forked from OSchip/llvm-project
825 lines
27 KiB
C++
825 lines
27 KiB
C++
//===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass converts vector operations into scalar operations, in order
|
|
// to expose optimization opportunities on the individual scalar operations.
|
|
// It is mainly intended for targets that do not have vector units, but it
|
|
// may also be useful for revectorizing code to different vector widths.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Options.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/Scalarizer.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "scalarizer"
|
|
|
|
// This is disabled by default because having separate loads and stores
|
|
// makes it more likely that the -combiner-alias-analysis limits will be
|
|
// reached.
|
|
static cl::opt<bool>
|
|
ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden,
|
|
cl::desc("Allow the scalarizer pass to scalarize loads and store"));
|
|
|
|
namespace {
|
|
|
|
// Used to store the scattered form of a vector.
|
|
using ValueVector = SmallVector<Value *, 8>;
|
|
|
|
// Used to map a vector Value to its scattered form. We use std::map
|
|
// because we want iterators to persist across insertion and because the
|
|
// values are relatively large.
|
|
using ScatterMap = std::map<Value *, ValueVector>;
|
|
|
|
// Lists Instructions that have been replaced with scalar implementations,
|
|
// along with a pointer to their scattered forms.
|
|
using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
|
|
|
|
// Provides a very limited vector-like interface for lazily accessing one
|
|
// component of a scattered vector or vector pointer.
|
|
class Scatterer {
|
|
public:
|
|
Scatterer() = default;
|
|
|
|
// Scatter V into Size components. If new instructions are needed,
|
|
// insert them before BBI in BB. If Cache is nonnull, use it to cache
|
|
// the results.
|
|
Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
|
|
ValueVector *cachePtr = nullptr);
|
|
|
|
// Return component I, creating a new Value for it if necessary.
|
|
Value *operator[](unsigned I);
|
|
|
|
// Return the number of components.
|
|
unsigned size() const { return Size; }
|
|
|
|
private:
|
|
BasicBlock *BB;
|
|
BasicBlock::iterator BBI;
|
|
Value *V;
|
|
ValueVector *CachePtr;
|
|
PointerType *PtrTy;
|
|
ValueVector Tmp;
|
|
unsigned Size;
|
|
};
|
|
|
|
// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
|
|
// called Name that compares X and Y in the same way as FCI.
|
|
struct FCmpSplitter {
|
|
FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
|
|
|
|
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
|
|
const Twine &Name) const {
|
|
return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
|
|
}
|
|
|
|
FCmpInst &FCI;
|
|
};
|
|
|
|
// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
|
|
// called Name that compares X and Y in the same way as ICI.
|
|
struct ICmpSplitter {
|
|
ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
|
|
|
|
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
|
|
const Twine &Name) const {
|
|
return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
|
|
}
|
|
|
|
ICmpInst &ICI;
|
|
};
|
|
|
|
// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
|
|
// a binary operator like BO called Name with operands X and Y.
|
|
struct BinarySplitter {
|
|
BinarySplitter(BinaryOperator &bo) : BO(bo) {}
|
|
|
|
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
|
|
const Twine &Name) const {
|
|
return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
|
|
}
|
|
|
|
BinaryOperator &BO;
|
|
};
|
|
|
|
// Information about a load or store that we're scalarizing.
|
|
struct VectorLayout {
|
|
VectorLayout() = default;
|
|
|
|
// Return the alignment of element I.
|
|
uint64_t getElemAlign(unsigned I) {
|
|
return MinAlign(VecAlign, I * ElemSize);
|
|
}
|
|
|
|
// The type of the vector.
|
|
VectorType *VecTy = nullptr;
|
|
|
|
// The type of each element.
|
|
Type *ElemTy = nullptr;
|
|
|
|
// The alignment of the vector.
|
|
uint64_t VecAlign = 0;
|
|
|
|
// The size of each element.
|
|
uint64_t ElemSize = 0;
|
|
};
|
|
|
|
class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
|
|
public:
|
|
ScalarizerVisitor(unsigned ParallelLoopAccessMDKind)
|
|
: ParallelLoopAccessMDKind(ParallelLoopAccessMDKind) {
|
|
}
|
|
|
|
bool visit(Function &F);
|
|
|
|
// InstVisitor methods. They return true if the instruction was scalarized,
|
|
// false if nothing changed.
|
|
bool visitInstruction(Instruction &I) { return false; }
|
|
bool visitSelectInst(SelectInst &SI);
|
|
bool visitICmpInst(ICmpInst &ICI);
|
|
bool visitFCmpInst(FCmpInst &FCI);
|
|
bool visitBinaryOperator(BinaryOperator &BO);
|
|
bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
|
|
bool visitCastInst(CastInst &CI);
|
|
bool visitBitCastInst(BitCastInst &BCI);
|
|
bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
|
|
bool visitPHINode(PHINode &PHI);
|
|
bool visitLoadInst(LoadInst &LI);
|
|
bool visitStoreInst(StoreInst &SI);
|
|
bool visitCallInst(CallInst &ICI);
|
|
|
|
private:
|
|
Scatterer scatter(Instruction *Point, Value *V);
|
|
void gather(Instruction *Op, const ValueVector &CV);
|
|
bool canTransferMetadata(unsigned Kind);
|
|
void transferMetadata(Instruction *Op, const ValueVector &CV);
|
|
bool getVectorLayout(Type *Ty, unsigned Alignment, VectorLayout &Layout,
|
|
const DataLayout &DL);
|
|
bool finish();
|
|
|
|
template<typename T> bool splitBinary(Instruction &, const T &);
|
|
|
|
bool splitCall(CallInst &CI);
|
|
|
|
ScatterMap Scattered;
|
|
GatherList Gathered;
|
|
|
|
unsigned ParallelLoopAccessMDKind;
|
|
};
|
|
|
|
class ScalarizerLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
ScalarizerLegacyPass() : FunctionPass(ID) {
|
|
initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char ScalarizerLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
|
|
"Scalarize vector operations", false, false)
|
|
INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
|
|
"Scalarize vector operations", false, false)
|
|
|
|
Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
|
|
ValueVector *cachePtr)
|
|
: BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
|
|
Type *Ty = V->getType();
|
|
PtrTy = dyn_cast<PointerType>(Ty);
|
|
if (PtrTy)
|
|
Ty = PtrTy->getElementType();
|
|
Size = Ty->getVectorNumElements();
|
|
if (!CachePtr)
|
|
Tmp.resize(Size, nullptr);
|
|
else if (CachePtr->empty())
|
|
CachePtr->resize(Size, nullptr);
|
|
else
|
|
assert(Size == CachePtr->size() && "Inconsistent vector sizes");
|
|
}
|
|
|
|
// Return component I, creating a new Value for it if necessary.
|
|
Value *Scatterer::operator[](unsigned I) {
|
|
ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
|
|
// Try to reuse a previous value.
|
|
if (CV[I])
|
|
return CV[I];
|
|
IRBuilder<> Builder(BB, BBI);
|
|
if (PtrTy) {
|
|
if (!CV[0]) {
|
|
Type *Ty =
|
|
PointerType::get(PtrTy->getElementType()->getVectorElementType(),
|
|
PtrTy->getAddressSpace());
|
|
CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
|
|
}
|
|
if (I != 0)
|
|
CV[I] = Builder.CreateConstGEP1_32(nullptr, CV[0], I,
|
|
V->getName() + ".i" + Twine(I));
|
|
} else {
|
|
// Search through a chain of InsertElementInsts looking for element I.
|
|
// Record other elements in the cache. The new V is still suitable
|
|
// for all uncached indices.
|
|
while (true) {
|
|
InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
|
|
if (!Insert)
|
|
break;
|
|
ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
|
|
if (!Idx)
|
|
break;
|
|
unsigned J = Idx->getZExtValue();
|
|
V = Insert->getOperand(0);
|
|
if (I == J) {
|
|
CV[J] = Insert->getOperand(1);
|
|
return CV[J];
|
|
} else if (!CV[J]) {
|
|
// Only cache the first entry we find for each index we're not actively
|
|
// searching for. This prevents us from going too far up the chain and
|
|
// caching incorrect entries.
|
|
CV[J] = Insert->getOperand(1);
|
|
}
|
|
}
|
|
CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
|
|
V->getName() + ".i" + Twine(I));
|
|
}
|
|
return CV[I];
|
|
}
|
|
|
|
bool ScalarizerLegacyPass::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
Module &M = *F.getParent();
|
|
unsigned ParallelLoopAccessMDKind =
|
|
M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
|
|
ScalarizerVisitor Impl(ParallelLoopAccessMDKind);
|
|
return Impl.visit(F);
|
|
}
|
|
|
|
FunctionPass *llvm::createScalarizerPass() {
|
|
return new ScalarizerLegacyPass();
|
|
}
|
|
|
|
bool ScalarizerVisitor::visit(Function &F) {
|
|
assert(Gathered.empty() && Scattered.empty());
|
|
|
|
// To ensure we replace gathered components correctly we need to do an ordered
|
|
// traversal of the basic blocks in the function.
|
|
ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
|
|
for (BasicBlock *BB : RPOT) {
|
|
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
|
|
Instruction *I = &*II;
|
|
bool Done = InstVisitor::visit(I);
|
|
++II;
|
|
if (Done && I->getType()->isVoidTy())
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
return finish();
|
|
}
|
|
|
|
// Return a scattered form of V that can be accessed by Point. V must be a
|
|
// vector or a pointer to a vector.
|
|
Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) {
|
|
if (Argument *VArg = dyn_cast<Argument>(V)) {
|
|
// Put the scattered form of arguments in the entry block,
|
|
// so that it can be used everywhere.
|
|
Function *F = VArg->getParent();
|
|
BasicBlock *BB = &F->getEntryBlock();
|
|
return Scatterer(BB, BB->begin(), V, &Scattered[V]);
|
|
}
|
|
if (Instruction *VOp = dyn_cast<Instruction>(V)) {
|
|
// Put the scattered form of an instruction directly after the
|
|
// instruction.
|
|
BasicBlock *BB = VOp->getParent();
|
|
return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
|
|
V, &Scattered[V]);
|
|
}
|
|
// In the fallback case, just put the scattered before Point and
|
|
// keep the result local to Point.
|
|
return Scatterer(Point->getParent(), Point->getIterator(), V);
|
|
}
|
|
|
|
// Replace Op with the gathered form of the components in CV. Defer the
|
|
// deletion of Op and creation of the gathered form to the end of the pass,
|
|
// so that we can avoid creating the gathered form if all uses of Op are
|
|
// replaced with uses of CV.
|
|
void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
|
|
// Since we're not deleting Op yet, stub out its operands, so that it
|
|
// doesn't make anything live unnecessarily.
|
|
for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
|
|
Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
|
|
|
|
transferMetadata(Op, CV);
|
|
|
|
// If we already have a scattered form of Op (created from ExtractElements
|
|
// of Op itself), replace them with the new form.
|
|
ValueVector &SV = Scattered[Op];
|
|
if (!SV.empty()) {
|
|
for (unsigned I = 0, E = SV.size(); I != E; ++I) {
|
|
Value *V = SV[I];
|
|
if (V == nullptr)
|
|
continue;
|
|
|
|
Instruction *Old = cast<Instruction>(V);
|
|
CV[I]->takeName(Old);
|
|
Old->replaceAllUsesWith(CV[I]);
|
|
Old->eraseFromParent();
|
|
}
|
|
}
|
|
SV = CV;
|
|
Gathered.push_back(GatherList::value_type(Op, &SV));
|
|
}
|
|
|
|
// Return true if it is safe to transfer the given metadata tag from
|
|
// vector to scalar instructions.
|
|
bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
|
|
return (Tag == LLVMContext::MD_tbaa
|
|
|| Tag == LLVMContext::MD_fpmath
|
|
|| Tag == LLVMContext::MD_tbaa_struct
|
|
|| Tag == LLVMContext::MD_invariant_load
|
|
|| Tag == LLVMContext::MD_alias_scope
|
|
|| Tag == LLVMContext::MD_noalias
|
|
|| Tag == ParallelLoopAccessMDKind
|
|
|| Tag == LLVMContext::MD_access_group);
|
|
}
|
|
|
|
// Transfer metadata from Op to the instructions in CV if it is known
|
|
// to be safe to do so.
|
|
void ScalarizerVisitor::transferMetadata(Instruction *Op, const ValueVector &CV) {
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
Op->getAllMetadataOtherThanDebugLoc(MDs);
|
|
for (unsigned I = 0, E = CV.size(); I != E; ++I) {
|
|
if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
|
|
for (const auto &MD : MDs)
|
|
if (canTransferMetadata(MD.first))
|
|
New->setMetadata(MD.first, MD.second);
|
|
if (Op->getDebugLoc() && !New->getDebugLoc())
|
|
New->setDebugLoc(Op->getDebugLoc());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to fill in Layout from Ty, returning true on success. Alignment is
|
|
// the alignment of the vector, or 0 if the ABI default should be used.
|
|
bool ScalarizerVisitor::getVectorLayout(Type *Ty, unsigned Alignment,
|
|
VectorLayout &Layout, const DataLayout &DL) {
|
|
// Make sure we're dealing with a vector.
|
|
Layout.VecTy = dyn_cast<VectorType>(Ty);
|
|
if (!Layout.VecTy)
|
|
return false;
|
|
|
|
// Check that we're dealing with full-byte elements.
|
|
Layout.ElemTy = Layout.VecTy->getElementType();
|
|
if (DL.getTypeSizeInBits(Layout.ElemTy) !=
|
|
DL.getTypeStoreSizeInBits(Layout.ElemTy))
|
|
return false;
|
|
|
|
if (Alignment)
|
|
Layout.VecAlign = Alignment;
|
|
else
|
|
Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
|
|
Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
|
|
return true;
|
|
}
|
|
|
|
// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
|
|
// to create an instruction like I with operands X and Y and name Name.
|
|
template<typename Splitter>
|
|
bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
|
|
VectorType *VT = dyn_cast<VectorType>(I.getType());
|
|
if (!VT)
|
|
return false;
|
|
|
|
unsigned NumElems = VT->getNumElements();
|
|
IRBuilder<> Builder(&I);
|
|
Scatterer Op0 = scatter(&I, I.getOperand(0));
|
|
Scatterer Op1 = scatter(&I, I.getOperand(1));
|
|
assert(Op0.size() == NumElems && "Mismatched binary operation");
|
|
assert(Op1.size() == NumElems && "Mismatched binary operation");
|
|
ValueVector Res;
|
|
Res.resize(NumElems);
|
|
for (unsigned Elem = 0; Elem < NumElems; ++Elem)
|
|
Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
|
|
I.getName() + ".i" + Twine(Elem));
|
|
gather(&I, Res);
|
|
return true;
|
|
}
|
|
|
|
static bool isTriviallyScalariable(Intrinsic::ID ID) {
|
|
return isTriviallyVectorizable(ID);
|
|
}
|
|
|
|
// All of the current scalarizable intrinsics only have one mangled type.
|
|
static Function *getScalarIntrinsicDeclaration(Module *M,
|
|
Intrinsic::ID ID,
|
|
VectorType *Ty) {
|
|
return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() });
|
|
}
|
|
|
|
/// If a call to a vector typed intrinsic function, split into a scalar call per
|
|
/// element if possible for the intrinsic.
|
|
bool ScalarizerVisitor::splitCall(CallInst &CI) {
|
|
VectorType *VT = dyn_cast<VectorType>(CI.getType());
|
|
if (!VT)
|
|
return false;
|
|
|
|
Function *F = CI.getCalledFunction();
|
|
if (!F)
|
|
return false;
|
|
|
|
Intrinsic::ID ID = F->getIntrinsicID();
|
|
if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
|
|
return false;
|
|
|
|
unsigned NumElems = VT->getNumElements();
|
|
unsigned NumArgs = CI.getNumArgOperands();
|
|
|
|
ValueVector ScalarOperands(NumArgs);
|
|
SmallVector<Scatterer, 8> Scattered(NumArgs);
|
|
|
|
Scattered.resize(NumArgs);
|
|
|
|
// Assumes that any vector type has the same number of elements as the return
|
|
// vector type, which is true for all current intrinsics.
|
|
for (unsigned I = 0; I != NumArgs; ++I) {
|
|
Value *OpI = CI.getOperand(I);
|
|
if (OpI->getType()->isVectorTy()) {
|
|
Scattered[I] = scatter(&CI, OpI);
|
|
assert(Scattered[I].size() == NumElems && "mismatched call operands");
|
|
} else {
|
|
ScalarOperands[I] = OpI;
|
|
}
|
|
}
|
|
|
|
ValueVector Res(NumElems);
|
|
ValueVector ScalarCallOps(NumArgs);
|
|
|
|
Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT);
|
|
IRBuilder<> Builder(&CI);
|
|
|
|
// Perform actual scalarization, taking care to preserve any scalar operands.
|
|
for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
|
|
ScalarCallOps.clear();
|
|
|
|
for (unsigned J = 0; J != NumArgs; ++J) {
|
|
if (hasVectorInstrinsicScalarOpd(ID, J))
|
|
ScalarCallOps.push_back(ScalarOperands[J]);
|
|
else
|
|
ScalarCallOps.push_back(Scattered[J][Elem]);
|
|
}
|
|
|
|
Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
|
|
CI.getName() + ".i" + Twine(Elem));
|
|
}
|
|
|
|
gather(&CI, Res);
|
|
return true;
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
|
|
VectorType *VT = dyn_cast<VectorType>(SI.getType());
|
|
if (!VT)
|
|
return false;
|
|
|
|
unsigned NumElems = VT->getNumElements();
|
|
IRBuilder<> Builder(&SI);
|
|
Scatterer Op1 = scatter(&SI, SI.getOperand(1));
|
|
Scatterer Op2 = scatter(&SI, SI.getOperand(2));
|
|
assert(Op1.size() == NumElems && "Mismatched select");
|
|
assert(Op2.size() == NumElems && "Mismatched select");
|
|
ValueVector Res;
|
|
Res.resize(NumElems);
|
|
|
|
if (SI.getOperand(0)->getType()->isVectorTy()) {
|
|
Scatterer Op0 = scatter(&SI, SI.getOperand(0));
|
|
assert(Op0.size() == NumElems && "Mismatched select");
|
|
for (unsigned I = 0; I < NumElems; ++I)
|
|
Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
|
|
SI.getName() + ".i" + Twine(I));
|
|
} else {
|
|
Value *Op0 = SI.getOperand(0);
|
|
for (unsigned I = 0; I < NumElems; ++I)
|
|
Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
|
|
SI.getName() + ".i" + Twine(I));
|
|
}
|
|
gather(&SI, Res);
|
|
return true;
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
|
|
return splitBinary(ICI, ICmpSplitter(ICI));
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
|
|
return splitBinary(FCI, FCmpSplitter(FCI));
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
|
|
return splitBinary(BO, BinarySplitter(BO));
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
|
|
VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
|
|
if (!VT)
|
|
return false;
|
|
|
|
IRBuilder<> Builder(&GEPI);
|
|
unsigned NumElems = VT->getNumElements();
|
|
unsigned NumIndices = GEPI.getNumIndices();
|
|
|
|
// The base pointer might be scalar even if it's a vector GEP. In those cases,
|
|
// splat the pointer into a vector value, and scatter that vector.
|
|
Value *Op0 = GEPI.getOperand(0);
|
|
if (!Op0->getType()->isVectorTy())
|
|
Op0 = Builder.CreateVectorSplat(NumElems, Op0);
|
|
Scatterer Base = scatter(&GEPI, Op0);
|
|
|
|
SmallVector<Scatterer, 8> Ops;
|
|
Ops.resize(NumIndices);
|
|
for (unsigned I = 0; I < NumIndices; ++I) {
|
|
Value *Op = GEPI.getOperand(I + 1);
|
|
|
|
// The indices might be scalars even if it's a vector GEP. In those cases,
|
|
// splat the scalar into a vector value, and scatter that vector.
|
|
if (!Op->getType()->isVectorTy())
|
|
Op = Builder.CreateVectorSplat(NumElems, Op);
|
|
|
|
Ops[I] = scatter(&GEPI, Op);
|
|
}
|
|
|
|
ValueVector Res;
|
|
Res.resize(NumElems);
|
|
for (unsigned I = 0; I < NumElems; ++I) {
|
|
SmallVector<Value *, 8> Indices;
|
|
Indices.resize(NumIndices);
|
|
for (unsigned J = 0; J < NumIndices; ++J)
|
|
Indices[J] = Ops[J][I];
|
|
Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
|
|
GEPI.getName() + ".i" + Twine(I));
|
|
if (GEPI.isInBounds())
|
|
if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
|
|
NewGEPI->setIsInBounds();
|
|
}
|
|
gather(&GEPI, Res);
|
|
return true;
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
|
|
VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
|
|
if (!VT)
|
|
return false;
|
|
|
|
unsigned NumElems = VT->getNumElements();
|
|
IRBuilder<> Builder(&CI);
|
|
Scatterer Op0 = scatter(&CI, CI.getOperand(0));
|
|
assert(Op0.size() == NumElems && "Mismatched cast");
|
|
ValueVector Res;
|
|
Res.resize(NumElems);
|
|
for (unsigned I = 0; I < NumElems; ++I)
|
|
Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
|
|
CI.getName() + ".i" + Twine(I));
|
|
gather(&CI, Res);
|
|
return true;
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
|
|
VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
|
|
VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
|
|
if (!DstVT || !SrcVT)
|
|
return false;
|
|
|
|
unsigned DstNumElems = DstVT->getNumElements();
|
|
unsigned SrcNumElems = SrcVT->getNumElements();
|
|
IRBuilder<> Builder(&BCI);
|
|
Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
|
|
ValueVector Res;
|
|
Res.resize(DstNumElems);
|
|
|
|
if (DstNumElems == SrcNumElems) {
|
|
for (unsigned I = 0; I < DstNumElems; ++I)
|
|
Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
|
|
BCI.getName() + ".i" + Twine(I));
|
|
} else if (DstNumElems > SrcNumElems) {
|
|
// <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
|
|
// individual elements to the destination.
|
|
unsigned FanOut = DstNumElems / SrcNumElems;
|
|
Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
|
|
unsigned ResI = 0;
|
|
for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
|
|
Value *V = Op0[Op0I];
|
|
Instruction *VI;
|
|
// Look through any existing bitcasts before converting to <N x t2>.
|
|
// In the best case, the resulting conversion might be a no-op.
|
|
while ((VI = dyn_cast<Instruction>(V)) &&
|
|
VI->getOpcode() == Instruction::BitCast)
|
|
V = VI->getOperand(0);
|
|
V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
|
|
Scatterer Mid = scatter(&BCI, V);
|
|
for (unsigned MidI = 0; MidI < FanOut; ++MidI)
|
|
Res[ResI++] = Mid[MidI];
|
|
}
|
|
} else {
|
|
// <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
|
|
unsigned FanIn = SrcNumElems / DstNumElems;
|
|
Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
|
|
unsigned Op0I = 0;
|
|
for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
|
|
Value *V = UndefValue::get(MidTy);
|
|
for (unsigned MidI = 0; MidI < FanIn; ++MidI)
|
|
V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
|
|
BCI.getName() + ".i" + Twine(ResI)
|
|
+ ".upto" + Twine(MidI));
|
|
Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
|
|
BCI.getName() + ".i" + Twine(ResI));
|
|
}
|
|
}
|
|
gather(&BCI, Res);
|
|
return true;
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
|
|
VectorType *VT = dyn_cast<VectorType>(SVI.getType());
|
|
if (!VT)
|
|
return false;
|
|
|
|
unsigned NumElems = VT->getNumElements();
|
|
Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
|
|
Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
|
|
ValueVector Res;
|
|
Res.resize(NumElems);
|
|
|
|
for (unsigned I = 0; I < NumElems; ++I) {
|
|
int Selector = SVI.getMaskValue(I);
|
|
if (Selector < 0)
|
|
Res[I] = UndefValue::get(VT->getElementType());
|
|
else if (unsigned(Selector) < Op0.size())
|
|
Res[I] = Op0[Selector];
|
|
else
|
|
Res[I] = Op1[Selector - Op0.size()];
|
|
}
|
|
gather(&SVI, Res);
|
|
return true;
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
|
|
VectorType *VT = dyn_cast<VectorType>(PHI.getType());
|
|
if (!VT)
|
|
return false;
|
|
|
|
unsigned NumElems = VT->getNumElements();
|
|
IRBuilder<> Builder(&PHI);
|
|
ValueVector Res;
|
|
Res.resize(NumElems);
|
|
|
|
unsigned NumOps = PHI.getNumOperands();
|
|
for (unsigned I = 0; I < NumElems; ++I)
|
|
Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
|
|
PHI.getName() + ".i" + Twine(I));
|
|
|
|
for (unsigned I = 0; I < NumOps; ++I) {
|
|
Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
|
|
BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
|
|
for (unsigned J = 0; J < NumElems; ++J)
|
|
cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
|
|
}
|
|
gather(&PHI, Res);
|
|
return true;
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
|
|
if (!ScalarizeLoadStore)
|
|
return false;
|
|
if (!LI.isSimple())
|
|
return false;
|
|
|
|
VectorLayout Layout;
|
|
if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
|
|
LI.getModule()->getDataLayout()))
|
|
return false;
|
|
|
|
unsigned NumElems = Layout.VecTy->getNumElements();
|
|
IRBuilder<> Builder(&LI);
|
|
Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
|
|
ValueVector Res;
|
|
Res.resize(NumElems);
|
|
|
|
for (unsigned I = 0; I < NumElems; ++I)
|
|
Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
|
|
LI.getName() + ".i" + Twine(I));
|
|
gather(&LI, Res);
|
|
return true;
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
|
|
if (!ScalarizeLoadStore)
|
|
return false;
|
|
if (!SI.isSimple())
|
|
return false;
|
|
|
|
VectorLayout Layout;
|
|
Value *FullValue = SI.getValueOperand();
|
|
if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
|
|
SI.getModule()->getDataLayout()))
|
|
return false;
|
|
|
|
unsigned NumElems = Layout.VecTy->getNumElements();
|
|
IRBuilder<> Builder(&SI);
|
|
Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
|
|
Scatterer Val = scatter(&SI, FullValue);
|
|
|
|
ValueVector Stores;
|
|
Stores.resize(NumElems);
|
|
for (unsigned I = 0; I < NumElems; ++I) {
|
|
unsigned Align = Layout.getElemAlign(I);
|
|
Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
|
|
}
|
|
transferMetadata(&SI, Stores);
|
|
return true;
|
|
}
|
|
|
|
bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
|
|
return splitCall(CI);
|
|
}
|
|
|
|
// Delete the instructions that we scalarized. If a full vector result
|
|
// is still needed, recreate it using InsertElements.
|
|
bool ScalarizerVisitor::finish() {
|
|
// The presence of data in Gathered or Scattered indicates changes
|
|
// made to the Function.
|
|
if (Gathered.empty() && Scattered.empty())
|
|
return false;
|
|
for (const auto &GMI : Gathered) {
|
|
Instruction *Op = GMI.first;
|
|
ValueVector &CV = *GMI.second;
|
|
if (!Op->use_empty()) {
|
|
// The value is still needed, so recreate it using a series of
|
|
// InsertElements.
|
|
Type *Ty = Op->getType();
|
|
Value *Res = UndefValue::get(Ty);
|
|
BasicBlock *BB = Op->getParent();
|
|
unsigned Count = Ty->getVectorNumElements();
|
|
IRBuilder<> Builder(Op);
|
|
if (isa<PHINode>(Op))
|
|
Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
|
|
for (unsigned I = 0; I < Count; ++I)
|
|
Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
|
|
Op->getName() + ".upto" + Twine(I));
|
|
Res->takeName(Op);
|
|
Op->replaceAllUsesWith(Res);
|
|
}
|
|
Op->eraseFromParent();
|
|
}
|
|
Gathered.clear();
|
|
Scattered.clear();
|
|
return true;
|
|
}
|
|
|
|
PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
Module &M = *F.getParent();
|
|
unsigned ParallelLoopAccessMDKind =
|
|
M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
|
|
ScalarizerVisitor Impl(ParallelLoopAccessMDKind);
|
|
bool Changed = Impl.visit(F);
|
|
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
|
|
}
|