llvm-project/compiler-rt/lib/xray/xray_profile_collector.cc

416 lines
14 KiB
C++

//===-- xray_profile_collector.cc ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This implements the interface for the profileCollectorService.
//
//===----------------------------------------------------------------------===//
#include "xray_profile_collector.h"
#include "sanitizer_common/sanitizer_common.h"
#include "xray_allocator.h"
#include "xray_defs.h"
#include "xray_profiling_flags.h"
#include "xray_segmented_array.h"
#include <memory>
#include <pthread.h>
#include <utility>
namespace __xray {
namespace profileCollectorService {
namespace {
SpinMutex GlobalMutex;
struct ThreadTrie {
tid_t TId;
typename std::aligned_storage<sizeof(FunctionCallTrie)>::type TrieStorage;
};
struct ProfileBuffer {
void *Data;
size_t Size;
};
// Current version of the profile format.
constexpr u64 XRayProfilingVersion = 0x20180424;
// Identifier for XRay profiling files 'xrayprof' in hex.
constexpr u64 XRayMagicBytes = 0x7872617970726f66;
struct XRayProfilingFileHeader {
const u64 MagicBytes = XRayMagicBytes;
const u64 Version = XRayProfilingVersion;
u64 Timestamp = 0; // System time in nanoseconds.
u64 PID = 0; // Process ID.
};
struct BlockHeader {
u32 BlockSize;
u32 BlockNum;
u64 ThreadId;
};
struct ThreadData {
BufferQueue *BQ;
FunctionCallTrie::Allocators::Buffers Buffers;
FunctionCallTrie::Allocators Allocators;
FunctionCallTrie FCT;
tid_t TId;
};
using ThreadDataArray = Array<ThreadData>;
using ThreadDataAllocator = ThreadDataArray::AllocatorType;
// We use a separate buffer queue for the backing store for the allocator used
// by the ThreadData array. This lets us host the buffers, allocators, and tries
// associated with a thread by moving the data into the array instead of
// attempting to copy the data to a separately backed set of tries.
static typename std::aligned_storage<
sizeof(BufferQueue), alignof(BufferQueue)>::type BufferQueueStorage;
static BufferQueue *BQ = nullptr;
static BufferQueue::Buffer Buffer;
static typename std::aligned_storage<sizeof(ThreadDataAllocator),
alignof(ThreadDataAllocator)>::type
ThreadDataAllocatorStorage;
static typename std::aligned_storage<sizeof(ThreadDataArray),
alignof(ThreadDataArray)>::type
ThreadDataArrayStorage;
static ThreadDataAllocator *TDAllocator = nullptr;
static ThreadDataArray *TDArray = nullptr;
using ProfileBufferArray = Array<ProfileBuffer>;
using ProfileBufferArrayAllocator = typename ProfileBufferArray::AllocatorType;
// These need to be global aligned storage to avoid dynamic initialization. We
// need these to be aligned to allow us to placement new objects into the
// storage, and have pointers to those objects be appropriately aligned.
static typename std::aligned_storage<sizeof(ProfileBufferArray)>::type
ProfileBuffersStorage;
static typename std::aligned_storage<sizeof(ProfileBufferArrayAllocator)>::type
ProfileBufferArrayAllocatorStorage;
static ProfileBufferArrayAllocator *ProfileBuffersAllocator = nullptr;
static ProfileBufferArray *ProfileBuffers = nullptr;
// Use a global flag to determine whether the collector implementation has been
// initialized.
static atomic_uint8_t CollectorInitialized{0};
} // namespace
void post(BufferQueue *Q, FunctionCallTrie &&T,
FunctionCallTrie::Allocators &&A,
FunctionCallTrie::Allocators::Buffers &&B,
tid_t TId) XRAY_NEVER_INSTRUMENT {
DCHECK_NE(Q, nullptr);
// Bail out early if the collector has not been initialized.
if (!atomic_load(&CollectorInitialized, memory_order_acquire)) {
T.~FunctionCallTrie();
A.~Allocators();
Q->releaseBuffer(B.NodeBuffer);
Q->releaseBuffer(B.RootsBuffer);
Q->releaseBuffer(B.ShadowStackBuffer);
Q->releaseBuffer(B.NodeIdPairBuffer);
B.~Buffers();
return;
}
{
SpinMutexLock Lock(&GlobalMutex);
DCHECK_NE(TDAllocator, nullptr);
DCHECK_NE(TDArray, nullptr);
if (TDArray->AppendEmplace(Q, std::move(B), std::move(A), std::move(T),
TId) == nullptr) {
// If we fail to add the data to the array, we should destroy the objects
// handed us.
T.~FunctionCallTrie();
A.~Allocators();
Q->releaseBuffer(B.NodeBuffer);
Q->releaseBuffer(B.RootsBuffer);
Q->releaseBuffer(B.ShadowStackBuffer);
Q->releaseBuffer(B.NodeIdPairBuffer);
B.~Buffers();
}
}
}
// A PathArray represents the function id's representing a stack trace. In this
// context a path is almost always represented from the leaf function in a call
// stack to a root of the call trie.
using PathArray = Array<int32_t>;
struct ProfileRecord {
using PathAllocator = typename PathArray::AllocatorType;
// The Path in this record is the function id's from the leaf to the root of
// the function call stack as represented from a FunctionCallTrie.
PathArray Path;
const FunctionCallTrie::Node *Node;
};
namespace {
using ProfileRecordArray = Array<ProfileRecord>;
// Walk a depth-first traversal of each root of the FunctionCallTrie to generate
// the path(s) and the data associated with the path.
static void
populateRecords(ProfileRecordArray &PRs, ProfileRecord::PathAllocator &PA,
const FunctionCallTrie &Trie) XRAY_NEVER_INSTRUMENT {
using StackArray = Array<const FunctionCallTrie::Node *>;
using StackAllocator = typename StackArray::AllocatorType;
StackAllocator StackAlloc(profilingFlags()->stack_allocator_max);
StackArray DFSStack(StackAlloc);
for (const auto *R : Trie.getRoots()) {
DFSStack.Append(R);
while (!DFSStack.empty()) {
auto *Node = DFSStack.back();
DFSStack.trim(1);
if (Node == nullptr)
continue;
auto Record = PRs.AppendEmplace(PathArray{PA}, Node);
if (Record == nullptr)
return;
DCHECK_NE(Record, nullptr);
// Traverse the Node's parents and as we're doing so, get the FIds in
// the order they appear.
for (auto N = Node; N != nullptr; N = N->Parent)
Record->Path.Append(N->FId);
DCHECK(!Record->Path.empty());
for (const auto C : Node->Callees)
DFSStack.Append(C.NodePtr);
}
}
}
static void serializeRecords(ProfileBuffer *Buffer, const BlockHeader &Header,
const ProfileRecordArray &ProfileRecords)
XRAY_NEVER_INSTRUMENT {
auto NextPtr = static_cast<uint8_t *>(
internal_memcpy(Buffer->Data, &Header, sizeof(Header))) +
sizeof(Header);
for (const auto &Record : ProfileRecords) {
// List of IDs follow:
for (const auto FId : Record.Path)
NextPtr =
static_cast<uint8_t *>(internal_memcpy(NextPtr, &FId, sizeof(FId))) +
sizeof(FId);
// Add the sentinel here.
constexpr int32_t SentinelFId = 0;
NextPtr = static_cast<uint8_t *>(
internal_memset(NextPtr, SentinelFId, sizeof(SentinelFId))) +
sizeof(SentinelFId);
// Add the node data here.
NextPtr =
static_cast<uint8_t *>(internal_memcpy(
NextPtr, &Record.Node->CallCount, sizeof(Record.Node->CallCount))) +
sizeof(Record.Node->CallCount);
NextPtr = static_cast<uint8_t *>(
internal_memcpy(NextPtr, &Record.Node->CumulativeLocalTime,
sizeof(Record.Node->CumulativeLocalTime))) +
sizeof(Record.Node->CumulativeLocalTime);
}
DCHECK_EQ(NextPtr - static_cast<uint8_t *>(Buffer->Data), Buffer->Size);
}
} // namespace
void serialize() XRAY_NEVER_INSTRUMENT {
if (!atomic_load(&CollectorInitialized, memory_order_acquire))
return;
SpinMutexLock Lock(&GlobalMutex);
// Clear out the global ProfileBuffers, if it's not empty.
for (auto &B : *ProfileBuffers)
deallocateBuffer(reinterpret_cast<unsigned char *>(B.Data), B.Size);
ProfileBuffers->trim(ProfileBuffers->size());
DCHECK_NE(TDArray, nullptr);
if (TDArray->empty())
return;
// Then repopulate the global ProfileBuffers.
u32 I = 0;
auto MaxSize = profilingFlags()->global_allocator_max;
auto ProfileArena = allocateBuffer(MaxSize);
if (ProfileArena == nullptr)
return;
auto ProfileArenaCleanup = at_scope_exit(
[&]() XRAY_NEVER_INSTRUMENT { deallocateBuffer(ProfileArena, MaxSize); });
auto PathArena = allocateBuffer(profilingFlags()->global_allocator_max);
if (PathArena == nullptr)
return;
auto PathArenaCleanup = at_scope_exit(
[&]() XRAY_NEVER_INSTRUMENT { deallocateBuffer(PathArena, MaxSize); });
for (const auto &ThreadTrie : *TDArray) {
using ProfileRecordAllocator = typename ProfileRecordArray::AllocatorType;
ProfileRecordAllocator PRAlloc(ProfileArena,
profilingFlags()->global_allocator_max);
ProfileRecord::PathAllocator PathAlloc(
PathArena, profilingFlags()->global_allocator_max);
ProfileRecordArray ProfileRecords(PRAlloc);
// First, we want to compute the amount of space we're going to need. We'll
// use a local allocator and an __xray::Array<...> to store the intermediary
// data, then compute the size as we're going along. Then we'll allocate the
// contiguous space to contain the thread buffer data.
if (ThreadTrie.FCT.getRoots().empty())
continue;
populateRecords(ProfileRecords, PathAlloc, ThreadTrie.FCT);
DCHECK(!ThreadTrie.FCT.getRoots().empty());
DCHECK(!ProfileRecords.empty());
// Go through each record, to compute the sizes.
//
// header size = block size (4 bytes)
// + block number (4 bytes)
// + thread id (8 bytes)
// record size = path ids (4 bytes * number of ids + sentinel 4 bytes)
// + call count (8 bytes)
// + local time (8 bytes)
// + end of record (8 bytes)
u32 CumulativeSizes = 0;
for (const auto &Record : ProfileRecords)
CumulativeSizes += 20 + (4 * Record.Path.size());
BlockHeader Header{16 + CumulativeSizes, I++, ThreadTrie.TId};
auto B = ProfileBuffers->Append({});
B->Size = sizeof(Header) + CumulativeSizes;
B->Data = allocateBuffer(B->Size);
DCHECK_NE(B->Data, nullptr);
serializeRecords(B, Header, ProfileRecords);
}
}
void reset() XRAY_NEVER_INSTRUMENT {
atomic_store(&CollectorInitialized, 0, memory_order_release);
SpinMutexLock Lock(&GlobalMutex);
if (ProfileBuffers != nullptr) {
// Clear out the profile buffers that have been serialized.
for (auto &B : *ProfileBuffers)
deallocateBuffer(reinterpret_cast<uint8_t *>(B.Data), B.Size);
ProfileBuffers->trim(ProfileBuffers->size());
ProfileBuffers = nullptr;
}
if (TDArray != nullptr) {
// Release the resources as required.
for (auto &TD : *TDArray) {
TD.BQ->releaseBuffer(TD.Buffers.NodeBuffer);
TD.BQ->releaseBuffer(TD.Buffers.RootsBuffer);
TD.BQ->releaseBuffer(TD.Buffers.ShadowStackBuffer);
TD.BQ->releaseBuffer(TD.Buffers.NodeIdPairBuffer);
}
// We don't bother destroying the array here because we've already
// potentially freed the backing store for the array. Instead we're going to
// reset the pointer to nullptr, and re-use the storage later instead
// (placement-new'ing into the storage as-is).
TDArray = nullptr;
}
if (TDAllocator != nullptr) {
TDAllocator->~Allocator();
TDAllocator = nullptr;
}
if (Buffer.Data != nullptr) {
BQ->releaseBuffer(Buffer);
}
if (BQ == nullptr) {
bool Success = false;
new (&BufferQueueStorage)
BufferQueue(profilingFlags()->global_allocator_max, 1, Success);
if (!Success)
return;
BQ = reinterpret_cast<BufferQueue *>(&BufferQueueStorage);
} else {
BQ->finalize();
if (BQ->init(profilingFlags()->global_allocator_max, 1) !=
BufferQueue::ErrorCode::Ok)
return;
}
if (BQ->getBuffer(Buffer) != BufferQueue::ErrorCode::Ok)
return;
new (&ProfileBufferArrayAllocatorStorage)
ProfileBufferArrayAllocator(profilingFlags()->global_allocator_max);
ProfileBuffersAllocator = reinterpret_cast<ProfileBufferArrayAllocator *>(
&ProfileBufferArrayAllocatorStorage);
new (&ProfileBuffersStorage) ProfileBufferArray(*ProfileBuffersAllocator);
ProfileBuffers =
reinterpret_cast<ProfileBufferArray *>(&ProfileBuffersStorage);
new (&ThreadDataAllocatorStorage)
ThreadDataAllocator(Buffer.Data, Buffer.Size);
TDAllocator =
reinterpret_cast<ThreadDataAllocator *>(&ThreadDataAllocatorStorage);
new (&ThreadDataArrayStorage) ThreadDataArray(*TDAllocator);
TDArray = reinterpret_cast<ThreadDataArray *>(&ThreadDataArrayStorage);
atomic_store(&CollectorInitialized, 1, memory_order_release);
}
XRayBuffer nextBuffer(XRayBuffer B) XRAY_NEVER_INSTRUMENT {
SpinMutexLock Lock(&GlobalMutex);
if (ProfileBuffers == nullptr || ProfileBuffers->size() == 0)
return {nullptr, 0};
static pthread_once_t Once = PTHREAD_ONCE_INIT;
static typename std::aligned_storage<sizeof(XRayProfilingFileHeader)>::type
FileHeaderStorage;
pthread_once(
&Once, +[]() XRAY_NEVER_INSTRUMENT {
new (&FileHeaderStorage) XRayProfilingFileHeader{};
});
if (UNLIKELY(B.Data == nullptr)) {
// The first buffer should always contain the file header information.
auto &FileHeader =
*reinterpret_cast<XRayProfilingFileHeader *>(&FileHeaderStorage);
FileHeader.Timestamp = NanoTime();
FileHeader.PID = internal_getpid();
return {&FileHeaderStorage, sizeof(XRayProfilingFileHeader)};
}
if (UNLIKELY(B.Data == &FileHeaderStorage))
return {(*ProfileBuffers)[0].Data, (*ProfileBuffers)[0].Size};
BlockHeader Header;
internal_memcpy(&Header, B.Data, sizeof(BlockHeader));
auto NextBlock = Header.BlockNum + 1;
if (NextBlock < ProfileBuffers->size())
return {(*ProfileBuffers)[NextBlock].Data,
(*ProfileBuffers)[NextBlock].Size};
return {nullptr, 0};
}
} // namespace profileCollectorService
} // namespace __xray