forked from OSchip/llvm-project
1335 lines
52 KiB
C++
1335 lines
52 KiB
C++
//===--- MacroExpansion.cpp - Top level Macro Expansion -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the top level handling of macro expasion for the
|
|
// preprocessor.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Lex/MacroArgs.h"
|
|
#include "clang/Basic/FileManager.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/CodeCompletionHandler.h"
|
|
#include "clang/Lex/ExternalPreprocessorSource.h"
|
|
#include "clang/Lex/LexDiagnostic.h"
|
|
#include "clang/Lex/MacroInfo.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cstdio>
|
|
#include <ctime>
|
|
using namespace clang;
|
|
|
|
MacroDirective *
|
|
Preprocessor::getMacroDirectiveHistory(const IdentifierInfo *II) const {
|
|
assert(II->hadMacroDefinition() && "Identifier has not been not a macro!");
|
|
|
|
macro_iterator Pos = Macros.find(II);
|
|
assert(Pos != Macros.end() && "Identifier macro info is missing!");
|
|
return Pos->second;
|
|
}
|
|
|
|
void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
|
|
assert(MD && "MacroDirective should be non-zero!");
|
|
assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
|
|
|
|
MacroDirective *&StoredMD = Macros[II];
|
|
MD->setPrevious(StoredMD);
|
|
StoredMD = MD;
|
|
II->setHasMacroDefinition(MD->isDefined());
|
|
bool isImportedMacro = isa<DefMacroDirective>(MD) &&
|
|
cast<DefMacroDirective>(MD)->isImported();
|
|
if (II->isFromAST() && !isImportedMacro)
|
|
II->setChangedSinceDeserialization();
|
|
}
|
|
|
|
void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
|
|
MacroDirective *MD) {
|
|
assert(II && MD);
|
|
MacroDirective *&StoredMD = Macros[II];
|
|
assert(!StoredMD &&
|
|
"the macro history was modified before initializing it from a pch");
|
|
StoredMD = MD;
|
|
// Setup the identifier as having associated macro history.
|
|
II->setHasMacroDefinition(true);
|
|
if (!MD->isDefined())
|
|
II->setHasMacroDefinition(false);
|
|
}
|
|
|
|
/// RegisterBuiltinMacro - Register the specified identifier in the identifier
|
|
/// table and mark it as a builtin macro to be expanded.
|
|
static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
|
|
// Get the identifier.
|
|
IdentifierInfo *Id = PP.getIdentifierInfo(Name);
|
|
|
|
// Mark it as being a macro that is builtin.
|
|
MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
|
|
MI->setIsBuiltinMacro();
|
|
PP.appendDefMacroDirective(Id, MI);
|
|
return Id;
|
|
}
|
|
|
|
|
|
/// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
|
|
/// identifier table.
|
|
void Preprocessor::RegisterBuiltinMacros() {
|
|
Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
|
|
Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
|
|
Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
|
|
Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
|
|
Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
|
|
Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma");
|
|
|
|
// GCC Extensions.
|
|
Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__");
|
|
Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
|
|
Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
|
|
|
|
// Clang Extensions.
|
|
Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature");
|
|
Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension");
|
|
Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin");
|
|
Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute");
|
|
Ident__has_include = RegisterBuiltinMacro(*this, "__has_include");
|
|
Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
|
|
Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning");
|
|
|
|
// Modules.
|
|
if (LangOpts.Modules) {
|
|
Ident__building_module = RegisterBuiltinMacro(*this, "__building_module");
|
|
|
|
// __MODULE__
|
|
if (!LangOpts.CurrentModule.empty())
|
|
Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
|
|
else
|
|
Ident__MODULE__ = 0;
|
|
} else {
|
|
Ident__building_module = 0;
|
|
Ident__MODULE__ = 0;
|
|
}
|
|
|
|
// Microsoft Extensions.
|
|
if (LangOpts.MicrosoftExt)
|
|
Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
|
|
else
|
|
Ident__pragma = 0;
|
|
}
|
|
|
|
/// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
|
|
/// in its expansion, currently expands to that token literally.
|
|
static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
|
|
const IdentifierInfo *MacroIdent,
|
|
Preprocessor &PP) {
|
|
IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
|
|
|
|
// If the token isn't an identifier, it's always literally expanded.
|
|
if (II == 0) return true;
|
|
|
|
// If the information about this identifier is out of date, update it from
|
|
// the external source.
|
|
if (II->isOutOfDate())
|
|
PP.getExternalSource()->updateOutOfDateIdentifier(*II);
|
|
|
|
// If the identifier is a macro, and if that macro is enabled, it may be
|
|
// expanded so it's not a trivial expansion.
|
|
if (II->hasMacroDefinition() && PP.getMacroInfo(II)->isEnabled() &&
|
|
// Fast expanding "#define X X" is ok, because X would be disabled.
|
|
II != MacroIdent)
|
|
return false;
|
|
|
|
// If this is an object-like macro invocation, it is safe to trivially expand
|
|
// it.
|
|
if (MI->isObjectLike()) return true;
|
|
|
|
// If this is a function-like macro invocation, it's safe to trivially expand
|
|
// as long as the identifier is not a macro argument.
|
|
for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end();
|
|
I != E; ++I)
|
|
if (*I == II)
|
|
return false; // Identifier is a macro argument.
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// isNextPPTokenLParen - Determine whether the next preprocessor token to be
|
|
/// lexed is a '('. If so, consume the token and return true, if not, this
|
|
/// method should have no observable side-effect on the lexed tokens.
|
|
bool Preprocessor::isNextPPTokenLParen() {
|
|
// Do some quick tests for rejection cases.
|
|
unsigned Val;
|
|
if (CurLexer)
|
|
Val = CurLexer->isNextPPTokenLParen();
|
|
else if (CurPTHLexer)
|
|
Val = CurPTHLexer->isNextPPTokenLParen();
|
|
else
|
|
Val = CurTokenLexer->isNextTokenLParen();
|
|
|
|
if (Val == 2) {
|
|
// We have run off the end. If it's a source file we don't
|
|
// examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
|
|
// macro stack.
|
|
if (CurPPLexer)
|
|
return false;
|
|
for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
|
|
IncludeStackInfo &Entry = IncludeMacroStack[i-1];
|
|
if (Entry.TheLexer)
|
|
Val = Entry.TheLexer->isNextPPTokenLParen();
|
|
else if (Entry.ThePTHLexer)
|
|
Val = Entry.ThePTHLexer->isNextPPTokenLParen();
|
|
else
|
|
Val = Entry.TheTokenLexer->isNextTokenLParen();
|
|
|
|
if (Val != 2)
|
|
break;
|
|
|
|
// Ran off the end of a source file?
|
|
if (Entry.ThePPLexer)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Okay, if we know that the token is a '(', lex it and return. Otherwise we
|
|
// have found something that isn't a '(' or we found the end of the
|
|
// translation unit. In either case, return false.
|
|
return Val == 1;
|
|
}
|
|
|
|
/// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
|
|
/// expanded as a macro, handle it and return the next token as 'Identifier'.
|
|
bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
|
|
MacroDirective *MD) {
|
|
MacroDirective::DefInfo Def = MD->getDefinition();
|
|
assert(Def.isValid());
|
|
MacroInfo *MI = Def.getMacroInfo();
|
|
|
|
// If this is a macro expansion in the "#if !defined(x)" line for the file,
|
|
// then the macro could expand to different things in other contexts, we need
|
|
// to disable the optimization in this case.
|
|
if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
|
|
|
|
// If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
|
|
if (MI->isBuiltinMacro()) {
|
|
if (Callbacks) Callbacks->MacroExpands(Identifier, MD,
|
|
Identifier.getLocation(),/*Args=*/0);
|
|
ExpandBuiltinMacro(Identifier);
|
|
return false;
|
|
}
|
|
|
|
/// Args - If this is a function-like macro expansion, this contains,
|
|
/// for each macro argument, the list of tokens that were provided to the
|
|
/// invocation.
|
|
MacroArgs *Args = 0;
|
|
|
|
// Remember where the end of the expansion occurred. For an object-like
|
|
// macro, this is the identifier. For a function-like macro, this is the ')'.
|
|
SourceLocation ExpansionEnd = Identifier.getLocation();
|
|
|
|
// If this is a function-like macro, read the arguments.
|
|
if (MI->isFunctionLike()) {
|
|
// C99 6.10.3p10: If the preprocessing token immediately after the macro
|
|
// name isn't a '(', this macro should not be expanded.
|
|
if (!isNextPPTokenLParen())
|
|
return true;
|
|
|
|
// Remember that we are now parsing the arguments to a macro invocation.
|
|
// Preprocessor directives used inside macro arguments are not portable, and
|
|
// this enables the warning.
|
|
InMacroArgs = true;
|
|
Args = ReadFunctionLikeMacroArgs(Identifier, MI, ExpansionEnd);
|
|
|
|
// Finished parsing args.
|
|
InMacroArgs = false;
|
|
|
|
// If there was an error parsing the arguments, bail out.
|
|
if (Args == 0) return false;
|
|
|
|
++NumFnMacroExpanded;
|
|
} else {
|
|
++NumMacroExpanded;
|
|
}
|
|
|
|
// Notice that this macro has been used.
|
|
markMacroAsUsed(MI);
|
|
|
|
// Remember where the token is expanded.
|
|
SourceLocation ExpandLoc = Identifier.getLocation();
|
|
SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
|
|
|
|
if (Callbacks) {
|
|
if (InMacroArgs) {
|
|
// We can have macro expansion inside a conditional directive while
|
|
// reading the function macro arguments. To ensure, in that case, that
|
|
// MacroExpands callbacks still happen in source order, queue this
|
|
// callback to have it happen after the function macro callback.
|
|
DelayedMacroExpandsCallbacks.push_back(
|
|
MacroExpandsInfo(Identifier, MD, ExpansionRange));
|
|
} else {
|
|
Callbacks->MacroExpands(Identifier, MD, ExpansionRange, Args);
|
|
if (!DelayedMacroExpandsCallbacks.empty()) {
|
|
for (unsigned i=0, e = DelayedMacroExpandsCallbacks.size(); i!=e; ++i) {
|
|
MacroExpandsInfo &Info = DelayedMacroExpandsCallbacks[i];
|
|
// FIXME: We lose macro args info with delayed callback.
|
|
Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, /*Args=*/0);
|
|
}
|
|
DelayedMacroExpandsCallbacks.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the macro definition is ambiguous, complain.
|
|
if (Def.getDirective()->isAmbiguous()) {
|
|
Diag(Identifier, diag::warn_pp_ambiguous_macro)
|
|
<< Identifier.getIdentifierInfo();
|
|
Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
|
|
<< Identifier.getIdentifierInfo();
|
|
for (MacroDirective::DefInfo PrevDef = Def.getPreviousDefinition();
|
|
PrevDef && !PrevDef.isUndefined();
|
|
PrevDef = PrevDef.getPreviousDefinition()) {
|
|
if (PrevDef.getDirective()->isAmbiguous()) {
|
|
Diag(PrevDef.getMacroInfo()->getDefinitionLoc(),
|
|
diag::note_pp_ambiguous_macro_other)
|
|
<< Identifier.getIdentifierInfo();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we started lexing a macro, enter the macro expansion body.
|
|
|
|
// If this macro expands to no tokens, don't bother to push it onto the
|
|
// expansion stack, only to take it right back off.
|
|
if (MI->getNumTokens() == 0) {
|
|
// No need for arg info.
|
|
if (Args) Args->destroy(*this);
|
|
|
|
// Ignore this macro use, just return the next token in the current
|
|
// buffer.
|
|
bool HadLeadingSpace = Identifier.hasLeadingSpace();
|
|
bool IsAtStartOfLine = Identifier.isAtStartOfLine();
|
|
|
|
Lex(Identifier);
|
|
|
|
// If the identifier isn't on some OTHER line, inherit the leading
|
|
// whitespace/first-on-a-line property of this token. This handles
|
|
// stuff like "! XX," -> "! ," and " XX," -> " ,", when XX is
|
|
// empty.
|
|
if (!Identifier.isAtStartOfLine()) {
|
|
if (IsAtStartOfLine) Identifier.setFlag(Token::StartOfLine);
|
|
if (HadLeadingSpace) Identifier.setFlag(Token::LeadingSpace);
|
|
}
|
|
Identifier.setFlag(Token::LeadingEmptyMacro);
|
|
++NumFastMacroExpanded;
|
|
return false;
|
|
|
|
} else if (MI->getNumTokens() == 1 &&
|
|
isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
|
|
*this)) {
|
|
// Otherwise, if this macro expands into a single trivially-expanded
|
|
// token: expand it now. This handles common cases like
|
|
// "#define VAL 42".
|
|
|
|
// No need for arg info.
|
|
if (Args) Args->destroy(*this);
|
|
|
|
// Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
|
|
// identifier to the expanded token.
|
|
bool isAtStartOfLine = Identifier.isAtStartOfLine();
|
|
bool hasLeadingSpace = Identifier.hasLeadingSpace();
|
|
|
|
// Replace the result token.
|
|
Identifier = MI->getReplacementToken(0);
|
|
|
|
// Restore the StartOfLine/LeadingSpace markers.
|
|
Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
|
|
Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
|
|
|
|
// Update the tokens location to include both its expansion and physical
|
|
// locations.
|
|
SourceLocation Loc =
|
|
SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
|
|
ExpansionEnd,Identifier.getLength());
|
|
Identifier.setLocation(Loc);
|
|
|
|
// If this is a disabled macro or #define X X, we must mark the result as
|
|
// unexpandable.
|
|
if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
|
|
if (MacroInfo *NewMI = getMacroInfo(NewII))
|
|
if (!NewMI->isEnabled() || NewMI == MI) {
|
|
Identifier.setFlag(Token::DisableExpand);
|
|
// Don't warn for "#define X X" like "#define bool bool" from
|
|
// stdbool.h.
|
|
if (NewMI != MI || MI->isFunctionLike())
|
|
Diag(Identifier, diag::pp_disabled_macro_expansion);
|
|
}
|
|
}
|
|
|
|
// Since this is not an identifier token, it can't be macro expanded, so
|
|
// we're done.
|
|
++NumFastMacroExpanded;
|
|
return false;
|
|
}
|
|
|
|
// Start expanding the macro.
|
|
EnterMacro(Identifier, ExpansionEnd, MI, Args);
|
|
|
|
// Now that the macro is at the top of the include stack, ask the
|
|
// preprocessor to read the next token from it.
|
|
Lex(Identifier);
|
|
return false;
|
|
}
|
|
|
|
/// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
|
|
/// token is the '(' of the macro, this method is invoked to read all of the
|
|
/// actual arguments specified for the macro invocation. This returns null on
|
|
/// error.
|
|
MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName,
|
|
MacroInfo *MI,
|
|
SourceLocation &MacroEnd) {
|
|
// The number of fixed arguments to parse.
|
|
unsigned NumFixedArgsLeft = MI->getNumArgs();
|
|
bool isVariadic = MI->isVariadic();
|
|
|
|
// Outer loop, while there are more arguments, keep reading them.
|
|
Token Tok;
|
|
|
|
// Read arguments as unexpanded tokens. This avoids issues, e.g., where
|
|
// an argument value in a macro could expand to ',' or '(' or ')'.
|
|
LexUnexpandedToken(Tok);
|
|
assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
|
|
|
|
// ArgTokens - Build up a list of tokens that make up each argument. Each
|
|
// argument is separated by an EOF token. Use a SmallVector so we can avoid
|
|
// heap allocations in the common case.
|
|
SmallVector<Token, 64> ArgTokens;
|
|
bool ContainsCodeCompletionTok = false;
|
|
|
|
unsigned NumActuals = 0;
|
|
while (Tok.isNot(tok::r_paren)) {
|
|
if (ContainsCodeCompletionTok && (Tok.is(tok::eof) || Tok.is(tok::eod)))
|
|
break;
|
|
|
|
assert((Tok.is(tok::l_paren) || Tok.is(tok::comma)) &&
|
|
"only expect argument separators here");
|
|
|
|
unsigned ArgTokenStart = ArgTokens.size();
|
|
SourceLocation ArgStartLoc = Tok.getLocation();
|
|
|
|
// C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
|
|
// that we already consumed the first one.
|
|
unsigned NumParens = 0;
|
|
|
|
while (1) {
|
|
// Read arguments as unexpanded tokens. This avoids issues, e.g., where
|
|
// an argument value in a macro could expand to ',' or '(' or ')'.
|
|
LexUnexpandedToken(Tok);
|
|
|
|
if (Tok.is(tok::eof) || Tok.is(tok::eod)) { // "#if f(<eof>" & "#if f(\n"
|
|
if (!ContainsCodeCompletionTok) {
|
|
Diag(MacroName, diag::err_unterm_macro_invoc);
|
|
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
|
|
<< MacroName.getIdentifierInfo();
|
|
// Do not lose the EOF/EOD. Return it to the client.
|
|
MacroName = Tok;
|
|
return 0;
|
|
} else {
|
|
// Do not lose the EOF/EOD.
|
|
Token *Toks = new Token[1];
|
|
Toks[0] = Tok;
|
|
EnterTokenStream(Toks, 1, true, true);
|
|
break;
|
|
}
|
|
} else if (Tok.is(tok::r_paren)) {
|
|
// If we found the ) token, the macro arg list is done.
|
|
if (NumParens-- == 0) {
|
|
MacroEnd = Tok.getLocation();
|
|
break;
|
|
}
|
|
} else if (Tok.is(tok::l_paren)) {
|
|
++NumParens;
|
|
} else if (Tok.is(tok::comma) && NumParens == 0 &&
|
|
!(Tok.getFlags() & Token::IgnoredComma)) {
|
|
// In Microsoft-compatibility mode, single commas from nested macro
|
|
// expansions should not be considered as argument separators. We test
|
|
// for this with the IgnoredComma token flag above.
|
|
|
|
// Comma ends this argument if there are more fixed arguments expected.
|
|
// However, if this is a variadic macro, and this is part of the
|
|
// variadic part, then the comma is just an argument token.
|
|
if (!isVariadic) break;
|
|
if (NumFixedArgsLeft > 1)
|
|
break;
|
|
} else if (Tok.is(tok::comment) && !KeepMacroComments) {
|
|
// If this is a comment token in the argument list and we're just in
|
|
// -C mode (not -CC mode), discard the comment.
|
|
continue;
|
|
} else if (Tok.getIdentifierInfo() != 0) {
|
|
// Reading macro arguments can cause macros that we are currently
|
|
// expanding from to be popped off the expansion stack. Doing so causes
|
|
// them to be reenabled for expansion. Here we record whether any
|
|
// identifiers we lex as macro arguments correspond to disabled macros.
|
|
// If so, we mark the token as noexpand. This is a subtle aspect of
|
|
// C99 6.10.3.4p2.
|
|
if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
|
|
if (!MI->isEnabled())
|
|
Tok.setFlag(Token::DisableExpand);
|
|
} else if (Tok.is(tok::code_completion)) {
|
|
ContainsCodeCompletionTok = true;
|
|
if (CodeComplete)
|
|
CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
|
|
MI, NumActuals);
|
|
// Don't mark that we reached the code-completion point because the
|
|
// parser is going to handle the token and there will be another
|
|
// code-completion callback.
|
|
}
|
|
|
|
ArgTokens.push_back(Tok);
|
|
}
|
|
|
|
// If this was an empty argument list foo(), don't add this as an empty
|
|
// argument.
|
|
if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
|
|
break;
|
|
|
|
// If this is not a variadic macro, and too many args were specified, emit
|
|
// an error.
|
|
if (!isVariadic && NumFixedArgsLeft == 0) {
|
|
if (ArgTokens.size() != ArgTokenStart)
|
|
ArgStartLoc = ArgTokens[ArgTokenStart].getLocation();
|
|
|
|
if (!ContainsCodeCompletionTok) {
|
|
// Emit the diagnostic at the macro name in case there is a missing ).
|
|
// Emitting it at the , could be far away from the macro name.
|
|
Diag(ArgStartLoc, diag::err_too_many_args_in_macro_invoc);
|
|
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
|
|
<< MacroName.getIdentifierInfo();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Empty arguments are standard in C99 and C++0x, and are supported as an extension in
|
|
// other modes.
|
|
if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99)
|
|
Diag(Tok, LangOpts.CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_empty_fnmacro_arg :
|
|
diag::ext_empty_fnmacro_arg);
|
|
|
|
// Add a marker EOF token to the end of the token list for this argument.
|
|
Token EOFTok;
|
|
EOFTok.startToken();
|
|
EOFTok.setKind(tok::eof);
|
|
EOFTok.setLocation(Tok.getLocation());
|
|
EOFTok.setLength(0);
|
|
ArgTokens.push_back(EOFTok);
|
|
++NumActuals;
|
|
if (!ContainsCodeCompletionTok || NumFixedArgsLeft != 0) {
|
|
assert(NumFixedArgsLeft != 0 && "Too many arguments parsed");
|
|
--NumFixedArgsLeft;
|
|
}
|
|
}
|
|
|
|
// Okay, we either found the r_paren. Check to see if we parsed too few
|
|
// arguments.
|
|
unsigned MinArgsExpected = MI->getNumArgs();
|
|
|
|
// See MacroArgs instance var for description of this.
|
|
bool isVarargsElided = false;
|
|
|
|
if (ContainsCodeCompletionTok) {
|
|
// Recover from not-fully-formed macro invocation during code-completion.
|
|
Token EOFTok;
|
|
EOFTok.startToken();
|
|
EOFTok.setKind(tok::eof);
|
|
EOFTok.setLocation(Tok.getLocation());
|
|
EOFTok.setLength(0);
|
|
for (; NumActuals < MinArgsExpected; ++NumActuals)
|
|
ArgTokens.push_back(EOFTok);
|
|
}
|
|
|
|
if (NumActuals < MinArgsExpected) {
|
|
// There are several cases where too few arguments is ok, handle them now.
|
|
if (NumActuals == 0 && MinArgsExpected == 1) {
|
|
// #define A(X) or #define A(...) ---> A()
|
|
|
|
// If there is exactly one argument, and that argument is missing,
|
|
// then we have an empty "()" argument empty list. This is fine, even if
|
|
// the macro expects one argument (the argument is just empty).
|
|
isVarargsElided = MI->isVariadic();
|
|
} else if (MI->isVariadic() &&
|
|
(NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X)
|
|
(NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
|
|
// Varargs where the named vararg parameter is missing: OK as extension.
|
|
// #define A(x, ...)
|
|
// A("blah")
|
|
//
|
|
// If the macro contains the comma pasting extension, the diagnostic
|
|
// is suppressed; we know we'll get another diagnostic later.
|
|
if (!MI->hasCommaPasting()) {
|
|
Diag(Tok, diag::ext_missing_varargs_arg);
|
|
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
|
|
<< MacroName.getIdentifierInfo();
|
|
}
|
|
|
|
// Remember this occurred, allowing us to elide the comma when used for
|
|
// cases like:
|
|
// #define A(x, foo...) blah(a, ## foo)
|
|
// #define B(x, ...) blah(a, ## __VA_ARGS__)
|
|
// #define C(...) blah(a, ## __VA_ARGS__)
|
|
// A(x) B(x) C()
|
|
isVarargsElided = true;
|
|
} else if (!ContainsCodeCompletionTok) {
|
|
// Otherwise, emit the error.
|
|
Diag(Tok, diag::err_too_few_args_in_macro_invoc);
|
|
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
|
|
<< MacroName.getIdentifierInfo();
|
|
return 0;
|
|
}
|
|
|
|
// Add a marker EOF token to the end of the token list for this argument.
|
|
SourceLocation EndLoc = Tok.getLocation();
|
|
Tok.startToken();
|
|
Tok.setKind(tok::eof);
|
|
Tok.setLocation(EndLoc);
|
|
Tok.setLength(0);
|
|
ArgTokens.push_back(Tok);
|
|
|
|
// If we expect two arguments, add both as empty.
|
|
if (NumActuals == 0 && MinArgsExpected == 2)
|
|
ArgTokens.push_back(Tok);
|
|
|
|
} else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
|
|
!ContainsCodeCompletionTok) {
|
|
// Emit the diagnostic at the macro name in case there is a missing ).
|
|
// Emitting it at the , could be far away from the macro name.
|
|
Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
|
|
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
|
|
<< MacroName.getIdentifierInfo();
|
|
return 0;
|
|
}
|
|
|
|
return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
|
|
}
|
|
|
|
/// \brief Keeps macro expanded tokens for TokenLexers.
|
|
//
|
|
/// Works like a stack; a TokenLexer adds the macro expanded tokens that is
|
|
/// going to lex in the cache and when it finishes the tokens are removed
|
|
/// from the end of the cache.
|
|
Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
|
|
ArrayRef<Token> tokens) {
|
|
assert(tokLexer);
|
|
if (tokens.empty())
|
|
return 0;
|
|
|
|
size_t newIndex = MacroExpandedTokens.size();
|
|
bool cacheNeedsToGrow = tokens.size() >
|
|
MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
|
|
MacroExpandedTokens.append(tokens.begin(), tokens.end());
|
|
|
|
if (cacheNeedsToGrow) {
|
|
// Go through all the TokenLexers whose 'Tokens' pointer points in the
|
|
// buffer and update the pointers to the (potential) new buffer array.
|
|
for (unsigned i = 0, e = MacroExpandingLexersStack.size(); i != e; ++i) {
|
|
TokenLexer *prevLexer;
|
|
size_t tokIndex;
|
|
llvm::tie(prevLexer, tokIndex) = MacroExpandingLexersStack[i];
|
|
prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
|
|
}
|
|
}
|
|
|
|
MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
|
|
return MacroExpandedTokens.data() + newIndex;
|
|
}
|
|
|
|
void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
|
|
assert(!MacroExpandingLexersStack.empty());
|
|
size_t tokIndex = MacroExpandingLexersStack.back().second;
|
|
assert(tokIndex < MacroExpandedTokens.size());
|
|
// Pop the cached macro expanded tokens from the end.
|
|
MacroExpandedTokens.resize(tokIndex);
|
|
MacroExpandingLexersStack.pop_back();
|
|
}
|
|
|
|
/// ComputeDATE_TIME - Compute the current time, enter it into the specified
|
|
/// scratch buffer, then return DATELoc/TIMELoc locations with the position of
|
|
/// the identifier tokens inserted.
|
|
static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
|
|
Preprocessor &PP) {
|
|
time_t TT = time(0);
|
|
struct tm *TM = localtime(&TT);
|
|
|
|
static const char * const Months[] = {
|
|
"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
|
|
};
|
|
|
|
{
|
|
SmallString<32> TmpBuffer;
|
|
llvm::raw_svector_ostream TmpStream(TmpBuffer);
|
|
TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
|
|
TM->tm_mday, TM->tm_year + 1900);
|
|
Token TmpTok;
|
|
TmpTok.startToken();
|
|
PP.CreateString(TmpStream.str(), TmpTok);
|
|
DATELoc = TmpTok.getLocation();
|
|
}
|
|
|
|
{
|
|
SmallString<32> TmpBuffer;
|
|
llvm::raw_svector_ostream TmpStream(TmpBuffer);
|
|
TmpStream << llvm::format("\"%02d:%02d:%02d\"",
|
|
TM->tm_hour, TM->tm_min, TM->tm_sec);
|
|
Token TmpTok;
|
|
TmpTok.startToken();
|
|
PP.CreateString(TmpStream.str(), TmpTok);
|
|
TIMELoc = TmpTok.getLocation();
|
|
}
|
|
}
|
|
|
|
|
|
/// HasFeature - Return true if we recognize and implement the feature
|
|
/// specified by the identifier as a standard language feature.
|
|
static bool HasFeature(const Preprocessor &PP, const IdentifierInfo *II) {
|
|
const LangOptions &LangOpts = PP.getLangOpts();
|
|
StringRef Feature = II->getName();
|
|
|
|
// Normalize the feature name, __foo__ becomes foo.
|
|
if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
|
|
Feature = Feature.substr(2, Feature.size() - 4);
|
|
|
|
return llvm::StringSwitch<bool>(Feature)
|
|
.Case("address_sanitizer", LangOpts.Sanitize.Address)
|
|
.Case("attribute_analyzer_noreturn", true)
|
|
.Case("attribute_availability", true)
|
|
.Case("attribute_availability_with_message", true)
|
|
.Case("attribute_cf_returns_not_retained", true)
|
|
.Case("attribute_cf_returns_retained", true)
|
|
.Case("attribute_deprecated_with_message", true)
|
|
.Case("attribute_ext_vector_type", true)
|
|
.Case("attribute_ns_returns_not_retained", true)
|
|
.Case("attribute_ns_returns_retained", true)
|
|
.Case("attribute_ns_consumes_self", true)
|
|
.Case("attribute_ns_consumed", true)
|
|
.Case("attribute_cf_consumed", true)
|
|
.Case("attribute_objc_ivar_unused", true)
|
|
.Case("attribute_objc_method_family", true)
|
|
.Case("attribute_overloadable", true)
|
|
.Case("attribute_unavailable_with_message", true)
|
|
.Case("attribute_unused_on_fields", true)
|
|
.Case("blocks", LangOpts.Blocks)
|
|
.Case("cxx_exceptions", LangOpts.Exceptions)
|
|
.Case("cxx_rtti", LangOpts.RTTI)
|
|
.Case("enumerator_attributes", true)
|
|
.Case("memory_sanitizer", LangOpts.Sanitize.Memory)
|
|
.Case("thread_sanitizer", LangOpts.Sanitize.Thread)
|
|
// Objective-C features
|
|
.Case("objc_arr", LangOpts.ObjCAutoRefCount) // FIXME: REMOVE?
|
|
.Case("objc_arc", LangOpts.ObjCAutoRefCount)
|
|
.Case("objc_arc_weak", LangOpts.ObjCARCWeak)
|
|
.Case("objc_default_synthesize_properties", LangOpts.ObjC2)
|
|
.Case("objc_fixed_enum", LangOpts.ObjC2)
|
|
.Case("objc_instancetype", LangOpts.ObjC2)
|
|
.Case("objc_modules", LangOpts.ObjC2 && LangOpts.Modules)
|
|
.Case("objc_nonfragile_abi", LangOpts.ObjCRuntime.isNonFragile())
|
|
.Case("objc_property_explicit_atomic", true) // Does clang support explicit "atomic" keyword?
|
|
.Case("objc_weak_class", LangOpts.ObjCRuntime.hasWeakClassImport())
|
|
.Case("ownership_holds", true)
|
|
.Case("ownership_returns", true)
|
|
.Case("ownership_takes", true)
|
|
.Case("objc_bool", true)
|
|
.Case("objc_subscripting", LangOpts.ObjCRuntime.isNonFragile())
|
|
.Case("objc_array_literals", LangOpts.ObjC2)
|
|
.Case("objc_dictionary_literals", LangOpts.ObjC2)
|
|
.Case("objc_boxed_expressions", LangOpts.ObjC2)
|
|
.Case("arc_cf_code_audited", true)
|
|
// C11 features
|
|
.Case("c_alignas", LangOpts.C11)
|
|
.Case("c_atomic", LangOpts.C11)
|
|
.Case("c_generic_selections", LangOpts.C11)
|
|
.Case("c_static_assert", LangOpts.C11)
|
|
.Case("c_thread_local",
|
|
LangOpts.C11 && PP.getTargetInfo().isTLSSupported())
|
|
// C++11 features
|
|
.Case("cxx_access_control_sfinae", LangOpts.CPlusPlus11)
|
|
.Case("cxx_alias_templates", LangOpts.CPlusPlus11)
|
|
.Case("cxx_alignas", LangOpts.CPlusPlus11)
|
|
.Case("cxx_atomic", LangOpts.CPlusPlus11)
|
|
.Case("cxx_attributes", LangOpts.CPlusPlus11)
|
|
.Case("cxx_auto_type", LangOpts.CPlusPlus11)
|
|
.Case("cxx_constexpr", LangOpts.CPlusPlus11)
|
|
.Case("cxx_decltype", LangOpts.CPlusPlus11)
|
|
.Case("cxx_decltype_incomplete_return_types", LangOpts.CPlusPlus11)
|
|
.Case("cxx_default_function_template_args", LangOpts.CPlusPlus11)
|
|
.Case("cxx_defaulted_functions", LangOpts.CPlusPlus11)
|
|
.Case("cxx_delegating_constructors", LangOpts.CPlusPlus11)
|
|
.Case("cxx_deleted_functions", LangOpts.CPlusPlus11)
|
|
.Case("cxx_explicit_conversions", LangOpts.CPlusPlus11)
|
|
.Case("cxx_generalized_initializers", LangOpts.CPlusPlus11)
|
|
.Case("cxx_implicit_moves", LangOpts.CPlusPlus11)
|
|
.Case("cxx_inheriting_constructors", LangOpts.CPlusPlus11)
|
|
.Case("cxx_inline_namespaces", LangOpts.CPlusPlus11)
|
|
.Case("cxx_lambdas", LangOpts.CPlusPlus11)
|
|
.Case("cxx_local_type_template_args", LangOpts.CPlusPlus11)
|
|
.Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus11)
|
|
.Case("cxx_noexcept", LangOpts.CPlusPlus11)
|
|
.Case("cxx_nullptr", LangOpts.CPlusPlus11)
|
|
.Case("cxx_override_control", LangOpts.CPlusPlus11)
|
|
.Case("cxx_range_for", LangOpts.CPlusPlus11)
|
|
.Case("cxx_raw_string_literals", LangOpts.CPlusPlus11)
|
|
.Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus11)
|
|
.Case("cxx_rvalue_references", LangOpts.CPlusPlus11)
|
|
.Case("cxx_strong_enums", LangOpts.CPlusPlus11)
|
|
.Case("cxx_static_assert", LangOpts.CPlusPlus11)
|
|
.Case("cxx_thread_local",
|
|
LangOpts.CPlusPlus11 && PP.getTargetInfo().isTLSSupported())
|
|
.Case("cxx_trailing_return", LangOpts.CPlusPlus11)
|
|
.Case("cxx_unicode_literals", LangOpts.CPlusPlus11)
|
|
.Case("cxx_unrestricted_unions", LangOpts.CPlusPlus11)
|
|
.Case("cxx_user_literals", LangOpts.CPlusPlus11)
|
|
.Case("cxx_variadic_templates", LangOpts.CPlusPlus11)
|
|
// C++1y features
|
|
.Case("cxx_binary_literals", LangOpts.CPlusPlus1y)
|
|
//.Case("cxx_contextual_conversions", LangOpts.CPlusPlus1y)
|
|
//.Case("cxx_generalized_capture", LangOpts.CPlusPlus1y)
|
|
//.Case("cxx_generic_lambda", LangOpts.CPlusPlus1y)
|
|
//.Case("cxx_relaxed_constexpr", LangOpts.CPlusPlus1y)
|
|
.Case("cxx_return_type_deduction", LangOpts.CPlusPlus1y)
|
|
//.Case("cxx_runtime_array", LangOpts.CPlusPlus1y)
|
|
.Case("cxx_aggregate_nsdmi", LangOpts.CPlusPlus1y)
|
|
//.Case("cxx_variable_templates", LangOpts.CPlusPlus1y)
|
|
// Type traits
|
|
.Case("has_nothrow_assign", LangOpts.CPlusPlus)
|
|
.Case("has_nothrow_copy", LangOpts.CPlusPlus)
|
|
.Case("has_nothrow_constructor", LangOpts.CPlusPlus)
|
|
.Case("has_trivial_assign", LangOpts.CPlusPlus)
|
|
.Case("has_trivial_copy", LangOpts.CPlusPlus)
|
|
.Case("has_trivial_constructor", LangOpts.CPlusPlus)
|
|
.Case("has_trivial_destructor", LangOpts.CPlusPlus)
|
|
.Case("has_virtual_destructor", LangOpts.CPlusPlus)
|
|
.Case("is_abstract", LangOpts.CPlusPlus)
|
|
.Case("is_base_of", LangOpts.CPlusPlus)
|
|
.Case("is_class", LangOpts.CPlusPlus)
|
|
.Case("is_convertible_to", LangOpts.CPlusPlus)
|
|
.Case("is_empty", LangOpts.CPlusPlus)
|
|
.Case("is_enum", LangOpts.CPlusPlus)
|
|
.Case("is_final", LangOpts.CPlusPlus)
|
|
.Case("is_literal", LangOpts.CPlusPlus)
|
|
.Case("is_standard_layout", LangOpts.CPlusPlus)
|
|
.Case("is_pod", LangOpts.CPlusPlus)
|
|
.Case("is_polymorphic", LangOpts.CPlusPlus)
|
|
.Case("is_trivial", LangOpts.CPlusPlus)
|
|
.Case("is_trivially_assignable", LangOpts.CPlusPlus)
|
|
.Case("is_trivially_constructible", LangOpts.CPlusPlus)
|
|
.Case("is_trivially_copyable", LangOpts.CPlusPlus)
|
|
.Case("is_union", LangOpts.CPlusPlus)
|
|
.Case("modules", LangOpts.Modules)
|
|
.Case("tls", PP.getTargetInfo().isTLSSupported())
|
|
.Case("underlying_type", LangOpts.CPlusPlus)
|
|
.Default(false);
|
|
}
|
|
|
|
/// HasExtension - Return true if we recognize and implement the feature
|
|
/// specified by the identifier, either as an extension or a standard language
|
|
/// feature.
|
|
static bool HasExtension(const Preprocessor &PP, const IdentifierInfo *II) {
|
|
if (HasFeature(PP, II))
|
|
return true;
|
|
|
|
// If the use of an extension results in an error diagnostic, extensions are
|
|
// effectively unavailable, so just return false here.
|
|
if (PP.getDiagnostics().getExtensionHandlingBehavior() ==
|
|
DiagnosticsEngine::Ext_Error)
|
|
return false;
|
|
|
|
const LangOptions &LangOpts = PP.getLangOpts();
|
|
StringRef Extension = II->getName();
|
|
|
|
// Normalize the extension name, __foo__ becomes foo.
|
|
if (Extension.startswith("__") && Extension.endswith("__") &&
|
|
Extension.size() >= 4)
|
|
Extension = Extension.substr(2, Extension.size() - 4);
|
|
|
|
// Because we inherit the feature list from HasFeature, this string switch
|
|
// must be less restrictive than HasFeature's.
|
|
return llvm::StringSwitch<bool>(Extension)
|
|
// C11 features supported by other languages as extensions.
|
|
.Case("c_alignas", true)
|
|
.Case("c_atomic", true)
|
|
.Case("c_generic_selections", true)
|
|
.Case("c_static_assert", true)
|
|
// C++11 features supported by other languages as extensions.
|
|
.Case("cxx_atomic", LangOpts.CPlusPlus)
|
|
.Case("cxx_deleted_functions", LangOpts.CPlusPlus)
|
|
.Case("cxx_explicit_conversions", LangOpts.CPlusPlus)
|
|
.Case("cxx_inline_namespaces", LangOpts.CPlusPlus)
|
|
.Case("cxx_local_type_template_args", LangOpts.CPlusPlus)
|
|
.Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus)
|
|
.Case("cxx_override_control", LangOpts.CPlusPlus)
|
|
.Case("cxx_range_for", LangOpts.CPlusPlus)
|
|
.Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus)
|
|
.Case("cxx_rvalue_references", LangOpts.CPlusPlus)
|
|
// C++1y features supported by other languages as extensions.
|
|
.Case("cxx_binary_literals", true)
|
|
.Default(false);
|
|
}
|
|
|
|
/// HasAttribute - Return true if we recognize and implement the attribute
|
|
/// specified by the given identifier.
|
|
static bool HasAttribute(const IdentifierInfo *II) {
|
|
StringRef Name = II->getName();
|
|
// Normalize the attribute name, __foo__ becomes foo.
|
|
if (Name.startswith("__") && Name.endswith("__") && Name.size() >= 4)
|
|
Name = Name.substr(2, Name.size() - 4);
|
|
|
|
// FIXME: Do we need to handle namespaces here?
|
|
return llvm::StringSwitch<bool>(Name)
|
|
#include "clang/Lex/AttrSpellings.inc"
|
|
.Default(false);
|
|
}
|
|
|
|
/// EvaluateHasIncludeCommon - Process a '__has_include("path")'
|
|
/// or '__has_include_next("path")' expression.
|
|
/// Returns true if successful.
|
|
static bool EvaluateHasIncludeCommon(Token &Tok,
|
|
IdentifierInfo *II, Preprocessor &PP,
|
|
const DirectoryLookup *LookupFrom) {
|
|
// Save the location of the current token. If a '(' is later found, use
|
|
// that location. If not, use the end of this location instead.
|
|
SourceLocation LParenLoc = Tok.getLocation();
|
|
|
|
// These expressions are only allowed within a preprocessor directive.
|
|
if (!PP.isParsingIfOrElifDirective()) {
|
|
PP.Diag(LParenLoc, diag::err_pp_directive_required) << II->getName();
|
|
return false;
|
|
}
|
|
|
|
// Get '('.
|
|
PP.LexNonComment(Tok);
|
|
|
|
// Ensure we have a '('.
|
|
if (Tok.isNot(tok::l_paren)) {
|
|
// No '(', use end of last token.
|
|
LParenLoc = PP.getLocForEndOfToken(LParenLoc);
|
|
PP.Diag(LParenLoc, diag::err_pp_missing_lparen) << II->getName();
|
|
// If the next token looks like a filename or the start of one,
|
|
// assume it is and process it as such.
|
|
if (!Tok.is(tok::angle_string_literal) && !Tok.is(tok::string_literal) &&
|
|
!Tok.is(tok::less))
|
|
return false;
|
|
} else {
|
|
// Save '(' location for possible missing ')' message.
|
|
LParenLoc = Tok.getLocation();
|
|
|
|
if (PP.getCurrentLexer()) {
|
|
// Get the file name.
|
|
PP.getCurrentLexer()->LexIncludeFilename(Tok);
|
|
} else {
|
|
// We're in a macro, so we can't use LexIncludeFilename; just
|
|
// grab the next token.
|
|
PP.Lex(Tok);
|
|
}
|
|
}
|
|
|
|
// Reserve a buffer to get the spelling.
|
|
SmallString<128> FilenameBuffer;
|
|
StringRef Filename;
|
|
SourceLocation EndLoc;
|
|
|
|
switch (Tok.getKind()) {
|
|
case tok::eod:
|
|
// If the token kind is EOD, the error has already been diagnosed.
|
|
return false;
|
|
|
|
case tok::angle_string_literal:
|
|
case tok::string_literal: {
|
|
bool Invalid = false;
|
|
Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
|
|
if (Invalid)
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
case tok::less:
|
|
// This could be a <foo/bar.h> file coming from a macro expansion. In this
|
|
// case, glue the tokens together into FilenameBuffer and interpret those.
|
|
FilenameBuffer.push_back('<');
|
|
if (PP.ConcatenateIncludeName(FilenameBuffer, EndLoc)) {
|
|
// Let the caller know a <eod> was found by changing the Token kind.
|
|
Tok.setKind(tok::eod);
|
|
return false; // Found <eod> but no ">"? Diagnostic already emitted.
|
|
}
|
|
Filename = FilenameBuffer.str();
|
|
break;
|
|
default:
|
|
PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
|
|
return false;
|
|
}
|
|
|
|
SourceLocation FilenameLoc = Tok.getLocation();
|
|
|
|
// Get ')'.
|
|
PP.LexNonComment(Tok);
|
|
|
|
// Ensure we have a trailing ).
|
|
if (Tok.isNot(tok::r_paren)) {
|
|
PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_missing_rparen)
|
|
<< II->getName();
|
|
PP.Diag(LParenLoc, diag::note_matching) << "(";
|
|
return false;
|
|
}
|
|
|
|
bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
|
|
// If GetIncludeFilenameSpelling set the start ptr to null, there was an
|
|
// error.
|
|
if (Filename.empty())
|
|
return false;
|
|
|
|
// Search include directories.
|
|
const DirectoryLookup *CurDir;
|
|
const FileEntry *File =
|
|
PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, CurDir, NULL,
|
|
NULL, NULL);
|
|
|
|
// Get the result value. A result of true means the file exists.
|
|
return File != 0;
|
|
}
|
|
|
|
/// EvaluateHasInclude - Process a '__has_include("path")' expression.
|
|
/// Returns true if successful.
|
|
static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
|
|
Preprocessor &PP) {
|
|
return EvaluateHasIncludeCommon(Tok, II, PP, NULL);
|
|
}
|
|
|
|
/// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
|
|
/// Returns true if successful.
|
|
static bool EvaluateHasIncludeNext(Token &Tok,
|
|
IdentifierInfo *II, Preprocessor &PP) {
|
|
// __has_include_next is like __has_include, except that we start
|
|
// searching after the current found directory. If we can't do this,
|
|
// issue a diagnostic.
|
|
const DirectoryLookup *Lookup = PP.GetCurDirLookup();
|
|
if (PP.isInPrimaryFile()) {
|
|
Lookup = 0;
|
|
PP.Diag(Tok, diag::pp_include_next_in_primary);
|
|
} else if (Lookup == 0) {
|
|
PP.Diag(Tok, diag::pp_include_next_absolute_path);
|
|
} else {
|
|
// Start looking up in the next directory.
|
|
++Lookup;
|
|
}
|
|
|
|
return EvaluateHasIncludeCommon(Tok, II, PP, Lookup);
|
|
}
|
|
|
|
/// \brief Process __building_module(identifier) expression.
|
|
/// \returns true if we are building the named module, false otherwise.
|
|
static bool EvaluateBuildingModule(Token &Tok,
|
|
IdentifierInfo *II, Preprocessor &PP) {
|
|
// Get '('.
|
|
PP.LexNonComment(Tok);
|
|
|
|
// Ensure we have a '('.
|
|
if (Tok.isNot(tok::l_paren)) {
|
|
PP.Diag(Tok.getLocation(), diag::err_pp_missing_lparen) << II->getName();
|
|
return false;
|
|
}
|
|
|
|
// Save '(' location for possible missing ')' message.
|
|
SourceLocation LParenLoc = Tok.getLocation();
|
|
|
|
// Get the module name.
|
|
PP.LexNonComment(Tok);
|
|
|
|
// Ensure that we have an identifier.
|
|
if (Tok.isNot(tok::identifier)) {
|
|
PP.Diag(Tok.getLocation(), diag::err_expected_id_building_module);
|
|
return false;
|
|
}
|
|
|
|
bool Result
|
|
= Tok.getIdentifierInfo()->getName() == PP.getLangOpts().CurrentModule;
|
|
|
|
// Get ')'.
|
|
PP.LexNonComment(Tok);
|
|
|
|
// Ensure we have a trailing ).
|
|
if (Tok.isNot(tok::r_paren)) {
|
|
PP.Diag(Tok.getLocation(), diag::err_pp_missing_rparen) << II->getName();
|
|
PP.Diag(LParenLoc, diag::note_matching) << "(";
|
|
return false;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
|
|
/// as a builtin macro, handle it and return the next token as 'Tok'.
|
|
void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
|
|
// Figure out which token this is.
|
|
IdentifierInfo *II = Tok.getIdentifierInfo();
|
|
assert(II && "Can't be a macro without id info!");
|
|
|
|
// If this is an _Pragma or Microsoft __pragma directive, expand it,
|
|
// invoke the pragma handler, then lex the token after it.
|
|
if (II == Ident_Pragma)
|
|
return Handle_Pragma(Tok);
|
|
else if (II == Ident__pragma) // in non-MS mode this is null
|
|
return HandleMicrosoft__pragma(Tok);
|
|
|
|
++NumBuiltinMacroExpanded;
|
|
|
|
SmallString<128> TmpBuffer;
|
|
llvm::raw_svector_ostream OS(TmpBuffer);
|
|
|
|
// Set up the return result.
|
|
Tok.setIdentifierInfo(0);
|
|
Tok.clearFlag(Token::NeedsCleaning);
|
|
|
|
if (II == Ident__LINE__) {
|
|
// C99 6.10.8: "__LINE__: The presumed line number (within the current
|
|
// source file) of the current source line (an integer constant)". This can
|
|
// be affected by #line.
|
|
SourceLocation Loc = Tok.getLocation();
|
|
|
|
// Advance to the location of the first _, this might not be the first byte
|
|
// of the token if it starts with an escaped newline.
|
|
Loc = AdvanceToTokenCharacter(Loc, 0);
|
|
|
|
// One wrinkle here is that GCC expands __LINE__ to location of the *end* of
|
|
// a macro expansion. This doesn't matter for object-like macros, but
|
|
// can matter for a function-like macro that expands to contain __LINE__.
|
|
// Skip down through expansion points until we find a file loc for the
|
|
// end of the expansion history.
|
|
Loc = SourceMgr.getExpansionRange(Loc).second;
|
|
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
|
|
|
|
// __LINE__ expands to a simple numeric value.
|
|
OS << (PLoc.isValid()? PLoc.getLine() : 1);
|
|
Tok.setKind(tok::numeric_constant);
|
|
} else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) {
|
|
// C99 6.10.8: "__FILE__: The presumed name of the current source file (a
|
|
// character string literal)". This can be affected by #line.
|
|
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
|
|
|
|
// __BASE_FILE__ is a GNU extension that returns the top of the presumed
|
|
// #include stack instead of the current file.
|
|
if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
|
|
SourceLocation NextLoc = PLoc.getIncludeLoc();
|
|
while (NextLoc.isValid()) {
|
|
PLoc = SourceMgr.getPresumedLoc(NextLoc);
|
|
if (PLoc.isInvalid())
|
|
break;
|
|
|
|
NextLoc = PLoc.getIncludeLoc();
|
|
}
|
|
}
|
|
|
|
// Escape this filename. Turn '\' -> '\\' '"' -> '\"'
|
|
SmallString<128> FN;
|
|
if (PLoc.isValid()) {
|
|
FN += PLoc.getFilename();
|
|
Lexer::Stringify(FN);
|
|
OS << '"' << FN.str() << '"';
|
|
}
|
|
Tok.setKind(tok::string_literal);
|
|
} else if (II == Ident__DATE__) {
|
|
if (!DATELoc.isValid())
|
|
ComputeDATE_TIME(DATELoc, TIMELoc, *this);
|
|
Tok.setKind(tok::string_literal);
|
|
Tok.setLength(strlen("\"Mmm dd yyyy\""));
|
|
Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
|
|
Tok.getLocation(),
|
|
Tok.getLength()));
|
|
return;
|
|
} else if (II == Ident__TIME__) {
|
|
if (!TIMELoc.isValid())
|
|
ComputeDATE_TIME(DATELoc, TIMELoc, *this);
|
|
Tok.setKind(tok::string_literal);
|
|
Tok.setLength(strlen("\"hh:mm:ss\""));
|
|
Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
|
|
Tok.getLocation(),
|
|
Tok.getLength()));
|
|
return;
|
|
} else if (II == Ident__INCLUDE_LEVEL__) {
|
|
// Compute the presumed include depth of this token. This can be affected
|
|
// by GNU line markers.
|
|
unsigned Depth = 0;
|
|
|
|
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
|
|
if (PLoc.isValid()) {
|
|
PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
|
|
for (; PLoc.isValid(); ++Depth)
|
|
PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
|
|
}
|
|
|
|
// __INCLUDE_LEVEL__ expands to a simple numeric value.
|
|
OS << Depth;
|
|
Tok.setKind(tok::numeric_constant);
|
|
} else if (II == Ident__TIMESTAMP__) {
|
|
// MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
|
|
// of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
|
|
|
|
// Get the file that we are lexing out of. If we're currently lexing from
|
|
// a macro, dig into the include stack.
|
|
const FileEntry *CurFile = 0;
|
|
PreprocessorLexer *TheLexer = getCurrentFileLexer();
|
|
|
|
if (TheLexer)
|
|
CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
|
|
|
|
const char *Result;
|
|
if (CurFile) {
|
|
time_t TT = CurFile->getModificationTime();
|
|
struct tm *TM = localtime(&TT);
|
|
Result = asctime(TM);
|
|
} else {
|
|
Result = "??? ??? ?? ??:??:?? ????\n";
|
|
}
|
|
// Surround the string with " and strip the trailing newline.
|
|
OS << '"' << StringRef(Result, strlen(Result)-1) << '"';
|
|
Tok.setKind(tok::string_literal);
|
|
} else if (II == Ident__COUNTER__) {
|
|
// __COUNTER__ expands to a simple numeric value.
|
|
OS << CounterValue++;
|
|
Tok.setKind(tok::numeric_constant);
|
|
} else if (II == Ident__has_feature ||
|
|
II == Ident__has_extension ||
|
|
II == Ident__has_builtin ||
|
|
II == Ident__has_attribute) {
|
|
// The argument to these builtins should be a parenthesized identifier.
|
|
SourceLocation StartLoc = Tok.getLocation();
|
|
|
|
bool IsValid = false;
|
|
IdentifierInfo *FeatureII = 0;
|
|
|
|
// Read the '('.
|
|
LexUnexpandedToken(Tok);
|
|
if (Tok.is(tok::l_paren)) {
|
|
// Read the identifier
|
|
LexUnexpandedToken(Tok);
|
|
if ((FeatureII = Tok.getIdentifierInfo())) {
|
|
// Read the ')'.
|
|
LexUnexpandedToken(Tok);
|
|
if (Tok.is(tok::r_paren))
|
|
IsValid = true;
|
|
}
|
|
}
|
|
|
|
bool Value = false;
|
|
if (!IsValid)
|
|
Diag(StartLoc, diag::err_feature_check_malformed);
|
|
else if (II == Ident__has_builtin) {
|
|
// Check for a builtin is trivial.
|
|
Value = FeatureII->getBuiltinID() != 0;
|
|
} else if (II == Ident__has_attribute)
|
|
Value = HasAttribute(FeatureII);
|
|
else if (II == Ident__has_extension)
|
|
Value = HasExtension(*this, FeatureII);
|
|
else {
|
|
assert(II == Ident__has_feature && "Must be feature check");
|
|
Value = HasFeature(*this, FeatureII);
|
|
}
|
|
|
|
OS << (int)Value;
|
|
if (IsValid)
|
|
Tok.setKind(tok::numeric_constant);
|
|
} else if (II == Ident__has_include ||
|
|
II == Ident__has_include_next) {
|
|
// The argument to these two builtins should be a parenthesized
|
|
// file name string literal using angle brackets (<>) or
|
|
// double-quotes ("").
|
|
bool Value;
|
|
if (II == Ident__has_include)
|
|
Value = EvaluateHasInclude(Tok, II, *this);
|
|
else
|
|
Value = EvaluateHasIncludeNext(Tok, II, *this);
|
|
OS << (int)Value;
|
|
if (Tok.is(tok::r_paren))
|
|
Tok.setKind(tok::numeric_constant);
|
|
} else if (II == Ident__has_warning) {
|
|
// The argument should be a parenthesized string literal.
|
|
// The argument to these builtins should be a parenthesized identifier.
|
|
SourceLocation StartLoc = Tok.getLocation();
|
|
bool IsValid = false;
|
|
bool Value = false;
|
|
// Read the '('.
|
|
LexUnexpandedToken(Tok);
|
|
do {
|
|
if (Tok.isNot(tok::l_paren)) {
|
|
Diag(StartLoc, diag::err_warning_check_malformed);
|
|
break;
|
|
}
|
|
|
|
LexUnexpandedToken(Tok);
|
|
std::string WarningName;
|
|
SourceLocation StrStartLoc = Tok.getLocation();
|
|
if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
|
|
/*MacroExpansion=*/false)) {
|
|
// Eat tokens until ')'.
|
|
while (Tok.isNot(tok::r_paren) && Tok.isNot(tok::eod) &&
|
|
Tok.isNot(tok::eof))
|
|
LexUnexpandedToken(Tok);
|
|
break;
|
|
}
|
|
|
|
// Is the end a ')'?
|
|
if (!(IsValid = Tok.is(tok::r_paren))) {
|
|
Diag(StartLoc, diag::err_warning_check_malformed);
|
|
break;
|
|
}
|
|
|
|
if (WarningName.size() < 3 || WarningName[0] != '-' ||
|
|
WarningName[1] != 'W') {
|
|
Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
|
|
break;
|
|
}
|
|
|
|
// Finally, check if the warning flags maps to a diagnostic group.
|
|
// We construct a SmallVector here to talk to getDiagnosticIDs().
|
|
// Although we don't use the result, this isn't a hot path, and not
|
|
// worth special casing.
|
|
SmallVector<diag::kind, 10> Diags;
|
|
Value = !getDiagnostics().getDiagnosticIDs()->
|
|
getDiagnosticsInGroup(WarningName.substr(2), Diags);
|
|
} while (false);
|
|
|
|
OS << (int)Value;
|
|
if (IsValid)
|
|
Tok.setKind(tok::numeric_constant);
|
|
} else if (II == Ident__building_module) {
|
|
// The argument to this builtin should be an identifier. The
|
|
// builtin evaluates to 1 when that identifier names the module we are
|
|
// currently building.
|
|
OS << (int)EvaluateBuildingModule(Tok, II, *this);
|
|
Tok.setKind(tok::numeric_constant);
|
|
} else if (II == Ident__MODULE__) {
|
|
// The current module as an identifier.
|
|
OS << getLangOpts().CurrentModule;
|
|
IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
|
|
Tok.setIdentifierInfo(ModuleII);
|
|
Tok.setKind(ModuleII->getTokenID());
|
|
} else {
|
|
llvm_unreachable("Unknown identifier!");
|
|
}
|
|
CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
|
|
}
|
|
|
|
void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
|
|
// If the 'used' status changed, and the macro requires 'unused' warning,
|
|
// remove its SourceLocation from the warn-for-unused-macro locations.
|
|
if (MI->isWarnIfUnused() && !MI->isUsed())
|
|
WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
|
|
MI->setIsUsed(true);
|
|
}
|