_shadow8() {}
|
|
#endif
|
|
|
|
} // namespace __tsan
|
|
|
|
#ifndef TSAN_GO
|
|
// Must be included in this file to make sure everything is inlined.
|
|
#include "tsan_interface_inl.h"
|
|
#endif
|