llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_linux_libcdep.cpp

847 lines
26 KiB
C++

//===-- sanitizer_linux_libcdep.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries and implements linux-specific functions from
// sanitizer_libc.h.
//===----------------------------------------------------------------------===//
#include "sanitizer_platform.h"
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \
SANITIZER_OPENBSD || SANITIZER_SOLARIS
#include "sanitizer_allocator_internal.h"
#include "sanitizer_atomic.h"
#include "sanitizer_common.h"
#include "sanitizer_file.h"
#include "sanitizer_flags.h"
#include "sanitizer_freebsd.h"
#include "sanitizer_getauxval.h"
#include "sanitizer_glibc_version.h"
#include "sanitizer_linux.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_procmaps.h"
#include <dlfcn.h> // for dlsym()
#include <link.h>
#include <pthread.h>
#include <signal.h>
#include <sys/resource.h>
#include <syslog.h>
#if !defined(ElfW)
#define ElfW(type) Elf_##type
#endif
#if SANITIZER_FREEBSD
#include <pthread_np.h>
#include <osreldate.h>
#include <sys/sysctl.h>
#define pthread_getattr_np pthread_attr_get_np
#endif
#if SANITIZER_OPENBSD
#include <pthread_np.h>
#include <sys/sysctl.h>
#endif
#if SANITIZER_NETBSD
#include <sys/sysctl.h>
#include <sys/tls.h>
#include <lwp.h>
#endif
#if SANITIZER_SOLARIS
#include <stdlib.h>
#include <thread.h>
#endif
#if SANITIZER_ANDROID
#include <android/api-level.h>
#if !defined(CPU_COUNT) && !defined(__aarch64__)
#include <dirent.h>
#include <fcntl.h>
struct __sanitizer::linux_dirent {
long d_ino;
off_t d_off;
unsigned short d_reclen;
char d_name[];
};
#endif
#endif
#if !SANITIZER_ANDROID
#include <elf.h>
#include <unistd.h>
#endif
namespace __sanitizer {
SANITIZER_WEAK_ATTRIBUTE int
real_sigaction(int signum, const void *act, void *oldact);
int internal_sigaction(int signum, const void *act, void *oldact) {
#if !SANITIZER_GO
if (&real_sigaction)
return real_sigaction(signum, act, oldact);
#endif
return sigaction(signum, (const struct sigaction *)act,
(struct sigaction *)oldact);
}
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
uptr *stack_bottom) {
CHECK(stack_top);
CHECK(stack_bottom);
if (at_initialization) {
// This is the main thread. Libpthread may not be initialized yet.
struct rlimit rl;
CHECK_EQ(getrlimit(RLIMIT_STACK, &rl), 0);
// Find the mapping that contains a stack variable.
MemoryMappingLayout proc_maps(/*cache_enabled*/true);
if (proc_maps.Error()) {
*stack_top = *stack_bottom = 0;
return;
}
MemoryMappedSegment segment;
uptr prev_end = 0;
while (proc_maps.Next(&segment)) {
if ((uptr)&rl < segment.end) break;
prev_end = segment.end;
}
CHECK((uptr)&rl >= segment.start && (uptr)&rl < segment.end);
// Get stacksize from rlimit, but clip it so that it does not overlap
// with other mappings.
uptr stacksize = rl.rlim_cur;
if (stacksize > segment.end - prev_end) stacksize = segment.end - prev_end;
// When running with unlimited stack size, we still want to set some limit.
// The unlimited stack size is caused by 'ulimit -s unlimited'.
// Also, for some reason, GNU make spawns subprocesses with unlimited stack.
if (stacksize > kMaxThreadStackSize)
stacksize = kMaxThreadStackSize;
*stack_top = segment.end;
*stack_bottom = segment.end - stacksize;
return;
}
uptr stacksize = 0;
void *stackaddr = nullptr;
#if SANITIZER_SOLARIS
stack_t ss;
CHECK_EQ(thr_stksegment(&ss), 0);
stacksize = ss.ss_size;
stackaddr = (char *)ss.ss_sp - stacksize;
#elif SANITIZER_OPENBSD
stack_t sattr;
CHECK_EQ(pthread_stackseg_np(pthread_self(), &sattr), 0);
stackaddr = sattr.ss_sp;
stacksize = sattr.ss_size;
#else // !SANITIZER_SOLARIS
pthread_attr_t attr;
pthread_attr_init(&attr);
CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
my_pthread_attr_getstack(&attr, &stackaddr, &stacksize);
pthread_attr_destroy(&attr);
#endif // SANITIZER_SOLARIS
*stack_top = (uptr)stackaddr + stacksize;
*stack_bottom = (uptr)stackaddr;
}
#if !SANITIZER_GO
bool SetEnv(const char *name, const char *value) {
void *f = dlsym(RTLD_NEXT, "setenv");
if (!f)
return false;
typedef int(*setenv_ft)(const char *name, const char *value, int overwrite);
setenv_ft setenv_f;
CHECK_EQ(sizeof(setenv_f), sizeof(f));
internal_memcpy(&setenv_f, &f, sizeof(f));
return setenv_f(name, value, 1) == 0;
}
#endif
__attribute__((unused)) static bool GetLibcVersion(int *major, int *minor,
int *patch) {
#ifdef _CS_GNU_LIBC_VERSION
char buf[64];
uptr len = confstr(_CS_GNU_LIBC_VERSION, buf, sizeof(buf));
if (len >= sizeof(buf))
return false;
buf[len] = 0;
static const char kGLibC[] = "glibc ";
if (internal_strncmp(buf, kGLibC, sizeof(kGLibC) - 1) != 0)
return false;
const char *p = buf + sizeof(kGLibC) - 1;
*major = internal_simple_strtoll(p, &p, 10);
*minor = (*p == '.') ? internal_simple_strtoll(p + 1, &p, 10) : 0;
*patch = (*p == '.') ? internal_simple_strtoll(p + 1, &p, 10) : 0;
return true;
#else
return false;
#endif
}
#if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_GO && \
!SANITIZER_NETBSD && !SANITIZER_OPENBSD && !SANITIZER_SOLARIS
static uptr g_tls_size;
#ifdef __i386__
# define CHECK_GET_TLS_STATIC_INFO_VERSION (!__GLIBC_PREREQ(2, 27))
#else
# define CHECK_GET_TLS_STATIC_INFO_VERSION 0
#endif
#if CHECK_GET_TLS_STATIC_INFO_VERSION
# define DL_INTERNAL_FUNCTION __attribute__((regparm(3), stdcall))
#else
# define DL_INTERNAL_FUNCTION
#endif
namespace {
struct GetTlsStaticInfoCall {
typedef void (*get_tls_func)(size_t*, size_t*);
};
struct GetTlsStaticInfoRegparmCall {
typedef void (*get_tls_func)(size_t*, size_t*) DL_INTERNAL_FUNCTION;
};
template <typename T>
void CallGetTls(void* ptr, size_t* size, size_t* align) {
typename T::get_tls_func get_tls;
CHECK_EQ(sizeof(get_tls), sizeof(ptr));
internal_memcpy(&get_tls, &ptr, sizeof(ptr));
CHECK_NE(get_tls, 0);
get_tls(size, align);
}
bool CmpLibcVersion(int major, int minor, int patch) {
int ma;
int mi;
int pa;
if (!GetLibcVersion(&ma, &mi, &pa))
return false;
if (ma > major)
return true;
if (ma < major)
return false;
if (mi > minor)
return true;
if (mi < minor)
return false;
return pa >= patch;
}
} // namespace
void InitTlsSize() {
// all current supported platforms have 16 bytes stack alignment
const size_t kStackAlign = 16;
void *get_tls_static_info_ptr = dlsym(RTLD_NEXT, "_dl_get_tls_static_info");
size_t tls_size = 0;
size_t tls_align = 0;
// On i?86, _dl_get_tls_static_info used to be internal_function, i.e.
// __attribute__((regparm(3), stdcall)) before glibc 2.27 and is normal
// function in 2.27 and later.
if (CHECK_GET_TLS_STATIC_INFO_VERSION && !CmpLibcVersion(2, 27, 0))
CallGetTls<GetTlsStaticInfoRegparmCall>(get_tls_static_info_ptr,
&tls_size, &tls_align);
else
CallGetTls<GetTlsStaticInfoCall>(get_tls_static_info_ptr,
&tls_size, &tls_align);
if (tls_align < kStackAlign)
tls_align = kStackAlign;
g_tls_size = RoundUpTo(tls_size, tls_align);
}
#else
void InitTlsSize() { }
#endif // !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_GO &&
// !SANITIZER_NETBSD && !SANITIZER_SOLARIS
#if (defined(__x86_64__) || defined(__i386__) || defined(__mips__) || \
defined(__aarch64__) || defined(__powerpc64__) || defined(__s390__) || \
defined(__arm__)) && \
SANITIZER_LINUX && !SANITIZER_ANDROID
// sizeof(struct pthread) from glibc.
static atomic_uintptr_t thread_descriptor_size;
uptr ThreadDescriptorSize() {
uptr val = atomic_load_relaxed(&thread_descriptor_size);
if (val)
return val;
#if defined(__x86_64__) || defined(__i386__) || defined(__arm__)
int major;
int minor;
int patch;
if (GetLibcVersion(&major, &minor, &patch) && major == 2) {
/* sizeof(struct pthread) values from various glibc versions. */
if (SANITIZER_X32)
val = 1728; // Assume only one particular version for x32.
// For ARM sizeof(struct pthread) changed in Glibc 2.23.
else if (SANITIZER_ARM)
val = minor <= 22 ? 1120 : 1216;
else if (minor <= 3)
val = FIRST_32_SECOND_64(1104, 1696);
else if (minor == 4)
val = FIRST_32_SECOND_64(1120, 1728);
else if (minor == 5)
val = FIRST_32_SECOND_64(1136, 1728);
else if (minor <= 9)
val = FIRST_32_SECOND_64(1136, 1712);
else if (minor == 10)
val = FIRST_32_SECOND_64(1168, 1776);
else if (minor == 11 || (minor == 12 && patch == 1))
val = FIRST_32_SECOND_64(1168, 2288);
else if (minor <= 14)
val = FIRST_32_SECOND_64(1168, 2304);
else
val = FIRST_32_SECOND_64(1216, 2304);
}
#elif defined(__mips__)
// TODO(sagarthakur): add more values as per different glibc versions.
val = FIRST_32_SECOND_64(1152, 1776);
#elif defined(__aarch64__)
// The sizeof (struct pthread) is the same from GLIBC 2.17 to 2.22.
val = 1776;
#elif defined(__powerpc64__)
val = 1776; // from glibc.ppc64le 2.20-8.fc21
#elif defined(__s390__)
val = FIRST_32_SECOND_64(1152, 1776); // valid for glibc 2.22
#endif
if (val)
atomic_store_relaxed(&thread_descriptor_size, val);
return val;
}
// The offset at which pointer to self is located in the thread descriptor.
const uptr kThreadSelfOffset = FIRST_32_SECOND_64(8, 16);
uptr ThreadSelfOffset() {
return kThreadSelfOffset;
}
#if defined(__mips__) || defined(__powerpc64__)
// TlsPreTcbSize includes size of struct pthread_descr and size of tcb
// head structure. It lies before the static tls blocks.
static uptr TlsPreTcbSize() {
# if defined(__mips__)
const uptr kTcbHead = 16; // sizeof (tcbhead_t)
# elif defined(__powerpc64__)
const uptr kTcbHead = 88; // sizeof (tcbhead_t)
# endif
const uptr kTlsAlign = 16;
const uptr kTlsPreTcbSize =
RoundUpTo(ThreadDescriptorSize() + kTcbHead, kTlsAlign);
return kTlsPreTcbSize;
}
#endif
uptr ThreadSelf() {
uptr descr_addr;
# if defined(__i386__)
asm("mov %%gs:%c1,%0" : "=r"(descr_addr) : "i"(kThreadSelfOffset));
# elif defined(__x86_64__)
asm("mov %%fs:%c1,%0" : "=r"(descr_addr) : "i"(kThreadSelfOffset));
# elif defined(__mips__)
// MIPS uses TLS variant I. The thread pointer (in hardware register $29)
// points to the end of the TCB + 0x7000. The pthread_descr structure is
// immediately in front of the TCB. TlsPreTcbSize() includes the size of the
// TCB and the size of pthread_descr.
const uptr kTlsTcbOffset = 0x7000;
uptr thread_pointer;
asm volatile(".set push;\
.set mips64r2;\
rdhwr %0,$29;\
.set pop" : "=r" (thread_pointer));
descr_addr = thread_pointer - kTlsTcbOffset - TlsPreTcbSize();
# elif defined(__aarch64__) || defined(__arm__)
descr_addr = reinterpret_cast<uptr>(__builtin_thread_pointer()) -
ThreadDescriptorSize();
# elif defined(__s390__)
descr_addr = reinterpret_cast<uptr>(__builtin_thread_pointer());
# elif defined(__powerpc64__)
// PPC64LE uses TLS variant I. The thread pointer (in GPR 13)
// points to the end of the TCB + 0x7000. The pthread_descr structure is
// immediately in front of the TCB. TlsPreTcbSize() includes the size of the
// TCB and the size of pthread_descr.
const uptr kTlsTcbOffset = 0x7000;
uptr thread_pointer;
asm("addi %0,13,%1" : "=r"(thread_pointer) : "I"(-kTlsTcbOffset));
descr_addr = thread_pointer - TlsPreTcbSize();
# else
# error "unsupported CPU arch"
# endif
return descr_addr;
}
#endif // (x86_64 || i386 || MIPS) && SANITIZER_LINUX
#if SANITIZER_FREEBSD
static void **ThreadSelfSegbase() {
void **segbase = 0;
# if defined(__i386__)
// sysarch(I386_GET_GSBASE, segbase);
__asm __volatile("mov %%gs:0, %0" : "=r" (segbase));
# elif defined(__x86_64__)
// sysarch(AMD64_GET_FSBASE, segbase);
__asm __volatile("movq %%fs:0, %0" : "=r" (segbase));
# else
# error "unsupported CPU arch"
# endif
return segbase;
}
uptr ThreadSelf() {
return (uptr)ThreadSelfSegbase()[2];
}
#endif // SANITIZER_FREEBSD
#if SANITIZER_NETBSD
static struct tls_tcb * ThreadSelfTlsTcb() {
return (struct tls_tcb *)_lwp_getprivate();
}
uptr ThreadSelf() {
return (uptr)ThreadSelfTlsTcb()->tcb_pthread;
}
int GetSizeFromHdr(struct dl_phdr_info *info, size_t size, void *data) {
const Elf_Phdr *hdr = info->dlpi_phdr;
const Elf_Phdr *last_hdr = hdr + info->dlpi_phnum;
for (; hdr != last_hdr; ++hdr) {
if (hdr->p_type == PT_TLS && info->dlpi_tls_modid == 1) {
*(uptr*)data = hdr->p_memsz;
break;
}
}
return 0;
}
#endif // SANITIZER_NETBSD
#if !SANITIZER_GO
static void GetTls(uptr *addr, uptr *size) {
#if SANITIZER_LINUX && !SANITIZER_ANDROID
# if defined(__x86_64__) || defined(__i386__) || defined(__s390__)
*addr = ThreadSelf();
*size = GetTlsSize();
*addr -= *size;
*addr += ThreadDescriptorSize();
# elif defined(__mips__) || defined(__aarch64__) || defined(__powerpc64__) \
|| defined(__arm__)
*addr = ThreadSelf();
*size = GetTlsSize();
# else
*addr = 0;
*size = 0;
# endif
#elif SANITIZER_FREEBSD
void** segbase = ThreadSelfSegbase();
*addr = 0;
*size = 0;
if (segbase != 0) {
// tcbalign = 16
// tls_size = round(tls_static_space, tcbalign);
// dtv = segbase[1];
// dtv[2] = segbase - tls_static_space;
void **dtv = (void**) segbase[1];
*addr = (uptr) dtv[2];
*size = (*addr == 0) ? 0 : ((uptr) segbase[0] - (uptr) dtv[2]);
}
#elif SANITIZER_NETBSD
struct tls_tcb * const tcb = ThreadSelfTlsTcb();
*addr = 0;
*size = 0;
if (tcb != 0) {
// Find size (p_memsz) of dlpi_tls_modid 1 (TLS block of the main program).
// ld.elf_so hardcodes the index 1.
dl_iterate_phdr(GetSizeFromHdr, size);
if (*size != 0) {
// The block has been found and tcb_dtv[1] contains the base address
*addr = (uptr)tcb->tcb_dtv[1];
}
}
#elif SANITIZER_OPENBSD
*addr = 0;
*size = 0;
#elif SANITIZER_ANDROID
*addr = 0;
*size = 0;
#elif SANITIZER_SOLARIS
// FIXME
*addr = 0;
*size = 0;
#else
# error "Unknown OS"
#endif
}
#endif
#if !SANITIZER_GO
uptr GetTlsSize() {
#if SANITIZER_FREEBSD || SANITIZER_ANDROID || SANITIZER_NETBSD || \
SANITIZER_OPENBSD || SANITIZER_SOLARIS
uptr addr, size;
GetTls(&addr, &size);
return size;
#elif defined(__mips__) || defined(__powerpc64__)
return RoundUpTo(g_tls_size + TlsPreTcbSize(), 16);
#else
return g_tls_size;
#endif
}
#endif
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
uptr *tls_addr, uptr *tls_size) {
#if SANITIZER_GO
// Stub implementation for Go.
*stk_addr = *stk_size = *tls_addr = *tls_size = 0;
#else
GetTls(tls_addr, tls_size);
uptr stack_top, stack_bottom;
GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
*stk_addr = stack_bottom;
*stk_size = stack_top - stack_bottom;
if (!main) {
// If stack and tls intersect, make them non-intersecting.
if (*tls_addr > *stk_addr && *tls_addr < *stk_addr + *stk_size) {
CHECK_GT(*tls_addr + *tls_size, *stk_addr);
CHECK_LE(*tls_addr + *tls_size, *stk_addr + *stk_size);
*stk_size -= *tls_size;
*tls_addr = *stk_addr + *stk_size;
}
}
#endif
}
#if !SANITIZER_FREEBSD && !SANITIZER_OPENBSD
typedef ElfW(Phdr) Elf_Phdr;
#elif SANITIZER_WORDSIZE == 32 && __FreeBSD_version <= 902001 // v9.2
#define Elf_Phdr XElf32_Phdr
#define dl_phdr_info xdl_phdr_info
#define dl_iterate_phdr(c, b) xdl_iterate_phdr((c), (b))
#endif // !SANITIZER_FREEBSD && !SANITIZER_OPENBSD
struct DlIteratePhdrData {
InternalMmapVectorNoCtor<LoadedModule> *modules;
bool first;
};
static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) {
DlIteratePhdrData *data = (DlIteratePhdrData*)arg;
InternalScopedString module_name(kMaxPathLength);
if (data->first) {
data->first = false;
// First module is the binary itself.
ReadBinaryNameCached(module_name.data(), module_name.size());
} else if (info->dlpi_name) {
module_name.append("%s", info->dlpi_name);
}
if (module_name[0] == '\0')
return 0;
LoadedModule cur_module;
cur_module.set(module_name.data(), info->dlpi_addr);
for (int i = 0; i < (int)info->dlpi_phnum; i++) {
const Elf_Phdr *phdr = &info->dlpi_phdr[i];
if (phdr->p_type == PT_LOAD) {
uptr cur_beg = info->dlpi_addr + phdr->p_vaddr;
uptr cur_end = cur_beg + phdr->p_memsz;
bool executable = phdr->p_flags & PF_X;
bool writable = phdr->p_flags & PF_W;
cur_module.addAddressRange(cur_beg, cur_end, executable,
writable);
}
}
data->modules->push_back(cur_module);
return 0;
}
#if SANITIZER_ANDROID && __ANDROID_API__ < 21
extern "C" __attribute__((weak)) int dl_iterate_phdr(
int (*)(struct dl_phdr_info *, size_t, void *), void *);
#endif
static bool requiresProcmaps() {
#if SANITIZER_ANDROID && __ANDROID_API__ <= 22
// Fall back to /proc/maps if dl_iterate_phdr is unavailable or broken.
// The runtime check allows the same library to work with
// both K and L (and future) Android releases.
return AndroidGetApiLevel() <= ANDROID_LOLLIPOP_MR1;
#else
return false;
#endif
}
static void procmapsInit(InternalMmapVectorNoCtor<LoadedModule> *modules) {
MemoryMappingLayout memory_mapping(/*cache_enabled*/true);
memory_mapping.DumpListOfModules(modules);
}
void ListOfModules::init() {
clearOrInit();
if (requiresProcmaps()) {
procmapsInit(&modules_);
} else {
DlIteratePhdrData data = {&modules_, true};
dl_iterate_phdr(dl_iterate_phdr_cb, &data);
}
}
// When a custom loader is used, dl_iterate_phdr may not contain the full
// list of modules. Allow callers to fall back to using procmaps.
void ListOfModules::fallbackInit() {
if (!requiresProcmaps()) {
clearOrInit();
procmapsInit(&modules_);
} else {
clear();
}
}
// getrusage does not give us the current RSS, only the max RSS.
// Still, this is better than nothing if /proc/self/statm is not available
// for some reason, e.g. due to a sandbox.
static uptr GetRSSFromGetrusage() {
struct rusage usage;
if (getrusage(RUSAGE_SELF, &usage)) // Failed, probably due to a sandbox.
return 0;
return usage.ru_maxrss << 10; // ru_maxrss is in Kb.
}
uptr GetRSS() {
if (!common_flags()->can_use_proc_maps_statm)
return GetRSSFromGetrusage();
fd_t fd = OpenFile("/proc/self/statm", RdOnly);
if (fd == kInvalidFd)
return GetRSSFromGetrusage();
char buf[64];
uptr len = internal_read(fd, buf, sizeof(buf) - 1);
internal_close(fd);
if ((sptr)len <= 0)
return 0;
buf[len] = 0;
// The format of the file is:
// 1084 89 69 11 0 79 0
// We need the second number which is RSS in pages.
char *pos = buf;
// Skip the first number.
while (*pos >= '0' && *pos <= '9')
pos++;
// Skip whitespaces.
while (!(*pos >= '0' && *pos <= '9') && *pos != 0)
pos++;
// Read the number.
uptr rss = 0;
while (*pos >= '0' && *pos <= '9')
rss = rss * 10 + *pos++ - '0';
return rss * GetPageSizeCached();
}
// sysconf(_SC_NPROCESSORS_{CONF,ONLN}) cannot be used on most platforms as
// they allocate memory.
u32 GetNumberOfCPUs() {
#if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_OPENBSD
u32 ncpu;
int req[2];
uptr len = sizeof(ncpu);
req[0] = CTL_HW;
req[1] = HW_NCPU;
CHECK_EQ(internal_sysctl(req, 2, &ncpu, &len, NULL, 0), 0);
return ncpu;
#elif SANITIZER_ANDROID && !defined(CPU_COUNT) && !defined(__aarch64__)
// Fall back to /sys/devices/system/cpu on Android when cpu_set_t doesn't
// exist in sched.h. That is the case for toolchains generated with older
// NDKs.
// This code doesn't work on AArch64 because internal_getdents makes use of
// the 64bit getdents syscall, but cpu_set_t seems to always exist on AArch64.
uptr fd = internal_open("/sys/devices/system/cpu", O_RDONLY | O_DIRECTORY);
if (internal_iserror(fd))
return 0;
InternalMmapVector<u8> buffer(4096);
uptr bytes_read = buffer.size();
uptr n_cpus = 0;
u8 *d_type;
struct linux_dirent *entry = (struct linux_dirent *)&buffer[bytes_read];
while (true) {
if ((u8 *)entry >= &buffer[bytes_read]) {
bytes_read = internal_getdents(fd, (struct linux_dirent *)buffer.data(),
buffer.size());
if (internal_iserror(bytes_read) || !bytes_read)
break;
entry = (struct linux_dirent *)buffer.data();
}
d_type = (u8 *)entry + entry->d_reclen - 1;
if (d_type >= &buffer[bytes_read] ||
(u8 *)&entry->d_name[3] >= &buffer[bytes_read])
break;
if (entry->d_ino != 0 && *d_type == DT_DIR) {
if (entry->d_name[0] == 'c' && entry->d_name[1] == 'p' &&
entry->d_name[2] == 'u' &&
entry->d_name[3] >= '0' && entry->d_name[3] <= '9')
n_cpus++;
}
entry = (struct linux_dirent *)(((u8 *)entry) + entry->d_reclen);
}
internal_close(fd);
return n_cpus;
#elif SANITIZER_SOLARIS
return sysconf(_SC_NPROCESSORS_ONLN);
#else
cpu_set_t CPUs;
CHECK_EQ(sched_getaffinity(0, sizeof(cpu_set_t), &CPUs), 0);
return CPU_COUNT(&CPUs);
#endif
}
#if SANITIZER_LINUX
# if SANITIZER_ANDROID
static atomic_uint8_t android_log_initialized;
void AndroidLogInit() {
openlog(GetProcessName(), 0, LOG_USER);
atomic_store(&android_log_initialized, 1, memory_order_release);
}
static bool ShouldLogAfterPrintf() {
return atomic_load(&android_log_initialized, memory_order_acquire);
}
extern "C" SANITIZER_WEAK_ATTRIBUTE
int async_safe_write_log(int pri, const char* tag, const char* msg);
extern "C" SANITIZER_WEAK_ATTRIBUTE
int __android_log_write(int prio, const char* tag, const char* msg);
// ANDROID_LOG_INFO is 4, but can't be resolved at runtime.
#define SANITIZER_ANDROID_LOG_INFO 4
// async_safe_write_log is a new public version of __libc_write_log that is
// used behind syslog. It is preferable to syslog as it will not do any dynamic
// memory allocation or formatting.
// If the function is not available, syslog is preferred for L+ (it was broken
// pre-L) as __android_log_write triggers a racey behavior with the strncpy
// interceptor. Fallback to __android_log_write pre-L.
void WriteOneLineToSyslog(const char *s) {
if (&async_safe_write_log) {
async_safe_write_log(SANITIZER_ANDROID_LOG_INFO, GetProcessName(), s);
} else if (AndroidGetApiLevel() > ANDROID_KITKAT) {
syslog(LOG_INFO, "%s", s);
} else {
CHECK(&__android_log_write);
__android_log_write(SANITIZER_ANDROID_LOG_INFO, nullptr, s);
}
}
extern "C" SANITIZER_WEAK_ATTRIBUTE
void android_set_abort_message(const char *);
void SetAbortMessage(const char *str) {
if (&android_set_abort_message)
android_set_abort_message(str);
}
# else
void AndroidLogInit() {}
static bool ShouldLogAfterPrintf() { return true; }
void WriteOneLineToSyslog(const char *s) { syslog(LOG_INFO, "%s", s); }
void SetAbortMessage(const char *str) {}
# endif // SANITIZER_ANDROID
void LogMessageOnPrintf(const char *str) {
if (common_flags()->log_to_syslog && ShouldLogAfterPrintf())
WriteToSyslog(str);
}
#endif // SANITIZER_LINUX
#if SANITIZER_LINUX && !SANITIZER_GO
// glibc crashes when using clock_gettime from a preinit_array function as the
// vDSO function pointers haven't been initialized yet. __progname is
// initialized after the vDSO function pointers, so if it exists, is not null
// and is not empty, we can use clock_gettime.
extern "C" SANITIZER_WEAK_ATTRIBUTE char *__progname;
INLINE bool CanUseVDSO() {
// Bionic is safe, it checks for the vDSO function pointers to be initialized.
if (SANITIZER_ANDROID)
return true;
if (&__progname && __progname && *__progname)
return true;
return false;
}
// MonotonicNanoTime is a timing function that can leverage the vDSO by calling
// clock_gettime. real_clock_gettime only exists if clock_gettime is
// intercepted, so define it weakly and use it if available.
extern "C" SANITIZER_WEAK_ATTRIBUTE
int real_clock_gettime(u32 clk_id, void *tp);
u64 MonotonicNanoTime() {
timespec ts;
if (CanUseVDSO()) {
if (&real_clock_gettime)
real_clock_gettime(CLOCK_MONOTONIC, &ts);
else
clock_gettime(CLOCK_MONOTONIC, &ts);
} else {
internal_clock_gettime(CLOCK_MONOTONIC, &ts);
}
return (u64)ts.tv_sec * (1000ULL * 1000 * 1000) + ts.tv_nsec;
}
#else
// Non-Linux & Go always use the syscall.
u64 MonotonicNanoTime() {
timespec ts;
internal_clock_gettime(CLOCK_MONOTONIC, &ts);
return (u64)ts.tv_sec * (1000ULL * 1000 * 1000) + ts.tv_nsec;
}
#endif // SANITIZER_LINUX && !SANITIZER_GO
#if !SANITIZER_OPENBSD
void ReExec() {
const char *pathname = "/proc/self/exe";
#if SANITIZER_NETBSD
static const int name[] = {
CTL_KERN,
KERN_PROC_ARGS,
-1,
KERN_PROC_PATHNAME,
};
char path[400];
uptr len;
len = sizeof(path);
if (internal_sysctl(name, ARRAY_SIZE(name), path, &len, NULL, 0) != -1)
pathname = path;
#elif SANITIZER_SOLARIS
pathname = getexecname();
CHECK_NE(pathname, NULL);
#elif SANITIZER_USE_GETAUXVAL
// Calling execve with /proc/self/exe sets that as $EXEC_ORIGIN. Binaries that
// rely on that will fail to load shared libraries. Query AT_EXECFN instead.
pathname = reinterpret_cast<const char *>(getauxval(AT_EXECFN));
#endif
uptr rv = internal_execve(pathname, GetArgv(), GetEnviron());
int rverrno;
CHECK_EQ(internal_iserror(rv, &rverrno), true);
Printf("execve failed, errno %d\n", rverrno);
Die();
}
#endif // !SANITIZER_OPENBSD
} // namespace __sanitizer
#endif