forked from OSchip/llvm-project
651 lines
22 KiB
C++
651 lines
22 KiB
C++
//===- FuzzerTracePC.cpp - PC tracing--------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// Trace PCs.
|
|
// This module implements __sanitizer_cov_trace_pc_guard[_init],
|
|
// the callback required for -fsanitize-coverage=trace-pc-guard instrumentation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "FuzzerTracePC.h"
|
|
#include "FuzzerBuiltins.h"
|
|
#include "FuzzerBuiltinsMsvc.h"
|
|
#include "FuzzerCorpus.h"
|
|
#include "FuzzerDefs.h"
|
|
#include "FuzzerDictionary.h"
|
|
#include "FuzzerExtFunctions.h"
|
|
#include "FuzzerIO.h"
|
|
#include "FuzzerUtil.h"
|
|
#include "FuzzerValueBitMap.h"
|
|
#include <set>
|
|
|
|
// The coverage counters and PCs.
|
|
// These are declared as global variables named "__sancov_*" to simplify
|
|
// experiments with inlined instrumentation.
|
|
alignas(64) ATTRIBUTE_INTERFACE
|
|
uint8_t __sancov_trace_pc_guard_8bit_counters[fuzzer::TracePC::kNumPCs];
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
uintptr_t __sancov_trace_pc_pcs[fuzzer::TracePC::kNumPCs];
|
|
|
|
// Used by -fsanitize-coverage=stack-depth to track stack depth
|
|
ATTRIBUTES_INTERFACE_TLS_INITIAL_EXEC uintptr_t __sancov_lowest_stack;
|
|
|
|
namespace fuzzer {
|
|
|
|
TracePC TPC;
|
|
|
|
uint8_t *TracePC::Counters() const {
|
|
return __sancov_trace_pc_guard_8bit_counters;
|
|
}
|
|
|
|
uintptr_t *TracePC::PCs() const {
|
|
return __sancov_trace_pc_pcs;
|
|
}
|
|
|
|
size_t TracePC::GetTotalPCCoverage() {
|
|
if (ObservedPCs.size())
|
|
return ObservedPCs.size();
|
|
size_t Res = 0;
|
|
for (size_t i = 1, N = GetNumPCs(); i < N; i++)
|
|
if (PCs()[i])
|
|
Res++;
|
|
return Res;
|
|
}
|
|
|
|
|
|
void TracePC::HandleInline8bitCountersInit(uint8_t *Start, uint8_t *Stop) {
|
|
if (Start == Stop) return;
|
|
if (NumModulesWithInline8bitCounters &&
|
|
ModuleCounters[NumModulesWithInline8bitCounters-1].Start == Start) return;
|
|
assert(NumModulesWithInline8bitCounters <
|
|
sizeof(ModuleCounters) / sizeof(ModuleCounters[0]));
|
|
ModuleCounters[NumModulesWithInline8bitCounters++] = {Start, Stop};
|
|
NumInline8bitCounters += Stop - Start;
|
|
}
|
|
|
|
void TracePC::HandlePCsInit(const uintptr_t *Start, const uintptr_t *Stop) {
|
|
const PCTableEntry *B = reinterpret_cast<const PCTableEntry *>(Start);
|
|
const PCTableEntry *E = reinterpret_cast<const PCTableEntry *>(Stop);
|
|
if (NumPCTables && ModulePCTable[NumPCTables - 1].Start == B) return;
|
|
assert(NumPCTables < sizeof(ModulePCTable) / sizeof(ModulePCTable[0]));
|
|
ModulePCTable[NumPCTables++] = {B, E};
|
|
NumPCsInPCTables += E - B;
|
|
}
|
|
|
|
void TracePC::HandleInit(uint32_t *Start, uint32_t *Stop) {
|
|
if (Start == Stop || *Start) return;
|
|
assert(NumModules < sizeof(Modules) / sizeof(Modules[0]));
|
|
for (uint32_t *P = Start; P < Stop; P++) {
|
|
NumGuards++;
|
|
if (NumGuards == kNumPCs) {
|
|
RawPrint(
|
|
"WARNING: The binary has too many instrumented PCs.\n"
|
|
" You may want to reduce the size of the binary\n"
|
|
" for more efficient fuzzing and precise coverage data\n");
|
|
}
|
|
*P = NumGuards % kNumPCs;
|
|
}
|
|
Modules[NumModules].Start = Start;
|
|
Modules[NumModules].Stop = Stop;
|
|
NumModules++;
|
|
}
|
|
|
|
void TracePC::PrintModuleInfo() {
|
|
if (NumGuards) {
|
|
Printf("INFO: Loaded %zd modules (%zd guards): ", NumModules, NumGuards);
|
|
for (size_t i = 0; i < NumModules; i++)
|
|
Printf("%zd [%p, %p), ", Modules[i].Stop - Modules[i].Start,
|
|
Modules[i].Start, Modules[i].Stop);
|
|
Printf("\n");
|
|
}
|
|
if (NumModulesWithInline8bitCounters) {
|
|
Printf("INFO: Loaded %zd modules (%zd inline 8-bit counters): ",
|
|
NumModulesWithInline8bitCounters, NumInline8bitCounters);
|
|
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++)
|
|
Printf("%zd [%p, %p), ", ModuleCounters[i].Stop - ModuleCounters[i].Start,
|
|
ModuleCounters[i].Start, ModuleCounters[i].Stop);
|
|
Printf("\n");
|
|
}
|
|
if (NumPCTables) {
|
|
Printf("INFO: Loaded %zd PC tables (%zd PCs): ", NumPCTables,
|
|
NumPCsInPCTables);
|
|
for (size_t i = 0; i < NumPCTables; i++) {
|
|
Printf("%zd [%p,%p), ", ModulePCTable[i].Stop - ModulePCTable[i].Start,
|
|
ModulePCTable[i].Start, ModulePCTable[i].Stop);
|
|
}
|
|
Printf("\n");
|
|
|
|
if ((NumGuards && NumGuards != NumPCsInPCTables) ||
|
|
(NumInline8bitCounters && NumInline8bitCounters != NumPCsInPCTables)) {
|
|
Printf("ERROR: The size of coverage PC tables does not match the\n"
|
|
"number of instrumented PCs. This might be a compiler bug,\n"
|
|
"please contact the libFuzzer developers.\n"
|
|
"Also check https://bugs.llvm.org/show_bug.cgi?id=34636\n"
|
|
"for possible workarounds (tl;dr: don't use the old GNU ld)\n");
|
|
_Exit(1);
|
|
}
|
|
}
|
|
if (size_t NumExtraCounters = ExtraCountersEnd() - ExtraCountersBegin())
|
|
Printf("INFO: %zd Extra Counters\n", NumExtraCounters);
|
|
}
|
|
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) {
|
|
const uintptr_t kBits = 12;
|
|
const uintptr_t kMask = (1 << kBits) - 1;
|
|
uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits);
|
|
ValueProfileMap.AddValueModPrime(Idx);
|
|
}
|
|
|
|
/// \return the address of the previous instruction.
|
|
/// Note: the logic is copied from `sanitizer_common/sanitizer_stacktrace.h`
|
|
inline ALWAYS_INLINE uintptr_t GetPreviousInstructionPc(uintptr_t PC) {
|
|
#if defined(__arm__)
|
|
// T32 (Thumb) branch instructions might be 16 or 32 bit long,
|
|
// so we return (pc-2) in that case in order to be safe.
|
|
// For A32 mode we return (pc-4) because all instructions are 32 bit long.
|
|
return (PC - 3) & (~1);
|
|
#elif defined(__powerpc__) || defined(__powerpc64__) || defined(__aarch64__)
|
|
// PCs are always 4 byte aligned.
|
|
return PC - 4;
|
|
#elif defined(__sparc__) || defined(__mips__)
|
|
return PC - 8;
|
|
#else
|
|
return PC - 1;
|
|
#endif
|
|
}
|
|
|
|
/// \return the address of the next instruction.
|
|
/// Note: the logic is copied from `sanitizer_common/sanitizer_stacktrace.cc`
|
|
inline ALWAYS_INLINE uintptr_t GetNextInstructionPc(uintptr_t PC) {
|
|
#if defined(__mips__)
|
|
return PC + 8;
|
|
#elif defined(__powerpc__) || defined(__sparc__) || defined(__arm__) || \
|
|
defined(__aarch64__)
|
|
return PC + 4;
|
|
#else
|
|
return PC + 1;
|
|
#endif
|
|
}
|
|
|
|
void TracePC::UpdateObservedPCs() {
|
|
Vector<uintptr_t> CoveredFuncs;
|
|
auto ObservePC = [&](uintptr_t PC) {
|
|
if (ObservedPCs.insert(PC).second && DoPrintNewPCs) {
|
|
PrintPC("\tNEW_PC: %p %F %L", "\tNEW_PC: %p", GetNextInstructionPc(PC));
|
|
Printf("\n");
|
|
}
|
|
};
|
|
|
|
auto Observe = [&](const PCTableEntry &TE) {
|
|
if (TE.PCFlags & 1)
|
|
if (++ObservedFuncs[TE.PC] == 1 && NumPrintNewFuncs)
|
|
CoveredFuncs.push_back(TE.PC);
|
|
ObservePC(TE.PC);
|
|
};
|
|
|
|
if (NumPCsInPCTables) {
|
|
if (NumInline8bitCounters == NumPCsInPCTables) {
|
|
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) {
|
|
uint8_t *Beg = ModuleCounters[i].Start;
|
|
size_t Size = ModuleCounters[i].Stop - Beg;
|
|
assert(Size ==
|
|
(size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start));
|
|
for (size_t j = 0; j < Size; j++)
|
|
if (Beg[j])
|
|
Observe(ModulePCTable[i].Start[j]);
|
|
}
|
|
} else if (NumGuards == NumPCsInPCTables) {
|
|
size_t GuardIdx = 1;
|
|
for (size_t i = 0; i < NumModules; i++) {
|
|
uint32_t *Beg = Modules[i].Start;
|
|
size_t Size = Modules[i].Stop - Beg;
|
|
assert(Size ==
|
|
(size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start));
|
|
for (size_t j = 0; j < Size; j++, GuardIdx++)
|
|
if (Counters()[GuardIdx])
|
|
Observe(ModulePCTable[i].Start[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0, N = Min(CoveredFuncs.size(), NumPrintNewFuncs); i < N;
|
|
i++) {
|
|
Printf("\tNEW_FUNC[%zd/%zd]: ", i + 1, CoveredFuncs.size());
|
|
PrintPC("%p %F %L", "%p", GetNextInstructionPc(CoveredFuncs[i]));
|
|
Printf("\n");
|
|
}
|
|
}
|
|
|
|
|
|
static std::string GetModuleName(uintptr_t PC) {
|
|
char ModulePathRaw[4096] = ""; // What's PATH_MAX in portable C++?
|
|
void *OffsetRaw = nullptr;
|
|
if (!EF->__sanitizer_get_module_and_offset_for_pc(
|
|
reinterpret_cast<void *>(PC), ModulePathRaw,
|
|
sizeof(ModulePathRaw), &OffsetRaw))
|
|
return "";
|
|
return ModulePathRaw;
|
|
}
|
|
|
|
template<class CallBack>
|
|
void TracePC::IterateCoveredFunctions(CallBack CB) {
|
|
for (size_t i = 0; i < NumPCTables; i++) {
|
|
auto &M = ModulePCTable[i];
|
|
assert(M.Start < M.Stop);
|
|
auto ModuleName = GetModuleName(M.Start->PC);
|
|
for (auto NextFE = M.Start; NextFE < M.Stop; ) {
|
|
auto FE = NextFE;
|
|
assert((FE->PCFlags & 1) && "Not a function entry point");
|
|
do {
|
|
NextFE++;
|
|
} while (NextFE < M.Stop && !(NextFE->PCFlags & 1));
|
|
if (ObservedFuncs.count(FE->PC))
|
|
CB(FE, NextFE, ObservedFuncs[FE->PC]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TracePC::SetFocusFunction(const std::string &FuncName) {
|
|
// This function should be called once.
|
|
assert(FocusFunction.first > NumModulesWithInline8bitCounters);
|
|
if (FuncName.empty())
|
|
return;
|
|
for (size_t M = 0; M < NumModulesWithInline8bitCounters; M++) {
|
|
auto &PCTE = ModulePCTable[M];
|
|
size_t N = PCTE.Stop - PCTE.Start;
|
|
for (size_t I = 0; I < N; I++) {
|
|
if (!(PCTE.Start[I].PCFlags & 1)) continue; // not a function entry.
|
|
auto Name = DescribePC("%F", GetNextInstructionPc(PCTE.Start[I].PC));
|
|
if (Name[0] == 'i' && Name[1] == 'n' && Name[2] == ' ')
|
|
Name = Name.substr(3, std::string::npos);
|
|
if (FuncName != Name) continue;
|
|
Printf("INFO: Focus function is set to '%s'\n", Name.c_str());
|
|
FocusFunction = {M, I};
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool TracePC::ObservedFocusFunction() {
|
|
size_t I = FocusFunction.first;
|
|
size_t J = FocusFunction.second;
|
|
if (I >= NumModulesWithInline8bitCounters)
|
|
return false;
|
|
auto &MC = ModuleCounters[I];
|
|
size_t Size = MC.Stop - MC.Start;
|
|
if (J >= Size)
|
|
return false;
|
|
return MC.Start[J] != 0;
|
|
}
|
|
|
|
void TracePC::PrintCoverage() {
|
|
if (!EF->__sanitizer_symbolize_pc ||
|
|
!EF->__sanitizer_get_module_and_offset_for_pc) {
|
|
Printf("INFO: __sanitizer_symbolize_pc or "
|
|
"__sanitizer_get_module_and_offset_for_pc is not available,"
|
|
" not printing coverage\n");
|
|
return;
|
|
}
|
|
Printf("COVERAGE:\n");
|
|
auto CoveredFunctionCallback = [&](const PCTableEntry *First,
|
|
const PCTableEntry *Last,
|
|
uintptr_t Counter) {
|
|
assert(First < Last);
|
|
auto VisualizePC = GetNextInstructionPc(First->PC);
|
|
std::string FileStr = DescribePC("%s", VisualizePC);
|
|
if (!IsInterestingCoverageFile(FileStr))
|
|
return;
|
|
std::string FunctionStr = DescribePC("%F", VisualizePC);
|
|
if (FunctionStr.find("in ") == 0)
|
|
FunctionStr = FunctionStr.substr(3);
|
|
std::string LineStr = DescribePC("%l", VisualizePC);
|
|
size_t Line = std::stoul(LineStr);
|
|
size_t NumEdges = Last - First;
|
|
Vector<uintptr_t> UncoveredPCs;
|
|
for (auto TE = First; TE < Last; TE++)
|
|
if (!ObservedPCs.count(TE->PC))
|
|
UncoveredPCs.push_back(TE->PC);
|
|
Printf("COVERED_FUNC: hits: %zd", Counter);
|
|
Printf(" edges: %zd/%zd", NumEdges - UncoveredPCs.size(), NumEdges);
|
|
Printf(" %s %s:%zd\n", FunctionStr.c_str(), FileStr.c_str(), Line);
|
|
for (auto PC: UncoveredPCs)
|
|
Printf(" UNCOVERED_PC: %s\n",
|
|
DescribePC("%s:%l", GetNextInstructionPc(PC)).c_str());
|
|
};
|
|
|
|
IterateCoveredFunctions(CoveredFunctionCallback);
|
|
}
|
|
|
|
void TracePC::DumpCoverage() {
|
|
if (EF->__sanitizer_dump_coverage) {
|
|
Vector<uintptr_t> PCsCopy(GetNumPCs());
|
|
for (size_t i = 0; i < GetNumPCs(); i++)
|
|
PCsCopy[i] = PCs()[i] ? GetPreviousInstructionPc(PCs()[i]) : 0;
|
|
EF->__sanitizer_dump_coverage(PCsCopy.data(), PCsCopy.size());
|
|
}
|
|
}
|
|
|
|
// Value profile.
|
|
// We keep track of various values that affect control flow.
|
|
// These values are inserted into a bit-set-based hash map.
|
|
// Every new bit in the map is treated as a new coverage.
|
|
//
|
|
// For memcmp/strcmp/etc the interesting value is the length of the common
|
|
// prefix of the parameters.
|
|
// For cmp instructions the interesting value is a XOR of the parameters.
|
|
// The interesting value is mixed up with the PC and is then added to the map.
|
|
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2,
|
|
size_t n, bool StopAtZero) {
|
|
if (!n) return;
|
|
size_t Len = std::min(n, Word::GetMaxSize());
|
|
const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1);
|
|
const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2);
|
|
uint8_t B1[Word::kMaxSize];
|
|
uint8_t B2[Word::kMaxSize];
|
|
// Copy the data into locals in this non-msan-instrumented function
|
|
// to avoid msan complaining further.
|
|
size_t Hash = 0; // Compute some simple hash of both strings.
|
|
for (size_t i = 0; i < Len; i++) {
|
|
B1[i] = A1[i];
|
|
B2[i] = A2[i];
|
|
size_t T = B1[i];
|
|
Hash ^= (T << 8) | B2[i];
|
|
}
|
|
size_t I = 0;
|
|
for (; I < Len; I++)
|
|
if (B1[I] != B2[I] || (StopAtZero && B1[I] == 0))
|
|
break;
|
|
size_t PC = reinterpret_cast<size_t>(caller_pc);
|
|
size_t Idx = (PC & 4095) | (I << 12);
|
|
ValueProfileMap.AddValue(Idx);
|
|
TORCW.Insert(Idx ^ Hash, Word(B1, Len), Word(B2, Len));
|
|
}
|
|
|
|
template <class T>
|
|
ATTRIBUTE_TARGET_POPCNT ALWAYS_INLINE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void TracePC::HandleCmp(uintptr_t PC, T Arg1, T Arg2) {
|
|
uint64_t ArgXor = Arg1 ^ Arg2;
|
|
if (sizeof(T) == 4)
|
|
TORC4.Insert(ArgXor, Arg1, Arg2);
|
|
else if (sizeof(T) == 8)
|
|
TORC8.Insert(ArgXor, Arg1, Arg2);
|
|
uint64_t HammingDistance = Popcountll(ArgXor); // [0,64]
|
|
uint64_t AbsoluteDistance = (Arg1 == Arg2 ? 0 : Clzll(Arg1 - Arg2) + 1);
|
|
ValueProfileMap.AddValue(PC * 128 + HammingDistance);
|
|
ValueProfileMap.AddValue(PC * 128 + 64 + AbsoluteDistance);
|
|
}
|
|
|
|
static size_t InternalStrnlen(const char *S, size_t MaxLen) {
|
|
size_t Len = 0;
|
|
for (; Len < MaxLen && S[Len]; Len++) {}
|
|
return Len;
|
|
}
|
|
|
|
// Finds min of (strlen(S1), strlen(S2)).
|
|
// Needed bacause one of these strings may actually be non-zero terminated.
|
|
static size_t InternalStrnlen2(const char *S1, const char *S2) {
|
|
size_t Len = 0;
|
|
for (; S1[Len] && S2[Len]; Len++) {}
|
|
return Len;
|
|
}
|
|
|
|
void TracePC::ClearInlineCounters() {
|
|
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) {
|
|
uint8_t *Beg = ModuleCounters[i].Start;
|
|
size_t Size = ModuleCounters[i].Stop - Beg;
|
|
memset(Beg, 0, Size);
|
|
}
|
|
}
|
|
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void TracePC::RecordInitialStack() {
|
|
int stack;
|
|
__sancov_lowest_stack = InitialStack = reinterpret_cast<uintptr_t>(&stack);
|
|
}
|
|
|
|
uintptr_t TracePC::GetMaxStackOffset() const {
|
|
return InitialStack - __sancov_lowest_stack; // Stack grows down
|
|
}
|
|
|
|
} // namespace fuzzer
|
|
|
|
extern "C" {
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
uint32_t Idx = *Guard;
|
|
__sancov_trace_pc_pcs[Idx] = PC;
|
|
__sancov_trace_pc_guard_8bit_counters[Idx]++;
|
|
}
|
|
|
|
// Best-effort support for -fsanitize-coverage=trace-pc, which is available
|
|
// in both Clang and GCC.
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void __sanitizer_cov_trace_pc() {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
uintptr_t Idx = PC & (((uintptr_t)1 << fuzzer::TracePC::kTracePcBits) - 1);
|
|
__sancov_trace_pc_pcs[Idx] = PC;
|
|
__sancov_trace_pc_guard_8bit_counters[Idx]++;
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) {
|
|
fuzzer::TPC.HandleInit(Start, Stop);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
void __sanitizer_cov_8bit_counters_init(uint8_t *Start, uint8_t *Stop) {
|
|
fuzzer::TPC.HandleInline8bitCountersInit(Start, Stop);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
void __sanitizer_cov_pcs_init(const uintptr_t *pcs_beg,
|
|
const uintptr_t *pcs_end) {
|
|
fuzzer::TPC.HandlePCsInit(pcs_beg, pcs_end);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCallerCallee(PC, Callee);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
// Now the __sanitizer_cov_trace_const_cmp[1248] callbacks just mimic
|
|
// the behaviour of __sanitizer_cov_trace_cmp[1248] ones. This, however,
|
|
// should be changed later to make full use of instrumentation.
|
|
void __sanitizer_cov_trace_const_cmp8(uint64_t Arg1, uint64_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_const_cmp4(uint32_t Arg1, uint32_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_const_cmp2(uint16_t Arg1, uint16_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_const_cmp1(uint8_t Arg1, uint8_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) {
|
|
uint64_t N = Cases[0];
|
|
uint64_t ValSizeInBits = Cases[1];
|
|
uint64_t *Vals = Cases + 2;
|
|
// Skip the most common and the most boring case.
|
|
if (Vals[N - 1] < 256 && Val < 256)
|
|
return;
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
size_t i;
|
|
uint64_t Token = 0;
|
|
for (i = 0; i < N; i++) {
|
|
Token = Val ^ Vals[i];
|
|
if (Val < Vals[i])
|
|
break;
|
|
}
|
|
|
|
if (ValSizeInBits == 16)
|
|
fuzzer::TPC.HandleCmp(PC + i, static_cast<uint16_t>(Token), (uint16_t)(0));
|
|
else if (ValSizeInBits == 32)
|
|
fuzzer::TPC.HandleCmp(PC + i, static_cast<uint32_t>(Token), (uint32_t)(0));
|
|
else
|
|
fuzzer::TPC.HandleCmp(PC + i, Token, (uint64_t)(0));
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_div4(uint32_t Val) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Val, (uint32_t)0);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_div8(uint64_t Val) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Val, (uint64_t)0);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_gep(uintptr_t Idx) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Idx, (uintptr_t)0);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1,
|
|
const void *s2, size_t n, int result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
if (result == 0) return; // No reason to mutate.
|
|
if (n <= 1) return; // Not interesting.
|
|
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/false);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1,
|
|
const char *s2, size_t n, int result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
if (result == 0) return; // No reason to mutate.
|
|
size_t Len1 = fuzzer::InternalStrnlen(s1, n);
|
|
size_t Len2 = fuzzer::InternalStrnlen(s2, n);
|
|
n = std::min(n, Len1);
|
|
n = std::min(n, Len2);
|
|
if (n <= 1) return; // Not interesting.
|
|
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/true);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1,
|
|
const char *s2, int result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
if (result == 0) return; // No reason to mutate.
|
|
size_t N = fuzzer::InternalStrnlen2(s1, s2);
|
|
if (N <= 1) return; // Not interesting.
|
|
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, N, /*StopAtZero*/true);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strncasecmp(void *called_pc, const char *s1,
|
|
const char *s2, size_t n, int result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
return __sanitizer_weak_hook_strncmp(called_pc, s1, s2, n, result);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strcasecmp(void *called_pc, const char *s1,
|
|
const char *s2, int result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
return __sanitizer_weak_hook_strcmp(called_pc, s1, s2, result);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strstr(void *called_pc, const char *s1,
|
|
const char *s2, char *result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), strlen(s2));
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strcasestr(void *called_pc, const char *s1,
|
|
const char *s2, char *result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), strlen(s2));
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_memmem(void *called_pc, const void *s1, size_t len1,
|
|
const void *s2, size_t len2, void *result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), len2);
|
|
}
|
|
} // extern "C"
|