forked from OSchip/llvm-project
605 lines
22 KiB
C++
605 lines
22 KiB
C++
//===-- xray_function_call_trie.h ------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of XRay, a dynamic runtime instrumentation system.
|
|
//
|
|
// This file defines the interface for a function call trie.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef XRAY_FUNCTION_CALL_TRIE_H
|
|
#define XRAY_FUNCTION_CALL_TRIE_H
|
|
|
|
#include "xray_buffer_queue.h"
|
|
#include "xray_defs.h"
|
|
#include "xray_profiling_flags.h"
|
|
#include "xray_segmented_array.h"
|
|
#include <limits>
|
|
#include <memory> // For placement new.
|
|
#include <utility>
|
|
|
|
namespace __xray {
|
|
|
|
/// A FunctionCallTrie represents the stack traces of XRay instrumented
|
|
/// functions that we've encountered, where a node corresponds to a function and
|
|
/// the path from the root to the node its stack trace. Each node in the trie
|
|
/// will contain some useful values, including:
|
|
///
|
|
/// * The cumulative amount of time spent in this particular node/stack.
|
|
/// * The number of times this stack has appeared.
|
|
/// * A histogram of latencies for that particular node.
|
|
///
|
|
/// Each node in the trie will also contain a list of callees, represented using
|
|
/// a Array<NodeIdPair> -- each NodeIdPair instance will contain the function
|
|
/// ID of the callee, and a pointer to the node.
|
|
///
|
|
/// If we visualise this data structure, we'll find the following potential
|
|
/// representation:
|
|
///
|
|
/// [function id node] -> [callees] [cumulative time]
|
|
/// [call counter] [latency histogram]
|
|
///
|
|
/// As an example, when we have a function in this pseudocode:
|
|
///
|
|
/// func f(N) {
|
|
/// g()
|
|
/// h()
|
|
/// for i := 1..N { j() }
|
|
/// }
|
|
///
|
|
/// We may end up with a trie of the following form:
|
|
///
|
|
/// f -> [ g, h, j ] [...] [1] [...]
|
|
/// g -> [ ... ] [...] [1] [...]
|
|
/// h -> [ ... ] [...] [1] [...]
|
|
/// j -> [ ... ] [...] [N] [...]
|
|
///
|
|
/// If for instance the function g() called j() like so:
|
|
///
|
|
/// func g() {
|
|
/// for i := 1..10 { j() }
|
|
/// }
|
|
///
|
|
/// We'll find the following updated trie:
|
|
///
|
|
/// f -> [ g, h, j ] [...] [1] [...]
|
|
/// g -> [ j' ] [...] [1] [...]
|
|
/// h -> [ ... ] [...] [1] [...]
|
|
/// j -> [ ... ] [...] [N] [...]
|
|
/// j' -> [ ... ] [...] [10] [...]
|
|
///
|
|
/// Note that we'll have a new node representing the path `f -> g -> j'` with
|
|
/// isolated data. This isolation gives us a means of representing the stack
|
|
/// traces as a path, as opposed to a key in a table. The alternative
|
|
/// implementation here would be to use a separate table for the path, and use
|
|
/// hashes of the path as an identifier to accumulate the information. We've
|
|
/// moved away from this approach as it takes a lot of time to compute the hash
|
|
/// every time we need to update a function's call information as we're handling
|
|
/// the entry and exit events.
|
|
///
|
|
/// This approach allows us to maintain a shadow stack, which represents the
|
|
/// currently executing path, and on function exits quickly compute the amount
|
|
/// of time elapsed from the entry, then update the counters for the node
|
|
/// already represented in the trie. This necessitates an efficient
|
|
/// representation of the various data structures (the list of callees must be
|
|
/// cache-aware and efficient to look up, and the histogram must be compact and
|
|
/// quick to update) to enable us to keep the overheads of this implementation
|
|
/// to the minimum.
|
|
class FunctionCallTrie {
|
|
public:
|
|
struct Node;
|
|
|
|
// We use a NodeIdPair type instead of a std::pair<...> to not rely on the
|
|
// standard library types in this header.
|
|
struct NodeIdPair {
|
|
Node *NodePtr;
|
|
int32_t FId;
|
|
};
|
|
|
|
using NodeIdPairArray = Array<NodeIdPair>;
|
|
using NodeIdPairAllocatorType = NodeIdPairArray::AllocatorType;
|
|
|
|
// A Node in the FunctionCallTrie gives us a list of callees, the cumulative
|
|
// number of times this node actually appeared, the cumulative amount of time
|
|
// for this particular node including its children call times, and just the
|
|
// local time spent on this node. Each Node will have the ID of the XRay
|
|
// instrumented function that it is associated to.
|
|
struct Node {
|
|
Node *Parent;
|
|
NodeIdPairArray Callees;
|
|
uint64_t CallCount;
|
|
uint64_t CumulativeLocalTime; // Typically in TSC deltas, not wall-time.
|
|
int32_t FId;
|
|
|
|
// TODO: Include the compact histogram.
|
|
};
|
|
|
|
private:
|
|
struct ShadowStackEntry {
|
|
uint64_t EntryTSC;
|
|
Node *NodePtr;
|
|
uint16_t EntryCPU;
|
|
};
|
|
|
|
using NodeArray = Array<Node>;
|
|
using RootArray = Array<Node *>;
|
|
using ShadowStackArray = Array<ShadowStackEntry>;
|
|
|
|
public:
|
|
// We collate the allocators we need into a single struct, as a convenience to
|
|
// allow us to initialize these as a group.
|
|
struct Allocators {
|
|
using NodeAllocatorType = NodeArray::AllocatorType;
|
|
using RootAllocatorType = RootArray::AllocatorType;
|
|
using ShadowStackAllocatorType = ShadowStackArray::AllocatorType;
|
|
|
|
// Use hosted aligned storage members to allow for trivial move and init.
|
|
// This also allows us to sidestep the potential-failing allocation issue.
|
|
typename std::aligned_storage<sizeof(NodeAllocatorType),
|
|
alignof(NodeAllocatorType)>::type
|
|
NodeAllocatorStorage;
|
|
typename std::aligned_storage<sizeof(RootAllocatorType),
|
|
alignof(RootAllocatorType)>::type
|
|
RootAllocatorStorage;
|
|
typename std::aligned_storage<sizeof(ShadowStackAllocatorType),
|
|
alignof(ShadowStackAllocatorType)>::type
|
|
ShadowStackAllocatorStorage;
|
|
typename std::aligned_storage<sizeof(NodeIdPairAllocatorType),
|
|
alignof(NodeIdPairAllocatorType)>::type
|
|
NodeIdPairAllocatorStorage;
|
|
|
|
NodeAllocatorType *NodeAllocator = nullptr;
|
|
RootAllocatorType *RootAllocator = nullptr;
|
|
ShadowStackAllocatorType *ShadowStackAllocator = nullptr;
|
|
NodeIdPairAllocatorType *NodeIdPairAllocator = nullptr;
|
|
|
|
Allocators() = default;
|
|
Allocators(const Allocators &) = delete;
|
|
Allocators &operator=(const Allocators &) = delete;
|
|
|
|
struct Buffers {
|
|
BufferQueue::Buffer NodeBuffer;
|
|
BufferQueue::Buffer RootsBuffer;
|
|
BufferQueue::Buffer ShadowStackBuffer;
|
|
BufferQueue::Buffer NodeIdPairBuffer;
|
|
};
|
|
|
|
explicit Allocators(Buffers &B) XRAY_NEVER_INSTRUMENT {
|
|
new (&NodeAllocatorStorage)
|
|
NodeAllocatorType(B.NodeBuffer.Data, B.NodeBuffer.Size);
|
|
NodeAllocator =
|
|
reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
|
|
|
|
new (&RootAllocatorStorage)
|
|
RootAllocatorType(B.RootsBuffer.Data, B.RootsBuffer.Size);
|
|
RootAllocator =
|
|
reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
|
|
|
|
new (&ShadowStackAllocatorStorage) ShadowStackAllocatorType(
|
|
B.ShadowStackBuffer.Data, B.ShadowStackBuffer.Size);
|
|
ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
|
|
&ShadowStackAllocatorStorage);
|
|
|
|
new (&NodeIdPairAllocatorStorage) NodeIdPairAllocatorType(
|
|
B.NodeIdPairBuffer.Data, B.NodeIdPairBuffer.Size);
|
|
NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
|
|
&NodeIdPairAllocatorStorage);
|
|
}
|
|
|
|
explicit Allocators(uptr Max) XRAY_NEVER_INSTRUMENT {
|
|
new (&NodeAllocatorStorage) NodeAllocatorType(Max);
|
|
NodeAllocator =
|
|
reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
|
|
|
|
new (&RootAllocatorStorage) RootAllocatorType(Max);
|
|
RootAllocator =
|
|
reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
|
|
|
|
new (&ShadowStackAllocatorStorage) ShadowStackAllocatorType(Max);
|
|
ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
|
|
&ShadowStackAllocatorStorage);
|
|
|
|
new (&NodeIdPairAllocatorStorage) NodeIdPairAllocatorType(Max);
|
|
NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
|
|
&NodeIdPairAllocatorStorage);
|
|
}
|
|
|
|
Allocators(Allocators &&O) XRAY_NEVER_INSTRUMENT {
|
|
// Here we rely on the safety of memcpy'ing contents of the storage
|
|
// members, and then pointing the source pointers to nullptr.
|
|
internal_memcpy(&NodeAllocatorStorage, &O.NodeAllocatorStorage,
|
|
sizeof(NodeAllocatorType));
|
|
internal_memcpy(&RootAllocatorStorage, &O.RootAllocatorStorage,
|
|
sizeof(RootAllocatorType));
|
|
internal_memcpy(&ShadowStackAllocatorStorage,
|
|
&O.ShadowStackAllocatorStorage,
|
|
sizeof(ShadowStackAllocatorType));
|
|
internal_memcpy(&NodeIdPairAllocatorStorage,
|
|
&O.NodeIdPairAllocatorStorage,
|
|
sizeof(NodeIdPairAllocatorType));
|
|
|
|
NodeAllocator =
|
|
reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
|
|
RootAllocator =
|
|
reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
|
|
ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
|
|
&ShadowStackAllocatorStorage);
|
|
NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
|
|
&NodeIdPairAllocatorStorage);
|
|
|
|
O.NodeAllocator = nullptr;
|
|
O.RootAllocator = nullptr;
|
|
O.ShadowStackAllocator = nullptr;
|
|
O.NodeIdPairAllocator = nullptr;
|
|
}
|
|
|
|
Allocators &operator=(Allocators &&O) XRAY_NEVER_INSTRUMENT {
|
|
// When moving into an existing instance, we ensure that we clean up the
|
|
// current allocators.
|
|
if (NodeAllocator)
|
|
NodeAllocator->~NodeAllocatorType();
|
|
if (O.NodeAllocator) {
|
|
new (&NodeAllocatorStorage)
|
|
NodeAllocatorType(std::move(*O.NodeAllocator));
|
|
NodeAllocator =
|
|
reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
|
|
O.NodeAllocator = nullptr;
|
|
} else {
|
|
NodeAllocator = nullptr;
|
|
}
|
|
|
|
if (RootAllocator)
|
|
RootAllocator->~RootAllocatorType();
|
|
if (O.RootAllocator) {
|
|
new (&RootAllocatorStorage)
|
|
RootAllocatorType(std::move(*O.RootAllocator));
|
|
RootAllocator =
|
|
reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
|
|
O.RootAllocator = nullptr;
|
|
} else {
|
|
RootAllocator = nullptr;
|
|
}
|
|
|
|
if (ShadowStackAllocator)
|
|
ShadowStackAllocator->~ShadowStackAllocatorType();
|
|
if (O.ShadowStackAllocator) {
|
|
new (&ShadowStackAllocatorStorage)
|
|
ShadowStackAllocatorType(std::move(*O.ShadowStackAllocator));
|
|
ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
|
|
&ShadowStackAllocatorStorage);
|
|
O.ShadowStackAllocator = nullptr;
|
|
} else {
|
|
ShadowStackAllocator = nullptr;
|
|
}
|
|
|
|
if (NodeIdPairAllocator)
|
|
NodeIdPairAllocator->~NodeIdPairAllocatorType();
|
|
if (O.NodeIdPairAllocator) {
|
|
new (&NodeIdPairAllocatorStorage)
|
|
NodeIdPairAllocatorType(std::move(*O.NodeIdPairAllocator));
|
|
NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
|
|
&NodeIdPairAllocatorStorage);
|
|
O.NodeIdPairAllocator = nullptr;
|
|
} else {
|
|
NodeIdPairAllocator = nullptr;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
~Allocators() XRAY_NEVER_INSTRUMENT {
|
|
if (NodeAllocator != nullptr)
|
|
NodeAllocator->~NodeAllocatorType();
|
|
if (RootAllocator != nullptr)
|
|
RootAllocator->~RootAllocatorType();
|
|
if (ShadowStackAllocator != nullptr)
|
|
ShadowStackAllocator->~ShadowStackAllocatorType();
|
|
if (NodeIdPairAllocator != nullptr)
|
|
NodeIdPairAllocator->~NodeIdPairAllocatorType();
|
|
}
|
|
};
|
|
|
|
static Allocators InitAllocators() XRAY_NEVER_INSTRUMENT {
|
|
return InitAllocatorsCustom(profilingFlags()->per_thread_allocator_max);
|
|
}
|
|
|
|
static Allocators InitAllocatorsCustom(uptr Max) XRAY_NEVER_INSTRUMENT {
|
|
Allocators A(Max);
|
|
return A;
|
|
}
|
|
|
|
static Allocators
|
|
InitAllocatorsFromBuffers(Allocators::Buffers &Bufs) XRAY_NEVER_INSTRUMENT {
|
|
Allocators A(Bufs);
|
|
return A;
|
|
}
|
|
|
|
private:
|
|
NodeArray Nodes;
|
|
RootArray Roots;
|
|
ShadowStackArray ShadowStack;
|
|
NodeIdPairAllocatorType *NodeIdPairAllocator;
|
|
uint32_t OverflowedFunctions;
|
|
|
|
public:
|
|
explicit FunctionCallTrie(const Allocators &A) XRAY_NEVER_INSTRUMENT
|
|
: Nodes(*A.NodeAllocator),
|
|
Roots(*A.RootAllocator),
|
|
ShadowStack(*A.ShadowStackAllocator),
|
|
NodeIdPairAllocator(A.NodeIdPairAllocator),
|
|
OverflowedFunctions(0) {}
|
|
|
|
FunctionCallTrie() = delete;
|
|
FunctionCallTrie(const FunctionCallTrie &) = delete;
|
|
FunctionCallTrie &operator=(const FunctionCallTrie &) = delete;
|
|
|
|
FunctionCallTrie(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT
|
|
: Nodes(std::move(O.Nodes)),
|
|
Roots(std::move(O.Roots)),
|
|
ShadowStack(std::move(O.ShadowStack)),
|
|
NodeIdPairAllocator(O.NodeIdPairAllocator),
|
|
OverflowedFunctions(O.OverflowedFunctions) {}
|
|
|
|
FunctionCallTrie &operator=(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT {
|
|
Nodes = std::move(O.Nodes);
|
|
Roots = std::move(O.Roots);
|
|
ShadowStack = std::move(O.ShadowStack);
|
|
NodeIdPairAllocator = O.NodeIdPairAllocator;
|
|
OverflowedFunctions = O.OverflowedFunctions;
|
|
return *this;
|
|
}
|
|
|
|
~FunctionCallTrie() XRAY_NEVER_INSTRUMENT {}
|
|
|
|
void enterFunction(const int32_t FId, uint64_t TSC,
|
|
uint16_t CPU) XRAY_NEVER_INSTRUMENT {
|
|
DCHECK_NE(FId, 0);
|
|
|
|
// If we're already overflowed the function call stack, do not bother
|
|
// attempting to record any more function entries.
|
|
if (UNLIKELY(OverflowedFunctions)) {
|
|
++OverflowedFunctions;
|
|
return;
|
|
}
|
|
|
|
// If this is the first function we've encountered, we want to set up the
|
|
// node(s) and treat it as a root.
|
|
if (UNLIKELY(ShadowStack.empty())) {
|
|
auto *NewRoot = Nodes.AppendEmplace(
|
|
nullptr, NodeIdPairArray(*NodeIdPairAllocator), 0u, 0u, FId);
|
|
if (UNLIKELY(NewRoot == nullptr))
|
|
return;
|
|
if (Roots.AppendEmplace(NewRoot) == nullptr) {
|
|
Nodes.trim(1);
|
|
return;
|
|
}
|
|
if (ShadowStack.AppendEmplace(TSC, NewRoot, CPU) == nullptr) {
|
|
Nodes.trim(1);
|
|
Roots.trim(1);
|
|
++OverflowedFunctions;
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// From this point on, we require that the stack is not empty.
|
|
DCHECK(!ShadowStack.empty());
|
|
auto TopNode = ShadowStack.back().NodePtr;
|
|
DCHECK_NE(TopNode, nullptr);
|
|
|
|
// If we've seen this callee before, then we access that node and place that
|
|
// on the top of the stack.
|
|
auto* Callee = TopNode->Callees.find_element(
|
|
[FId](const NodeIdPair &NR) { return NR.FId == FId; });
|
|
if (Callee != nullptr) {
|
|
CHECK_NE(Callee->NodePtr, nullptr);
|
|
if (ShadowStack.AppendEmplace(TSC, Callee->NodePtr, CPU) == nullptr)
|
|
++OverflowedFunctions;
|
|
return;
|
|
}
|
|
|
|
// This means we've never seen this stack before, create a new node here.
|
|
auto* NewNode = Nodes.AppendEmplace(
|
|
TopNode, NodeIdPairArray(*NodeIdPairAllocator), 0u, 0u, FId);
|
|
if (UNLIKELY(NewNode == nullptr))
|
|
return;
|
|
DCHECK_NE(NewNode, nullptr);
|
|
TopNode->Callees.AppendEmplace(NewNode, FId);
|
|
if (ShadowStack.AppendEmplace(TSC, NewNode, CPU) == nullptr)
|
|
++OverflowedFunctions;
|
|
return;
|
|
}
|
|
|
|
void exitFunction(int32_t FId, uint64_t TSC,
|
|
uint16_t CPU) XRAY_NEVER_INSTRUMENT {
|
|
// If we're exiting functions that have "overflowed" or don't fit into the
|
|
// stack due to allocator constraints, we then decrement that count first.
|
|
if (OverflowedFunctions) {
|
|
--OverflowedFunctions;
|
|
return;
|
|
}
|
|
|
|
// When we exit a function, we look up the ShadowStack to see whether we've
|
|
// entered this function before. We do as little processing here as we can,
|
|
// since most of the hard work would have already been done at function
|
|
// entry.
|
|
uint64_t CumulativeTreeTime = 0;
|
|
|
|
while (!ShadowStack.empty()) {
|
|
const auto &Top = ShadowStack.back();
|
|
auto TopNode = Top.NodePtr;
|
|
DCHECK_NE(TopNode, nullptr);
|
|
|
|
// We may encounter overflow on the TSC we're provided, which may end up
|
|
// being less than the TSC when we first entered the function.
|
|
//
|
|
// To get the accurate measurement of cycles, we need to check whether
|
|
// we've overflowed (TSC < Top.EntryTSC) and then account the difference
|
|
// between the entry TSC and the max for the TSC counter (max of uint64_t)
|
|
// then add the value of TSC. We can prove that the maximum delta we will
|
|
// get is at most the 64-bit unsigned value, since the difference between
|
|
// a TSC of 0 and a Top.EntryTSC of 1 is (numeric_limits<uint64_t>::max()
|
|
// - 1) + 1.
|
|
//
|
|
// NOTE: This assumes that TSCs are synchronised across CPUs.
|
|
// TODO: Count the number of times we've seen CPU migrations.
|
|
uint64_t LocalTime =
|
|
Top.EntryTSC > TSC
|
|
? (std::numeric_limits<uint64_t>::max() - Top.EntryTSC) + TSC
|
|
: TSC - Top.EntryTSC;
|
|
TopNode->CallCount++;
|
|
TopNode->CumulativeLocalTime += LocalTime - CumulativeTreeTime;
|
|
CumulativeTreeTime += LocalTime;
|
|
ShadowStack.trim(1);
|
|
|
|
// TODO: Update the histogram for the node.
|
|
if (TopNode->FId == FId)
|
|
break;
|
|
}
|
|
}
|
|
|
|
const RootArray &getRoots() const XRAY_NEVER_INSTRUMENT { return Roots; }
|
|
|
|
// The deepCopyInto operation will update the provided FunctionCallTrie by
|
|
// re-creating the contents of this particular FunctionCallTrie in the other
|
|
// FunctionCallTrie. It will do this using a Depth First Traversal from the
|
|
// roots, and while doing so recreating the traversal in the provided
|
|
// FunctionCallTrie.
|
|
//
|
|
// This operation will *not* destroy the state in `O`, and thus may cause some
|
|
// duplicate entries in `O` if it is not empty.
|
|
//
|
|
// This function is *not* thread-safe, and may require external
|
|
// synchronisation of both "this" and |O|.
|
|
//
|
|
// This function must *not* be called with a non-empty FunctionCallTrie |O|.
|
|
void deepCopyInto(FunctionCallTrie &O) const XRAY_NEVER_INSTRUMENT {
|
|
DCHECK(O.getRoots().empty());
|
|
|
|
// We then push the root into a stack, to use as the parent marker for new
|
|
// nodes we push in as we're traversing depth-first down the call tree.
|
|
struct NodeAndParent {
|
|
FunctionCallTrie::Node *Node;
|
|
FunctionCallTrie::Node *NewNode;
|
|
};
|
|
using Stack = Array<NodeAndParent>;
|
|
|
|
typename Stack::AllocatorType StackAllocator(
|
|
profilingFlags()->stack_allocator_max);
|
|
Stack DFSStack(StackAllocator);
|
|
|
|
for (const auto Root : getRoots()) {
|
|
// Add a node in O for this root.
|
|
auto NewRoot = O.Nodes.AppendEmplace(
|
|
nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), Root->CallCount,
|
|
Root->CumulativeLocalTime, Root->FId);
|
|
|
|
// Because we cannot allocate more memory we should bail out right away.
|
|
if (UNLIKELY(NewRoot == nullptr))
|
|
return;
|
|
|
|
if (UNLIKELY(O.Roots.Append(NewRoot) == nullptr))
|
|
return;
|
|
|
|
// TODO: Figure out what to do if we fail to allocate any more stack
|
|
// space. Maybe warn or report once?
|
|
if (DFSStack.AppendEmplace(Root, NewRoot) == nullptr)
|
|
return;
|
|
while (!DFSStack.empty()) {
|
|
NodeAndParent NP = DFSStack.back();
|
|
DCHECK_NE(NP.Node, nullptr);
|
|
DCHECK_NE(NP.NewNode, nullptr);
|
|
DFSStack.trim(1);
|
|
for (const auto Callee : NP.Node->Callees) {
|
|
auto NewNode = O.Nodes.AppendEmplace(
|
|
NP.NewNode, NodeIdPairArray(*O.NodeIdPairAllocator),
|
|
Callee.NodePtr->CallCount, Callee.NodePtr->CumulativeLocalTime,
|
|
Callee.FId);
|
|
if (UNLIKELY(NewNode == nullptr))
|
|
return;
|
|
if (UNLIKELY(NP.NewNode->Callees.AppendEmplace(NewNode, Callee.FId) ==
|
|
nullptr))
|
|
return;
|
|
if (UNLIKELY(DFSStack.AppendEmplace(Callee.NodePtr, NewNode) ==
|
|
nullptr))
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// The mergeInto operation will update the provided FunctionCallTrie by
|
|
// traversing the current trie's roots and updating (i.e. merging) the data in
|
|
// the nodes with the data in the target's nodes. If the node doesn't exist in
|
|
// the provided trie, we add a new one in the right position, and inherit the
|
|
// data from the original (current) trie, along with all its callees.
|
|
//
|
|
// This function is *not* thread-safe, and may require external
|
|
// synchronisation of both "this" and |O|.
|
|
void mergeInto(FunctionCallTrie &O) const XRAY_NEVER_INSTRUMENT {
|
|
struct NodeAndTarget {
|
|
FunctionCallTrie::Node *OrigNode;
|
|
FunctionCallTrie::Node *TargetNode;
|
|
};
|
|
using Stack = Array<NodeAndTarget>;
|
|
typename Stack::AllocatorType StackAllocator(
|
|
profilingFlags()->stack_allocator_max);
|
|
Stack DFSStack(StackAllocator);
|
|
|
|
for (const auto Root : getRoots()) {
|
|
Node *TargetRoot = nullptr;
|
|
auto R = O.Roots.find_element(
|
|
[&](const Node *Node) { return Node->FId == Root->FId; });
|
|
if (R == nullptr) {
|
|
TargetRoot = O.Nodes.AppendEmplace(
|
|
nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
|
|
Root->FId);
|
|
if (UNLIKELY(TargetRoot == nullptr))
|
|
return;
|
|
|
|
O.Roots.Append(TargetRoot);
|
|
} else {
|
|
TargetRoot = *R;
|
|
}
|
|
|
|
DFSStack.AppendEmplace(Root, TargetRoot);
|
|
while (!DFSStack.empty()) {
|
|
NodeAndTarget NT = DFSStack.back();
|
|
DCHECK_NE(NT.OrigNode, nullptr);
|
|
DCHECK_NE(NT.TargetNode, nullptr);
|
|
DFSStack.trim(1);
|
|
// TODO: Update the histogram as well when we have it ready.
|
|
NT.TargetNode->CallCount += NT.OrigNode->CallCount;
|
|
NT.TargetNode->CumulativeLocalTime += NT.OrigNode->CumulativeLocalTime;
|
|
for (const auto Callee : NT.OrigNode->Callees) {
|
|
auto TargetCallee = NT.TargetNode->Callees.find_element(
|
|
[&](const FunctionCallTrie::NodeIdPair &C) {
|
|
return C.FId == Callee.FId;
|
|
});
|
|
if (TargetCallee == nullptr) {
|
|
auto NewTargetNode = O.Nodes.AppendEmplace(
|
|
NT.TargetNode, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
|
|
Callee.FId);
|
|
|
|
if (UNLIKELY(NewTargetNode == nullptr))
|
|
return;
|
|
|
|
TargetCallee =
|
|
NT.TargetNode->Callees.AppendEmplace(NewTargetNode, Callee.FId);
|
|
}
|
|
DFSStack.AppendEmplace(Callee.NodePtr, TargetCallee->NodePtr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace __xray
|
|
|
|
#endif // XRAY_FUNCTION_CALL_TRIE_H
|