llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp

365 lines
10 KiB
C++

//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Implements the AMDGPU specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUSubtarget.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/Target/TargetFrameLowering.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "amdgpu-subtarget"
#define GET_SUBTARGETINFO_ENUM
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "AMDGPUGenSubtargetInfo.inc"
AMDGPUSubtarget::~AMDGPUSubtarget() = default;
AMDGPUSubtarget &
AMDGPUSubtarget::initializeSubtargetDependencies(const Triple &TT,
StringRef GPU, StringRef FS) {
// Determine default and user-specified characteristics
// On SI+, we want FP64 denormals to be on by default. FP32 denormals can be
// enabled, but some instructions do not respect them and they run at the
// double precision rate, so don't enable by default.
//
// We want to be able to turn these off, but making this a subtarget feature
// for SI has the unhelpful behavior that it unsets everything else if you
// disable it.
SmallString<256> FullFS("+promote-alloca,+fp64-denormals,+load-store-opt,");
if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA.
FullFS += "+flat-for-global,+unaligned-buffer-access,";
FullFS += FS;
ParseSubtargetFeatures(GPU, FullFS);
// FIXME: I don't think think Evergreen has any useful support for
// denormals, but should be checked. Should we issue a warning somewhere
// if someone tries to enable these?
if (getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
FP16Denormals = false;
FP32Denormals = false;
FP64Denormals = false;
}
// Set defaults if needed.
if (MaxPrivateElementSize == 0)
MaxPrivateElementSize = 4;
return *this;
}
AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
const TargetMachine &TM)
: AMDGPUGenSubtargetInfo(TT, GPU, FS),
TargetTriple(TT),
Gen(TT.getArch() == Triple::amdgcn ? SOUTHERN_ISLANDS : R600),
IsaVersion(ISAVersion0_0_0),
WavefrontSize(64),
LocalMemorySize(0),
LDSBankCount(0),
MaxPrivateElementSize(0),
FastFMAF32(false),
HalfRate64Ops(false),
FP16Denormals(false),
FP32Denormals(false),
FP64Denormals(false),
FPExceptions(false),
FlatForGlobal(false),
UnalignedScratchAccess(false),
UnalignedBufferAccess(false),
EnableXNACK(false),
DebuggerInsertNops(false),
DebuggerReserveRegs(false),
DebuggerEmitPrologue(false),
EnableVGPRSpilling(false),
EnablePromoteAlloca(false),
EnableLoadStoreOpt(false),
EnableUnsafeDSOffsetFolding(false),
EnableSIScheduler(false),
DumpCode(false),
FP64(false),
IsGCN(false),
GCN1Encoding(false),
GCN3Encoding(false),
CIInsts(false),
SGPRInitBug(false),
HasSMemRealTime(false),
Has16BitInsts(false),
HasMovrel(false),
HasVGPRIndexMode(false),
HasScalarStores(false),
HasInv2PiInlineImm(false),
HasSDWA(false),
HasDPP(false),
FlatAddressSpace(false),
R600ALUInst(false),
CaymanISA(false),
CFALUBug(false),
HasVertexCache(false),
TexVTXClauseSize(0),
ScalarizeGlobal(false),
FeatureDisable(false),
InstrItins(getInstrItineraryForCPU(GPU)) {
initializeSubtargetDependencies(TT, GPU, FS);
}
// FIXME: These limits are for SI. Did they change with the larger maximum LDS
// size?
unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves) const {
switch (NWaves) {
case 10:
return 1638;
case 9:
return 1820;
case 8:
return 2048;
case 7:
return 2340;
case 6:
return 2730;
case 5:
return 3276;
case 4:
return 4096;
case 3:
return 5461;
case 2:
return 8192;
default:
return getLocalMemorySize();
}
}
unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes) const {
if (Bytes <= 1638)
return 10;
if (Bytes <= 1820)
return 9;
if (Bytes <= 2048)
return 8;
if (Bytes <= 2340)
return 7;
if (Bytes <= 2730)
return 6;
if (Bytes <= 3276)
return 5;
if (Bytes <= 4096)
return 4;
if (Bytes <= 5461)
return 3;
if (Bytes <= 8192)
return 2;
return 1;
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
const Function &F) const {
// Default minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> Default =
AMDGPU::isCompute(F.getCallingConv()) ?
std::pair<unsigned, unsigned>(getWavefrontSize() * 2,
getWavefrontSize() * 4) :
std::pair<unsigned, unsigned>(1, getWavefrontSize());
// TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa
// starts using "amdgpu-flat-work-group-size" attribute.
Default.second = AMDGPU::getIntegerAttribute(
F, "amdgpu-max-work-group-size", Default.second);
Default.first = std::min(Default.first, Default.second);
// Requested minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
F, "amdgpu-flat-work-group-size", Default);
// Make sure requested minimum is less than requested maximum.
if (Requested.first > Requested.second)
return Default;
// Make sure requested values do not violate subtarget's specifications.
if (Requested.first < getMinFlatWorkGroupSize())
return Default;
if (Requested.second > getMaxFlatWorkGroupSize())
return Default;
return Requested;
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
const Function &F) const {
// Default minimum/maximum number of waves per execution unit.
std::pair<unsigned, unsigned> Default(1, 0);
// Default/requested minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F);
// If minimum/maximum flat work group sizes were explicitly requested using
// "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
// number of waves per execution unit to values implied by requested
// minimum/maximum flat work group sizes.
unsigned MinImpliedByFlatWorkGroupSize =
getMaxWavesPerEU(FlatWorkGroupSizes.second);
bool RequestedFlatWorkGroupSize = false;
// TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa
// starts using "amdgpu-flat-work-group-size" attribute.
if (F.hasFnAttribute("amdgpu-max-work-group-size") ||
F.hasFnAttribute("amdgpu-flat-work-group-size")) {
Default.first = MinImpliedByFlatWorkGroupSize;
RequestedFlatWorkGroupSize = true;
}
// Requested minimum/maximum number of waves per execution unit.
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
F, "amdgpu-waves-per-eu", Default, true);
// Make sure requested minimum is less than requested maximum.
if (Requested.second && Requested.first > Requested.second)
return Default;
// Make sure requested values do not violate subtarget's specifications.
if (Requested.first < getMinWavesPerEU() ||
Requested.first > getMaxWavesPerEU())
return Default;
if (Requested.second > getMaxWavesPerEU())
return Default;
// Make sure requested values are compatible with values implied by requested
// minimum/maximum flat work group sizes.
if (RequestedFlatWorkGroupSize &&
Requested.first > MinImpliedByFlatWorkGroupSize)
return Default;
return Requested;
}
R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS,
const TargetMachine &TM) :
AMDGPUSubtarget(TT, GPU, FS, TM),
InstrInfo(*this),
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0),
TLInfo(TM, *this) {}
SISubtarget::SISubtarget(const Triple &TT, StringRef GPU, StringRef FS,
const TargetMachine &TM) :
AMDGPUSubtarget(TT, GPU, FS, TM),
InstrInfo(*this),
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0),
TLInfo(TM, *this) {}
void SISubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const {
// Track register pressure so the scheduler can try to decrease
// pressure once register usage is above the threshold defined by
// SIRegisterInfo::getRegPressureSetLimit()
Policy.ShouldTrackPressure = true;
// Enabling both top down and bottom up scheduling seems to give us less
// register spills than just using one of these approaches on its own.
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
// Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
if (!enableSIScheduler())
Policy.ShouldTrackLaneMasks = true;
}
bool SISubtarget::isVGPRSpillingEnabled(const Function& F) const {
return EnableVGPRSpilling || !AMDGPU::isShader(F.getCallingConv());
}
unsigned SISubtarget::getKernArgSegmentSize(unsigned ExplicitArgBytes) const {
unsigned ImplicitBytes = getImplicitArgNumBytes();
if (ImplicitBytes == 0)
return ExplicitArgBytes;
unsigned Alignment = getAlignmentForImplicitArgPtr();
return alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
}
unsigned SISubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
if (getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
if (SGPRs <= 80)
return 10;
if (SGPRs <= 88)
return 9;
if (SGPRs <= 100)
return 8;
return 7;
}
if (SGPRs <= 48)
return 10;
if (SGPRs <= 56)
return 9;
if (SGPRs <= 64)
return 8;
if (SGPRs <= 72)
return 7;
if (SGPRs <= 80)
return 6;
return 5;
}
unsigned SISubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const {
if (VGPRs <= 24)
return 10;
if (VGPRs <= 28)
return 9;
if (VGPRs <= 32)
return 8;
if (VGPRs <= 36)
return 7;
if (VGPRs <= 40)
return 6;
if (VGPRs <= 48)
return 5;
if (VGPRs <= 64)
return 4;
if (VGPRs <= 84)
return 3;
if (VGPRs <= 128)
return 2;
return 1;
}
unsigned SISubtarget::getMaxNumSGPRs() const {
if (hasSGPRInitBug())
return SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG;
if (getGeneration() >= VOLCANIC_ISLANDS)
return 102;
return 104;
}