llvm-project/llvm/unittests/Analysis/BasicAliasAnalysisTest.cpp

124 lines
4.2 KiB
C++

//===- BasicAliasAnalysisTest.cpp - Unit tests for BasicAA ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Targeted tests that are hard/convoluted to make happen with just `opt`.
//
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
// FIXME: This is duplicated between this file and MemorySSATest. Refactor.
const static char DLString[] = "e-i64:64-f80:128-n8:16:32:64-S128";
/// There's a lot of common setup between these tests. This fixture helps reduce
/// that. Tests should mock up a function, store it in F, and then call
/// setupAnalyses().
class BasicAATest : public testing::Test {
protected:
// N.B. Many of these members depend on each other (e.g. the Module depends on
// the Context, etc.). So, order matters here (and in TestAnalyses).
LLVMContext C;
Module M;
IRBuilder<> B;
DataLayout DL;
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI;
Function *F;
// Things that we need to build after the function is created.
struct TestAnalyses {
DominatorTree DT;
AssumptionCache AC;
BasicAAResult BAA;
TestAnalyses(BasicAATest &Test)
: DT(*Test.F), AC(*Test.F), BAA(Test.DL, *Test.F, Test.TLI, AC, &DT) {}
};
llvm::Optional<TestAnalyses> Analyses;
BasicAAResult &setupAnalyses() {
assert(F);
Analyses.emplace(*this);
return Analyses->BAA;
}
public:
BasicAATest()
: M("BasicAATest", C), B(C), DL(DLString), TLI(TLII), F(nullptr) {}
};
// Check that a function arg can't trivially alias a global when we're accessing
// >sizeof(global) bytes through that arg, unless the access size is just an
// upper-bound.
TEST_F(BasicAATest, AliasInstWithObjectOfImpreciseSize) {
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt32Ty()->getPointerTo()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
Value *IncomingI32Ptr = F->arg_begin();
auto *GlobalPtr =
cast<GlobalVariable>(M.getOrInsertGlobal("some_global", B.getInt8Ty()));
// Without sufficiently restricted linkage/an init, some of the object size
// checking bits get more conservative.
GlobalPtr->setLinkage(GlobalValue::LinkageTypes::InternalLinkage);
GlobalPtr->setInitializer(B.getInt8(0));
BasicAAResult &BasicAA = setupAnalyses();
ASSERT_EQ(
BasicAA.alias(MemoryLocation(IncomingI32Ptr, LocationSize::precise(4)),
MemoryLocation(GlobalPtr, LocationSize::precise(1))),
AliasResult::NoAlias);
ASSERT_EQ(
BasicAA.alias(MemoryLocation(IncomingI32Ptr, LocationSize::upperBound(4)),
MemoryLocation(GlobalPtr, LocationSize::precise(1))),
AliasResult::MayAlias);
}
// Check that we fall back to MayAlias if we see an access of an entire object
// that's just an upper-bound.
TEST_F(BasicAATest, AliasInstWithFullObjectOfImpreciseSize) {
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt64Ty()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
Value *ArbitraryI32 = F->arg_begin();
AllocaInst *I8 = B.CreateAlloca(B.getInt8Ty(), B.getInt32(2));
auto *I8AtUncertainOffset =
cast<GetElementPtrInst>(B.CreateGEP(B.getInt8Ty(), I8, ArbitraryI32));
BasicAAResult &BasicAA = setupAnalyses();
ASSERT_EQ(BasicAA.alias(
MemoryLocation(I8, LocationSize::precise(2)),
MemoryLocation(I8AtUncertainOffset, LocationSize::precise(1))),
AliasResult::PartialAlias);
ASSERT_EQ(BasicAA.alias(
MemoryLocation(I8, LocationSize::upperBound(2)),
MemoryLocation(I8AtUncertainOffset, LocationSize::precise(1))),
AliasResult::MayAlias);
}