llvm-project/clang/lib/StaticAnalyzer/Core/PathDiagnostic.cpp

1423 lines
48 KiB
C++

//===- PathDiagnostic.cpp - Path-Specific Diagnostic Handling -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PathDiagnostic-related interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstring>
#include <memory>
#include <utility>
#include <vector>
using namespace clang;
using namespace ento;
bool PathDiagnosticMacroPiece::containsEvent() const {
for (const auto &P : subPieces) {
if (isa<PathDiagnosticEventPiece>(*P))
return true;
if (const auto *MP = dyn_cast<PathDiagnosticMacroPiece>(P.get()))
if (MP->containsEvent())
return true;
}
return false;
}
static StringRef StripTrailingDots(StringRef s) {
for (StringRef::size_type i = s.size(); i != 0; --i)
if (s[i - 1] != '.')
return s.substr(0, i);
return {};
}
PathDiagnosticPiece::PathDiagnosticPiece(StringRef s,
Kind k, DisplayHint hint)
: str(StripTrailingDots(s)), kind(k), Hint(hint) {}
PathDiagnosticPiece::PathDiagnosticPiece(Kind k, DisplayHint hint)
: kind(k), Hint(hint) {}
PathDiagnosticPiece::~PathDiagnosticPiece() = default;
PathDiagnosticEventPiece::~PathDiagnosticEventPiece() = default;
PathDiagnosticCallPiece::~PathDiagnosticCallPiece() = default;
PathDiagnosticControlFlowPiece::~PathDiagnosticControlFlowPiece() = default;
PathDiagnosticMacroPiece::~PathDiagnosticMacroPiece() = default;
PathDiagnosticNotePiece::~PathDiagnosticNotePiece() = default;
void PathPieces::flattenTo(PathPieces &Primary, PathPieces &Current,
bool ShouldFlattenMacros) const {
for (auto &Piece : *this) {
switch (Piece->getKind()) {
case PathDiagnosticPiece::Call: {
auto &Call = cast<PathDiagnosticCallPiece>(*Piece);
if (auto CallEnter = Call.getCallEnterEvent())
Current.push_back(std::move(CallEnter));
Call.path.flattenTo(Primary, Primary, ShouldFlattenMacros);
if (auto callExit = Call.getCallExitEvent())
Current.push_back(std::move(callExit));
break;
}
case PathDiagnosticPiece::Macro: {
auto &Macro = cast<PathDiagnosticMacroPiece>(*Piece);
if (ShouldFlattenMacros) {
Macro.subPieces.flattenTo(Primary, Primary, ShouldFlattenMacros);
} else {
Current.push_back(Piece);
PathPieces NewPath;
Macro.subPieces.flattenTo(Primary, NewPath, ShouldFlattenMacros);
// FIXME: This probably shouldn't mutate the original path piece.
Macro.subPieces = NewPath;
}
break;
}
case PathDiagnosticPiece::Event:
case PathDiagnosticPiece::ControlFlow:
case PathDiagnosticPiece::Note:
Current.push_back(Piece);
break;
}
}
}
PathDiagnostic::~PathDiagnostic() = default;
PathDiagnostic::PathDiagnostic(
StringRef CheckName, const Decl *declWithIssue, StringRef bugtype,
StringRef verboseDesc, StringRef shortDesc, StringRef category,
PathDiagnosticLocation LocationToUnique, const Decl *DeclToUnique,
std::unique_ptr<FilesToLineNumsMap> ExecutedLines)
: CheckName(CheckName), DeclWithIssue(declWithIssue),
BugType(StripTrailingDots(bugtype)),
VerboseDesc(StripTrailingDots(verboseDesc)),
ShortDesc(StripTrailingDots(shortDesc)),
Category(StripTrailingDots(category)), UniqueingLoc(LocationToUnique),
UniqueingDecl(DeclToUnique), ExecutedLines(std::move(ExecutedLines)),
path(pathImpl) {}
static PathDiagnosticCallPiece *
getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
const SourceManager &SMgr) {
SourceLocation CallLoc = CP->callEnter.asLocation();
// If the call is within a macro, don't do anything (for now).
if (CallLoc.isMacroID())
return nullptr;
assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
"The call piece should not be in a header file.");
// Check if CP represents a path through a function outside of the main file.
if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr))
return CP;
const PathPieces &Path = CP->path;
if (Path.empty())
return nullptr;
// Check if the last piece in the callee path is a call to a function outside
// of the main file.
if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
return getFirstStackedCallToHeaderFile(CPInner, SMgr);
// Otherwise, the last piece is in the main file.
return nullptr;
}
void PathDiagnostic::resetDiagnosticLocationToMainFile() {
if (path.empty())
return;
PathDiagnosticPiece *LastP = path.back().get();
assert(LastP);
const SourceManager &SMgr = LastP->getLocation().getManager();
// We only need to check if the report ends inside headers, if the last piece
// is a call piece.
if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
CP = getFirstStackedCallToHeaderFile(CP, SMgr);
if (CP) {
// Mark the piece.
CP->setAsLastInMainSourceFile();
// Update the path diagnostic message.
const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
if (ND) {
SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
os << " (within a call to '" << ND->getDeclName() << "')";
appendToDesc(os.str());
}
// Reset the report containing declaration and location.
DeclWithIssue = CP->getCaller();
Loc = CP->getLocation();
return;
}
}
}
void PathDiagnosticConsumer::anchor() {}
PathDiagnosticConsumer::~PathDiagnosticConsumer() {
// Delete the contents of the FoldingSet if it isn't empty already.
for (auto &Diag : Diags)
delete &Diag;
}
void PathDiagnosticConsumer::HandlePathDiagnostic(
std::unique_ptr<PathDiagnostic> D) {
if (!D || D->path.empty())
return;
// We need to flatten the locations (convert Stmt* to locations) because
// the referenced statements may be freed by the time the diagnostics
// are emitted.
D->flattenLocations();
// If the PathDiagnosticConsumer does not support diagnostics that
// cross file boundaries, prune out such diagnostics now.
if (!supportsCrossFileDiagnostics()) {
// Verify that the entire path is from the same FileID.
FileID FID;
const SourceManager &SMgr = D->path.front()->getLocation().getManager();
SmallVector<const PathPieces *, 5> WorkList;
WorkList.push_back(&D->path);
SmallString<128> buf;
llvm::raw_svector_ostream warning(buf);
warning << "warning: Path diagnostic report is not generated. Current "
<< "output format does not support diagnostics that cross file "
<< "boundaries. Refer to --analyzer-output for valid output "
<< "formats\n";
while (!WorkList.empty()) {
const PathPieces &path = *WorkList.pop_back_val();
for (const auto &I : path) {
const PathDiagnosticPiece *piece = I.get();
FullSourceLoc L = piece->getLocation().asLocation().getExpansionLoc();
if (FID.isInvalid()) {
FID = SMgr.getFileID(L);
} else if (SMgr.getFileID(L) != FID) {
llvm::errs() << warning.str();
return;
}
// Check the source ranges.
ArrayRef<SourceRange> Ranges = piece->getRanges();
for (const auto &I : Ranges) {
SourceLocation L = SMgr.getExpansionLoc(I.getBegin());
if (!L.isFileID() || SMgr.getFileID(L) != FID) {
llvm::errs() << warning.str();
return;
}
L = SMgr.getExpansionLoc(I.getEnd());
if (!L.isFileID() || SMgr.getFileID(L) != FID) {
llvm::errs() << warning.str();
return;
}
}
if (const auto *call = dyn_cast<PathDiagnosticCallPiece>(piece))
WorkList.push_back(&call->path);
else if (const auto *macro = dyn_cast<PathDiagnosticMacroPiece>(piece))
WorkList.push_back(&macro->subPieces);
}
}
if (FID.isInvalid())
return; // FIXME: Emit a warning?
}
// Profile the node to see if we already have something matching it
llvm::FoldingSetNodeID profile;
D->Profile(profile);
void *InsertPos = nullptr;
if (PathDiagnostic *orig = Diags.FindNodeOrInsertPos(profile, InsertPos)) {
// Keep the PathDiagnostic with the shorter path.
// Note, the enclosing routine is called in deterministic order, so the
// results will be consistent between runs (no reason to break ties if the
// size is the same).
const unsigned orig_size = orig->full_size();
const unsigned new_size = D->full_size();
if (orig_size <= new_size)
return;
assert(orig != D.get());
Diags.RemoveNode(orig);
delete orig;
}
Diags.InsertNode(D.release());
}
static Optional<bool> comparePath(const PathPieces &X, const PathPieces &Y);
static Optional<bool>
compareControlFlow(const PathDiagnosticControlFlowPiece &X,
const PathDiagnosticControlFlowPiece &Y) {
FullSourceLoc XSL = X.getStartLocation().asLocation();
FullSourceLoc YSL = Y.getStartLocation().asLocation();
if (XSL != YSL)
return XSL.isBeforeInTranslationUnitThan(YSL);
FullSourceLoc XEL = X.getEndLocation().asLocation();
FullSourceLoc YEL = Y.getEndLocation().asLocation();
if (XEL != YEL)
return XEL.isBeforeInTranslationUnitThan(YEL);
return None;
}
static Optional<bool> compareMacro(const PathDiagnosticMacroPiece &X,
const PathDiagnosticMacroPiece &Y) {
return comparePath(X.subPieces, Y.subPieces);
}
static Optional<bool> compareCall(const PathDiagnosticCallPiece &X,
const PathDiagnosticCallPiece &Y) {
FullSourceLoc X_CEL = X.callEnter.asLocation();
FullSourceLoc Y_CEL = Y.callEnter.asLocation();
if (X_CEL != Y_CEL)
return X_CEL.isBeforeInTranslationUnitThan(Y_CEL);
FullSourceLoc X_CEWL = X.callEnterWithin.asLocation();
FullSourceLoc Y_CEWL = Y.callEnterWithin.asLocation();
if (X_CEWL != Y_CEWL)
return X_CEWL.isBeforeInTranslationUnitThan(Y_CEWL);
FullSourceLoc X_CRL = X.callReturn.asLocation();
FullSourceLoc Y_CRL = Y.callReturn.asLocation();
if (X_CRL != Y_CRL)
return X_CRL.isBeforeInTranslationUnitThan(Y_CRL);
return comparePath(X.path, Y.path);
}
static Optional<bool> comparePiece(const PathDiagnosticPiece &X,
const PathDiagnosticPiece &Y) {
if (X.getKind() != Y.getKind())
return X.getKind() < Y.getKind();
FullSourceLoc XL = X.getLocation().asLocation();
FullSourceLoc YL = Y.getLocation().asLocation();
if (XL != YL)
return XL.isBeforeInTranslationUnitThan(YL);
if (X.getString() != Y.getString())
return X.getString() < Y.getString();
if (X.getRanges().size() != Y.getRanges().size())
return X.getRanges().size() < Y.getRanges().size();
const SourceManager &SM = XL.getManager();
for (unsigned i = 0, n = X.getRanges().size(); i < n; ++i) {
SourceRange XR = X.getRanges()[i];
SourceRange YR = Y.getRanges()[i];
if (XR != YR) {
if (XR.getBegin() != YR.getBegin())
return SM.isBeforeInTranslationUnit(XR.getBegin(), YR.getBegin());
return SM.isBeforeInTranslationUnit(XR.getEnd(), YR.getEnd());
}
}
switch (X.getKind()) {
case PathDiagnosticPiece::ControlFlow:
return compareControlFlow(cast<PathDiagnosticControlFlowPiece>(X),
cast<PathDiagnosticControlFlowPiece>(Y));
case PathDiagnosticPiece::Event:
case PathDiagnosticPiece::Note:
return None;
case PathDiagnosticPiece::Macro:
return compareMacro(cast<PathDiagnosticMacroPiece>(X),
cast<PathDiagnosticMacroPiece>(Y));
case PathDiagnosticPiece::Call:
return compareCall(cast<PathDiagnosticCallPiece>(X),
cast<PathDiagnosticCallPiece>(Y));
}
llvm_unreachable("all cases handled");
}
static Optional<bool> comparePath(const PathPieces &X, const PathPieces &Y) {
if (X.size() != Y.size())
return X.size() < Y.size();
PathPieces::const_iterator X_I = X.begin(), X_end = X.end();
PathPieces::const_iterator Y_I = Y.begin(), Y_end = Y.end();
for ( ; X_I != X_end && Y_I != Y_end; ++X_I, ++Y_I) {
Optional<bool> b = comparePiece(**X_I, **Y_I);
if (b.hasValue())
return b.getValue();
}
return None;
}
static bool compareCrossTUSourceLocs(FullSourceLoc XL, FullSourceLoc YL) {
std::pair<FileID, unsigned> XOffs = XL.getDecomposedLoc();
std::pair<FileID, unsigned> YOffs = YL.getDecomposedLoc();
const SourceManager &SM = XL.getManager();
std::pair<bool, bool> InSameTU = SM.isInTheSameTranslationUnit(XOffs, YOffs);
if (InSameTU.first)
return XL.isBeforeInTranslationUnitThan(YL);
const FileEntry *XFE = SM.getFileEntryForID(XL.getSpellingLoc().getFileID());
const FileEntry *YFE = SM.getFileEntryForID(YL.getSpellingLoc().getFileID());
if (!XFE || !YFE)
return XFE && !YFE;
int NameCmp = XFE->getName().compare(YFE->getName());
if (NameCmp != 0)
return NameCmp == -1;
// Last resort: Compare raw file IDs that are possibly expansions.
return XL.getFileID() < YL.getFileID();
}
static bool compare(const PathDiagnostic &X, const PathDiagnostic &Y) {
FullSourceLoc XL = X.getLocation().asLocation();
FullSourceLoc YL = Y.getLocation().asLocation();
if (XL != YL)
return compareCrossTUSourceLocs(XL, YL);
if (X.getBugType() != Y.getBugType())
return X.getBugType() < Y.getBugType();
if (X.getCategory() != Y.getCategory())
return X.getCategory() < Y.getCategory();
if (X.getVerboseDescription() != Y.getVerboseDescription())
return X.getVerboseDescription() < Y.getVerboseDescription();
if (X.getShortDescription() != Y.getShortDescription())
return X.getShortDescription() < Y.getShortDescription();
if (X.getDeclWithIssue() != Y.getDeclWithIssue()) {
const Decl *XD = X.getDeclWithIssue();
if (!XD)
return true;
const Decl *YD = Y.getDeclWithIssue();
if (!YD)
return false;
SourceLocation XDL = XD->getLocation();
SourceLocation YDL = YD->getLocation();
if (XDL != YDL) {
const SourceManager &SM = XL.getManager();
return compareCrossTUSourceLocs(FullSourceLoc(XDL, SM),
FullSourceLoc(YDL, SM));
}
}
PathDiagnostic::meta_iterator XI = X.meta_begin(), XE = X.meta_end();
PathDiagnostic::meta_iterator YI = Y.meta_begin(), YE = Y.meta_end();
if (XE - XI != YE - YI)
return (XE - XI) < (YE - YI);
for ( ; XI != XE ; ++XI, ++YI) {
if (*XI != *YI)
return (*XI) < (*YI);
}
Optional<bool> b = comparePath(X.path, Y.path);
assert(b.hasValue());
return b.getValue();
}
void PathDiagnosticConsumer::FlushDiagnostics(
PathDiagnosticConsumer::FilesMade *Files) {
if (flushed)
return;
flushed = true;
std::vector<const PathDiagnostic *> BatchDiags;
for (const auto &D : Diags)
BatchDiags.push_back(&D);
// Sort the diagnostics so that they are always emitted in a deterministic
// order.
int (*Comp)(const PathDiagnostic *const *, const PathDiagnostic *const *) =
[](const PathDiagnostic *const *X, const PathDiagnostic *const *Y) {
assert(*X != *Y && "PathDiagnostics not uniqued!");
if (compare(**X, **Y))
return -1;
assert(compare(**Y, **X) && "Not a total order!");
return 1;
};
array_pod_sort(BatchDiags.begin(), BatchDiags.end(), Comp);
FlushDiagnosticsImpl(BatchDiags, Files);
// Delete the flushed diagnostics.
for (const auto D : BatchDiags)
delete D;
// Clear out the FoldingSet.
Diags.clear();
}
PathDiagnosticConsumer::FilesMade::~FilesMade() {
for (PDFileEntry &Entry : Set)
Entry.~PDFileEntry();
}
void PathDiagnosticConsumer::FilesMade::addDiagnostic(const PathDiagnostic &PD,
StringRef ConsumerName,
StringRef FileName) {
llvm::FoldingSetNodeID NodeID;
NodeID.Add(PD);
void *InsertPos;
PDFileEntry *Entry = Set.FindNodeOrInsertPos(NodeID, InsertPos);
if (!Entry) {
Entry = Alloc.Allocate<PDFileEntry>();
Entry = new (Entry) PDFileEntry(NodeID);
Set.InsertNode(Entry, InsertPos);
}
// Allocate persistent storage for the file name.
char *FileName_cstr = (char*) Alloc.Allocate(FileName.size(), 1);
memcpy(FileName_cstr, FileName.data(), FileName.size());
Entry->files.push_back(std::make_pair(ConsumerName,
StringRef(FileName_cstr,
FileName.size())));
}
PathDiagnosticConsumer::PDFileEntry::ConsumerFiles *
PathDiagnosticConsumer::FilesMade::getFiles(const PathDiagnostic &PD) {
llvm::FoldingSetNodeID NodeID;
NodeID.Add(PD);
void *InsertPos;
PDFileEntry *Entry = Set.FindNodeOrInsertPos(NodeID, InsertPos);
if (!Entry)
return nullptr;
return &Entry->files;
}
//===----------------------------------------------------------------------===//
// PathDiagnosticLocation methods.
//===----------------------------------------------------------------------===//
static SourceLocation getValidSourceLocation(const Stmt* S,
LocationOrAnalysisDeclContext LAC,
bool UseEnd = false) {
SourceLocation L = UseEnd ? S->getEndLoc() : S->getBeginLoc();
assert(!LAC.isNull() && "A valid LocationContext or AnalysisDeclContext should "
"be passed to PathDiagnosticLocation upon creation.");
// S might be a temporary statement that does not have a location in the
// source code, so find an enclosing statement and use its location.
if (!L.isValid()) {
AnalysisDeclContext *ADC;
if (LAC.is<const LocationContext*>())
ADC = LAC.get<const LocationContext*>()->getAnalysisDeclContext();
else
ADC = LAC.get<AnalysisDeclContext*>();
ParentMap &PM = ADC->getParentMap();
const Stmt *Parent = S;
do {
Parent = PM.getParent(Parent);
// In rare cases, we have implicit top-level expressions,
// such as arguments for implicit member initializers.
// In this case, fall back to the start of the body (even if we were
// asked for the statement end location).
if (!Parent) {
const Stmt *Body = ADC->getBody();
if (Body)
L = Body->getBeginLoc();
else
L = ADC->getDecl()->getEndLoc();
break;
}
L = UseEnd ? Parent->getEndLoc() : Parent->getBeginLoc();
} while (!L.isValid());
}
return L;
}
static PathDiagnosticLocation
getLocationForCaller(const StackFrameContext *SFC,
const LocationContext *CallerCtx,
const SourceManager &SM) {
const CFGBlock &Block = *SFC->getCallSiteBlock();
CFGElement Source = Block[SFC->getIndex()];
switch (Source.getKind()) {
case CFGElement::Statement:
case CFGElement::Constructor:
case CFGElement::CXXRecordTypedCall:
return PathDiagnosticLocation(Source.castAs<CFGStmt>().getStmt(),
SM, CallerCtx);
case CFGElement::Initializer: {
const CFGInitializer &Init = Source.castAs<CFGInitializer>();
return PathDiagnosticLocation(Init.getInitializer()->getInit(),
SM, CallerCtx);
}
case CFGElement::AutomaticObjectDtor: {
const CFGAutomaticObjDtor &Dtor = Source.castAs<CFGAutomaticObjDtor>();
return PathDiagnosticLocation::createEnd(Dtor.getTriggerStmt(),
SM, CallerCtx);
}
case CFGElement::DeleteDtor: {
const CFGDeleteDtor &Dtor = Source.castAs<CFGDeleteDtor>();
return PathDiagnosticLocation(Dtor.getDeleteExpr(), SM, CallerCtx);
}
case CFGElement::BaseDtor:
case CFGElement::MemberDtor: {
const AnalysisDeclContext *CallerInfo = CallerCtx->getAnalysisDeclContext();
if (const Stmt *CallerBody = CallerInfo->getBody())
return PathDiagnosticLocation::createEnd(CallerBody, SM, CallerCtx);
return PathDiagnosticLocation::create(CallerInfo->getDecl(), SM);
}
case CFGElement::NewAllocator: {
const CFGNewAllocator &Alloc = Source.castAs<CFGNewAllocator>();
return PathDiagnosticLocation(Alloc.getAllocatorExpr(), SM, CallerCtx);
}
case CFGElement::TemporaryDtor: {
// Temporary destructors are for temporaries. They die immediately at around
// the location of CXXBindTemporaryExpr. If they are lifetime-extended,
// they'd be dealt with via an AutomaticObjectDtor instead.
const auto &Dtor = Source.castAs<CFGTemporaryDtor>();
return PathDiagnosticLocation::createEnd(Dtor.getBindTemporaryExpr(), SM,
CallerCtx);
}
case CFGElement::ScopeBegin:
case CFGElement::ScopeEnd:
llvm_unreachable("not yet implemented!");
case CFGElement::LifetimeEnds:
case CFGElement::LoopExit:
llvm_unreachable("CFGElement kind should not be on callsite!");
}
llvm_unreachable("Unknown CFGElement kind");
}
PathDiagnosticLocation
PathDiagnosticLocation::createBegin(const Decl *D,
const SourceManager &SM) {
return PathDiagnosticLocation(D->getBeginLoc(), SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createBegin(const Stmt *S,
const SourceManager &SM,
LocationOrAnalysisDeclContext LAC) {
return PathDiagnosticLocation(getValidSourceLocation(S, LAC),
SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createEnd(const Stmt *S,
const SourceManager &SM,
LocationOrAnalysisDeclContext LAC) {
if (const auto *CS = dyn_cast<CompoundStmt>(S))
return createEndBrace(CS, SM);
return PathDiagnosticLocation(getValidSourceLocation(S, LAC, /*End=*/true),
SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createOperatorLoc(const BinaryOperator *BO,
const SourceManager &SM) {
return PathDiagnosticLocation(BO->getOperatorLoc(), SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createConditionalColonLoc(
const ConditionalOperator *CO,
const SourceManager &SM) {
return PathDiagnosticLocation(CO->getColonLoc(), SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createMemberLoc(const MemberExpr *ME,
const SourceManager &SM) {
return PathDiagnosticLocation(ME->getMemberLoc(), SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createBeginBrace(const CompoundStmt *CS,
const SourceManager &SM) {
SourceLocation L = CS->getLBracLoc();
return PathDiagnosticLocation(L, SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createEndBrace(const CompoundStmt *CS,
const SourceManager &SM) {
SourceLocation L = CS->getRBracLoc();
return PathDiagnosticLocation(L, SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createDeclBegin(const LocationContext *LC,
const SourceManager &SM) {
// FIXME: Should handle CXXTryStmt if analyser starts supporting C++.
if (const auto *CS = dyn_cast_or_null<CompoundStmt>(LC->getDecl()->getBody()))
if (!CS->body_empty()) {
SourceLocation Loc = (*CS->body_begin())->getBeginLoc();
return PathDiagnosticLocation(Loc, SM, SingleLocK);
}
return PathDiagnosticLocation();
}
PathDiagnosticLocation
PathDiagnosticLocation::createDeclEnd(const LocationContext *LC,
const SourceManager &SM) {
SourceLocation L = LC->getDecl()->getBodyRBrace();
return PathDiagnosticLocation(L, SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::create(const ProgramPoint& P,
const SourceManager &SMng) {
const Stmt* S = nullptr;
if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
const CFGBlock *BSrc = BE->getSrc();
S = BSrc->getTerminatorCondition();
} else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>()) {
S = SP->getStmt();
if (P.getAs<PostStmtPurgeDeadSymbols>())
return PathDiagnosticLocation::createEnd(S, SMng, P.getLocationContext());
} else if (Optional<PostInitializer> PIP = P.getAs<PostInitializer>()) {
return PathDiagnosticLocation(PIP->getInitializer()->getSourceLocation(),
SMng);
} else if (Optional<PreImplicitCall> PIC = P.getAs<PreImplicitCall>()) {
return PathDiagnosticLocation(PIC->getLocation(), SMng);
} else if (Optional<PostImplicitCall> PIE = P.getAs<PostImplicitCall>()) {
return PathDiagnosticLocation(PIE->getLocation(), SMng);
} else if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
return getLocationForCaller(CE->getCalleeContext(),
CE->getLocationContext(),
SMng);
} else if (Optional<CallExitEnd> CEE = P.getAs<CallExitEnd>()) {
return getLocationForCaller(CEE->getCalleeContext(),
CEE->getLocationContext(),
SMng);
} else if (auto CEB = P.getAs<CallExitBegin>()) {
if (const ReturnStmt *RS = CEB->getReturnStmt())
return PathDiagnosticLocation::createBegin(RS, SMng,
CEB->getLocationContext());
return PathDiagnosticLocation(
CEB->getLocationContext()->getDecl()->getSourceRange().getEnd(), SMng);
} else if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
CFGElement BlockFront = BE->getBlock()->front();
if (auto StmtElt = BlockFront.getAs<CFGStmt>()) {
return PathDiagnosticLocation(StmtElt->getStmt()->getBeginLoc(), SMng);
} else if (auto NewAllocElt = BlockFront.getAs<CFGNewAllocator>()) {
return PathDiagnosticLocation(
NewAllocElt->getAllocatorExpr()->getBeginLoc(), SMng);
}
llvm_unreachable("Unexpected CFG element at front of block");
} else {
llvm_unreachable("Unexpected ProgramPoint");
}
return PathDiagnosticLocation(S, SMng, P.getLocationContext());
}
static const LocationContext *
findTopAutosynthesizedParentContext(const LocationContext *LC) {
assert(LC->getAnalysisDeclContext()->isBodyAutosynthesized());
const LocationContext *ParentLC = LC->getParent();
assert(ParentLC && "We don't start analysis from autosynthesized code");
while (ParentLC->getAnalysisDeclContext()->isBodyAutosynthesized()) {
LC = ParentLC;
ParentLC = LC->getParent();
assert(ParentLC && "We don't start analysis from autosynthesized code");
}
return LC;
}
const Stmt *PathDiagnosticLocation::getStmt(const ExplodedNode *N) {
// We cannot place diagnostics on autosynthesized code.
// Put them onto the call site through which we jumped into autosynthesized
// code for the first time.
const LocationContext *LC = N->getLocationContext();
if (LC->getAnalysisDeclContext()->isBodyAutosynthesized()) {
// It must be a stack frame because we only autosynthesize functions.
return cast<StackFrameContext>(findTopAutosynthesizedParentContext(LC))
->getCallSite();
}
// Otherwise, see if the node's program point directly points to a statement.
ProgramPoint P = N->getLocation();
if (auto SP = P.getAs<StmtPoint>())
return SP->getStmt();
if (auto BE = P.getAs<BlockEdge>())
return BE->getSrc()->getTerminator();
if (auto CE = P.getAs<CallEnter>())
return CE->getCallExpr();
if (auto CEE = P.getAs<CallExitEnd>())
return CEE->getCalleeContext()->getCallSite();
if (auto PIPP = P.getAs<PostInitializer>())
return PIPP->getInitializer()->getInit();
if (auto CEB = P.getAs<CallExitBegin>())
return CEB->getReturnStmt();
if (auto FEP = P.getAs<FunctionExitPoint>())
return FEP->getStmt();
return nullptr;
}
const Stmt *PathDiagnosticLocation::getNextStmt(const ExplodedNode *N) {
for (N = N->getFirstSucc(); N; N = N->getFirstSucc()) {
if (const Stmt *S = getStmt(N)) {
// Check if the statement is '?' or '&&'/'||'. These are "merges",
// not actual statement points.
switch (S->getStmtClass()) {
case Stmt::ChooseExprClass:
case Stmt::BinaryConditionalOperatorClass:
case Stmt::ConditionalOperatorClass:
continue;
case Stmt::BinaryOperatorClass: {
BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
if (Op == BO_LAnd || Op == BO_LOr)
continue;
break;
}
default:
break;
}
// We found the statement, so return it.
return S;
}
}
return nullptr;
}
PathDiagnosticLocation
PathDiagnosticLocation::createEndOfPath(const ExplodedNode *N,
const SourceManager &SM) {
assert(N && "Cannot create a location with a null node.");
const Stmt *S = getStmt(N);
const LocationContext *LC = N->getLocationContext();
if (!S) {
// If this is an implicit call, return the implicit call point location.
if (Optional<PreImplicitCall> PIE = N->getLocationAs<PreImplicitCall>())
return PathDiagnosticLocation(PIE->getLocation(), SM);
if (auto FE = N->getLocationAs<FunctionExitPoint>()) {
if (const ReturnStmt *RS = FE->getStmt())
return PathDiagnosticLocation::createBegin(RS, SM, LC);
}
S = getNextStmt(N);
}
if (S) {
ProgramPoint P = N->getLocation();
// For member expressions, return the location of the '.' or '->'.
if (const auto *ME = dyn_cast<MemberExpr>(S))
return PathDiagnosticLocation::createMemberLoc(ME, SM);
// For binary operators, return the location of the operator.
if (const auto *B = dyn_cast<BinaryOperator>(S))
return PathDiagnosticLocation::createOperatorLoc(B, SM);
if (P.getAs<PostStmtPurgeDeadSymbols>())
return PathDiagnosticLocation::createEnd(S, SM, LC);
if (S->getBeginLoc().isValid())
return PathDiagnosticLocation(S, SM, LC);
return PathDiagnosticLocation(getValidSourceLocation(S, LC), SM);
}
return createDeclEnd(N->getLocationContext(), SM);
}
PathDiagnosticLocation PathDiagnosticLocation::createSingleLocation(
const PathDiagnosticLocation &PDL) {
FullSourceLoc L = PDL.asLocation();
return PathDiagnosticLocation(L, L.getManager(), SingleLocK);
}
FullSourceLoc
PathDiagnosticLocation::genLocation(SourceLocation L,
LocationOrAnalysisDeclContext LAC) const {
assert(isValid());
// Note that we want a 'switch' here so that the compiler can warn us in
// case we add more cases.
switch (K) {
case SingleLocK:
case RangeK:
break;
case StmtK:
// Defensive checking.
if (!S)
break;
return FullSourceLoc(getValidSourceLocation(S, LAC),
const_cast<SourceManager&>(*SM));
case DeclK:
// Defensive checking.
if (!D)
break;
return FullSourceLoc(D->getLocation(), const_cast<SourceManager&>(*SM));
}
return FullSourceLoc(L, const_cast<SourceManager&>(*SM));
}
PathDiagnosticRange
PathDiagnosticLocation::genRange(LocationOrAnalysisDeclContext LAC) const {
assert(isValid());
// Note that we want a 'switch' here so that the compiler can warn us in
// case we add more cases.
switch (K) {
case SingleLocK:
return PathDiagnosticRange(SourceRange(Loc,Loc), true);
case RangeK:
break;
case StmtK: {
const Stmt *S = asStmt();
switch (S->getStmtClass()) {
default:
break;
case Stmt::DeclStmtClass: {
const auto *DS = cast<DeclStmt>(S);
if (DS->isSingleDecl()) {
// Should always be the case, but we'll be defensive.
return SourceRange(DS->getBeginLoc(),
DS->getSingleDecl()->getLocation());
}
break;
}
// FIXME: Provide better range information for different
// terminators.
case Stmt::IfStmtClass:
case Stmt::WhileStmtClass:
case Stmt::DoStmtClass:
case Stmt::ForStmtClass:
case Stmt::ChooseExprClass:
case Stmt::IndirectGotoStmtClass:
case Stmt::SwitchStmtClass:
case Stmt::BinaryConditionalOperatorClass:
case Stmt::ConditionalOperatorClass:
case Stmt::ObjCForCollectionStmtClass: {
SourceLocation L = getValidSourceLocation(S, LAC);
return SourceRange(L, L);
}
}
SourceRange R = S->getSourceRange();
if (R.isValid())
return R;
break;
}
case DeclK:
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->getSourceRange();
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
if (Stmt *Body = FD->getBody())
return Body->getSourceRange();
}
else {
SourceLocation L = D->getLocation();
return PathDiagnosticRange(SourceRange(L, L), true);
}
}
return SourceRange(Loc, Loc);
}
void PathDiagnosticLocation::flatten() {
if (K == StmtK) {
K = RangeK;
S = nullptr;
D = nullptr;
}
else if (K == DeclK) {
K = SingleLocK;
S = nullptr;
D = nullptr;
}
}
//===----------------------------------------------------------------------===//
// Manipulation of PathDiagnosticCallPieces.
//===----------------------------------------------------------------------===//
std::shared_ptr<PathDiagnosticCallPiece>
PathDiagnosticCallPiece::construct(const CallExitEnd &CE,
const SourceManager &SM) {
const Decl *caller = CE.getLocationContext()->getDecl();
PathDiagnosticLocation pos = getLocationForCaller(CE.getCalleeContext(),
CE.getLocationContext(),
SM);
return std::shared_ptr<PathDiagnosticCallPiece>(
new PathDiagnosticCallPiece(caller, pos));
}
PathDiagnosticCallPiece *
PathDiagnosticCallPiece::construct(PathPieces &path,
const Decl *caller) {
std::shared_ptr<PathDiagnosticCallPiece> C(
new PathDiagnosticCallPiece(path, caller));
path.clear();
auto *R = C.get();
path.push_front(std::move(C));
return R;
}
void PathDiagnosticCallPiece::setCallee(const CallEnter &CE,
const SourceManager &SM) {
const StackFrameContext *CalleeCtx = CE.getCalleeContext();
Callee = CalleeCtx->getDecl();
callEnterWithin = PathDiagnosticLocation::createBegin(Callee, SM);
callEnter = getLocationForCaller(CalleeCtx, CE.getLocationContext(), SM);
// Autosynthesized property accessors are special because we'd never
// pop back up to non-autosynthesized code until we leave them.
// This is not generally true for autosynthesized callees, which may call
// non-autosynthesized callbacks.
// Unless set here, the IsCalleeAnAutosynthesizedPropertyAccessor flag
// defaults to false.
if (const auto *MD = dyn_cast<ObjCMethodDecl>(Callee))
IsCalleeAnAutosynthesizedPropertyAccessor = (
MD->isPropertyAccessor() &&
CalleeCtx->getAnalysisDeclContext()->isBodyAutosynthesized());
}
static void describeTemplateParameters(raw_ostream &Out,
const ArrayRef<TemplateArgument> TAList,
const LangOptions &LO,
StringRef Prefix = StringRef(),
StringRef Postfix = StringRef());
static void describeTemplateParameter(raw_ostream &Out,
const TemplateArgument &TArg,
const LangOptions &LO) {
if (TArg.getKind() == TemplateArgument::ArgKind::Pack) {
describeTemplateParameters(Out, TArg.getPackAsArray(), LO);
} else {
TArg.print(PrintingPolicy(LO), Out);
}
}
static void describeTemplateParameters(raw_ostream &Out,
const ArrayRef<TemplateArgument> TAList,
const LangOptions &LO,
StringRef Prefix, StringRef Postfix) {
if (TAList.empty())
return;
Out << Prefix;
for (int I = 0, Last = TAList.size() - 1; I != Last; ++I) {
describeTemplateParameter(Out, TAList[I], LO);
Out << ", ";
}
describeTemplateParameter(Out, TAList[TAList.size() - 1], LO);
Out << Postfix;
}
static void describeClass(raw_ostream &Out, const CXXRecordDecl *D,
StringRef Prefix = StringRef()) {
if (!D->getIdentifier())
return;
Out << Prefix << '\'' << *D;
if (const auto T = dyn_cast<ClassTemplateSpecializationDecl>(D))
describeTemplateParameters(Out, T->getTemplateArgs().asArray(),
D->getASTContext().getLangOpts(), "<", ">");
Out << '\'';
}
static bool describeCodeDecl(raw_ostream &Out, const Decl *D,
bool ExtendedDescription,
StringRef Prefix = StringRef()) {
if (!D)
return false;
if (isa<BlockDecl>(D)) {
if (ExtendedDescription)
Out << Prefix << "anonymous block";
return ExtendedDescription;
}
if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
Out << Prefix;
if (ExtendedDescription && !MD->isUserProvided()) {
if (MD->isExplicitlyDefaulted())
Out << "defaulted ";
else
Out << "implicit ";
}
if (const auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
if (CD->isDefaultConstructor())
Out << "default ";
else if (CD->isCopyConstructor())
Out << "copy ";
else if (CD->isMoveConstructor())
Out << "move ";
Out << "constructor";
describeClass(Out, MD->getParent(), " for ");
} else if (isa<CXXDestructorDecl>(MD)) {
if (!MD->isUserProvided()) {
Out << "destructor";
describeClass(Out, MD->getParent(), " for ");
} else {
// Use ~Foo for explicitly-written destructors.
Out << "'" << *MD << "'";
}
} else if (MD->isCopyAssignmentOperator()) {
Out << "copy assignment operator";
describeClass(Out, MD->getParent(), " for ");
} else if (MD->isMoveAssignmentOperator()) {
Out << "move assignment operator";
describeClass(Out, MD->getParent(), " for ");
} else {
if (MD->getParent()->getIdentifier())
Out << "'" << *MD->getParent() << "::" << *MD << "'";
else
Out << "'" << *MD << "'";
}
return true;
}
Out << Prefix << '\'' << cast<NamedDecl>(*D);
// Adding template parameters.
if (const auto FD = dyn_cast<FunctionDecl>(D))
if (const TemplateArgumentList *TAList =
FD->getTemplateSpecializationArgs())
describeTemplateParameters(Out, TAList->asArray(),
FD->getASTContext().getLangOpts(), "<", ">");
Out << '\'';
return true;
}
std::shared_ptr<PathDiagnosticEventPiece>
PathDiagnosticCallPiece::getCallEnterEvent() const {
// We do not produce call enters and call exits for autosynthesized property
// accessors. We do generally produce them for other functions coming from
// the body farm because they may call callbacks that bring us back into
// visible code.
if (!Callee || IsCalleeAnAutosynthesizedPropertyAccessor)
return nullptr;
SmallString<256> buf;
llvm::raw_svector_ostream Out(buf);
Out << "Calling ";
describeCodeDecl(Out, Callee, /*ExtendedDescription=*/true);
assert(callEnter.asLocation().isValid());
return std::make_shared<PathDiagnosticEventPiece>(callEnter, Out.str());
}
std::shared_ptr<PathDiagnosticEventPiece>
PathDiagnosticCallPiece::getCallEnterWithinCallerEvent() const {
if (!callEnterWithin.asLocation().isValid())
return nullptr;
if (Callee->isImplicit() || !Callee->hasBody())
return nullptr;
if (const auto *MD = dyn_cast<CXXMethodDecl>(Callee))
if (MD->isDefaulted())
return nullptr;
SmallString<256> buf;
llvm::raw_svector_ostream Out(buf);
Out << "Entered call";
describeCodeDecl(Out, Caller, /*ExtendedDescription=*/false, " from ");
return std::make_shared<PathDiagnosticEventPiece>(callEnterWithin, Out.str());
}
std::shared_ptr<PathDiagnosticEventPiece>
PathDiagnosticCallPiece::getCallExitEvent() const {
// We do not produce call enters and call exits for autosynthesized property
// accessors. We do generally produce them for other functions coming from
// the body farm because they may call callbacks that bring us back into
// visible code.
if (NoExit || IsCalleeAnAutosynthesizedPropertyAccessor)
return nullptr;
SmallString<256> buf;
llvm::raw_svector_ostream Out(buf);
if (!CallStackMessage.empty()) {
Out << CallStackMessage;
} else {
bool DidDescribe = describeCodeDecl(Out, Callee,
/*ExtendedDescription=*/false,
"Returning from ");
if (!DidDescribe)
Out << "Returning to caller";
}
assert(callReturn.asLocation().isValid());
return std::make_shared<PathDiagnosticEventPiece>(callReturn, Out.str());
}
static void compute_path_size(const PathPieces &pieces, unsigned &size) {
for (const auto &I : pieces) {
const PathDiagnosticPiece *piece = I.get();
if (const auto *cp = dyn_cast<PathDiagnosticCallPiece>(piece))
compute_path_size(cp->path, size);
else
++size;
}
}
unsigned PathDiagnostic::full_size() {
unsigned size = 0;
compute_path_size(path, size);
return size;
}
//===----------------------------------------------------------------------===//
// FoldingSet profiling methods.
//===----------------------------------------------------------------------===//
void PathDiagnosticLocation::Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(Range.getBegin().getRawEncoding());
ID.AddInteger(Range.getEnd().getRawEncoding());
ID.AddInteger(Loc.getRawEncoding());
}
void PathDiagnosticPiece::Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger((unsigned) getKind());
ID.AddString(str);
// FIXME: Add profiling support for code hints.
ID.AddInteger((unsigned) getDisplayHint());
ArrayRef<SourceRange> Ranges = getRanges();
for (const auto &I : Ranges) {
ID.AddInteger(I.getBegin().getRawEncoding());
ID.AddInteger(I.getEnd().getRawEncoding());
}
}
void PathDiagnosticCallPiece::Profile(llvm::FoldingSetNodeID &ID) const {
PathDiagnosticPiece::Profile(ID);
for (const auto &I : path)
ID.Add(*I);
}
void PathDiagnosticSpotPiece::Profile(llvm::FoldingSetNodeID &ID) const {
PathDiagnosticPiece::Profile(ID);
ID.Add(Pos);
}
void PathDiagnosticControlFlowPiece::Profile(llvm::FoldingSetNodeID &ID) const {
PathDiagnosticPiece::Profile(ID);
for (const auto &I : *this)
ID.Add(I);
}
void PathDiagnosticMacroPiece::Profile(llvm::FoldingSetNodeID &ID) const {
PathDiagnosticSpotPiece::Profile(ID);
for (const auto &I : subPieces)
ID.Add(*I);
}
void PathDiagnosticNotePiece::Profile(llvm::FoldingSetNodeID &ID) const {
PathDiagnosticSpotPiece::Profile(ID);
}
void PathDiagnostic::Profile(llvm::FoldingSetNodeID &ID) const {
ID.Add(getLocation());
ID.AddString(BugType);
ID.AddString(VerboseDesc);
ID.AddString(Category);
}
void PathDiagnostic::FullProfile(llvm::FoldingSetNodeID &ID) const {
Profile(ID);
for (const auto &I : path)
ID.Add(*I);
for (meta_iterator I = meta_begin(), E = meta_end(); I != E; ++I)
ID.AddString(*I);
}
StackHintGenerator::~StackHintGenerator() = default;
std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
if (!N)
return getMessageForSymbolNotFound();
ProgramPoint P = N->getLocation();
CallExitEnd CExit = P.castAs<CallExitEnd>();
// FIXME: Use CallEvent to abstract this over all calls.
const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
if (!CE)
return {};
// Check if one of the parameters are set to the interesting symbol.
unsigned ArgIndex = 0;
for (CallExpr::const_arg_iterator I = CE->arg_begin(),
E = CE->arg_end(); I != E; ++I, ++ArgIndex){
SVal SV = N->getSVal(*I);
// Check if the variable corresponding to the symbol is passed by value.
SymbolRef AS = SV.getAsLocSymbol();
if (AS == Sym) {
return getMessageForArg(*I, ArgIndex);
}
// Check if the parameter is a pointer to the symbol.
if (Optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
// Do not attempt to dereference void*.
if ((*I)->getType()->isVoidPointerType())
continue;
SVal PSV = N->getState()->getSVal(Reg->getRegion());
SymbolRef AS = PSV.getAsLocSymbol();
if (AS == Sym) {
return getMessageForArg(*I, ArgIndex);
}
}
}
// Check if we are returning the interesting symbol.
SVal SV = N->getSVal(CE);
SymbolRef RetSym = SV.getAsLocSymbol();
if (RetSym == Sym) {
return getMessageForReturn(CE);
}
return getMessageForSymbolNotFound();
}
std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
unsigned ArgIndex) {
// Printed parameters start at 1, not 0.
++ArgIndex;
SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
os << Msg << " via " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
<< " parameter";
return os.str();
}
LLVM_DUMP_METHOD void PathPieces::dump() const {
unsigned index = 0;
for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
llvm::errs() << "[" << index++ << "] ";
(*I)->dump();
llvm::errs() << "\n";
}
}
LLVM_DUMP_METHOD void PathDiagnosticCallPiece::dump() const {
llvm::errs() << "CALL\n--------------\n";
if (const Stmt *SLoc = getLocation().getStmtOrNull())
SLoc->dump();
else if (const auto *ND = dyn_cast_or_null<NamedDecl>(getCallee()))
llvm::errs() << *ND << "\n";
else
getLocation().dump();
}
LLVM_DUMP_METHOD void PathDiagnosticEventPiece::dump() const {
llvm::errs() << "EVENT\n--------------\n";
llvm::errs() << getString() << "\n";
llvm::errs() << " ---- at ----\n";
getLocation().dump();
}
LLVM_DUMP_METHOD void PathDiagnosticControlFlowPiece::dump() const {
llvm::errs() << "CONTROL\n--------------\n";
getStartLocation().dump();
llvm::errs() << " ---- to ----\n";
getEndLocation().dump();
}
LLVM_DUMP_METHOD void PathDiagnosticMacroPiece::dump() const {
llvm::errs() << "MACRO\n--------------\n";
// FIXME: Print which macro is being invoked.
}
LLVM_DUMP_METHOD void PathDiagnosticNotePiece::dump() const {
llvm::errs() << "NOTE\n--------------\n";
llvm::errs() << getString() << "\n";
llvm::errs() << " ---- at ----\n";
getLocation().dump();
}
LLVM_DUMP_METHOD void PathDiagnosticLocation::dump() const {
if (!isValid()) {
llvm::errs() << "<INVALID>\n";
return;
}
switch (K) {
case RangeK:
// FIXME: actually print the range.
llvm::errs() << "<range>\n";
break;
case SingleLocK:
asLocation().dump();
llvm::errs() << "\n";
break;
case StmtK:
if (S)
S->dump();
else
llvm::errs() << "<NULL STMT>\n";
break;
case DeclK:
if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
llvm::errs() << *ND << "\n";
else if (isa<BlockDecl>(D))
// FIXME: Make this nicer.
llvm::errs() << "<block>\n";
else if (D)
llvm::errs() << "<unknown decl>\n";
else
llvm::errs() << "<NULL DECL>\n";
break;
}
}