llvm-project/mlir/test/Dialect/Linalg/reshape_linearization_fusio...

275 lines
12 KiB
MLIR

// RUN: mlir-opt -split-input-file -linalg-fold-reshape-ops-by-linearization -verify-diagnostics %s | FileCheck %s
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func @generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x?xf32>,
%arg1 : tensor<?x?x4x?xf32>) ->
tensor<?x?x4x?xf32>
{
%0 = linalg.tensor_reshape %arg0 [affine_map<(i, j, k, l) -> (i)>,
affine_map<(i, j, k, l) -> (j, k)>,
affine_map<(i, j, k, l) -> (l)>] :
tensor<?x?x?xf32> into tensor<?x?x4x?xf32>
%1 = linalg.generic {
indexing_maps = [#map0, #map0, #map0],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
ins(%0, %arg1 : tensor<?x?x4x?xf32>, tensor<?x?x4x?xf32>)
outs(%0 : tensor<?x?x4x?xf32>) {
^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors
%1 = mulf %arg3, %arg4 : f32
linalg.yield %1 : f32
} -> tensor<?x?x4x?xf32>
return %1 : tensor<?x?x4x?xf32>
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d1, d2)>
// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d3)>
// CHECK-DAG: #[[MAP3:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 4 + d2, d3)>
// CHECK-DAG: #[[MAP4:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK: func @generic_op_reshape_producer_fusion
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?x?xf32>
// CHECK: %[[T0:.+]] = linalg.tensor_reshape %[[ARG0]]
// CHECK-SAME: [#[[MAP0]], #[[MAP1]], #[[MAP2]]]
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP3]], #[[MAP4]], #[[MAP4]]]
// CHECK-SAME: ins(%[[ARG0]], %{{.+}} : tensor<?x?x?xf32>, tensor<?x?x4x?xf32>)
// CHECK-SAME: outs(%[[T0]] : tensor<?x?x4x?xf32>)
// -----
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func @generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?x4x5xf32>,
%arg1 : tensor<?x?x4x5xf32>) ->
tensor<?x?xf32>
{
%0 = linalg.generic {
indexing_maps = [#map0, #map0, #map0],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
ins(%arg0, %arg1 : tensor<?x?x4x5xf32>, tensor<?x?x4x5xf32>)
outs(%arg0 : tensor<?x?x4x5xf32>){
^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors
%1 = mulf %arg3, %arg4 : f32
linalg.yield %1 : f32
} -> tensor<?x?x4x5xf32>
%1 = linalg.tensor_reshape %0 [affine_map<(i, j, k, l) -> (i)>,
affine_map<(i, j, k, l) -> (j, k, l)>] :
tensor<?x?x4x5xf32> into tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)>
// CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-DAG: #[[MAP3:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>
// CHECK: func @generic_op_reshape_consumer_fusion
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x4x5xf32>
// CHECK: %[[T0:.+]] = linalg.tensor_reshape %[[ARG0]]
// CHECK-SAME: [#[[MAP0]], #[[MAP1]]]
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP2]], #[[MAP3]]]
// CHECK-SAME: outs(%[[T0]] : tensor<?x?xf32>)
// -----
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func @indexed_generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x?xi32>)
-> tensor<?x?x4x?xi32> {
%0 = linalg.tensor_reshape %arg0 [affine_map<(i, j, k, l) -> (i)>,
affine_map<(i, j, k, l) -> (j, k)>,
affine_map<(i, j, k, l) -> (l)>] :
tensor<?x?x?xi32> into tensor<?x?x4x?xi32>
%1 = linalg.indexed_generic {
indexing_maps = [#map0, #map0],
iterator_types = ["parallel", "parallel", "parallel", "parallel"] }
ins(%0 : tensor<?x?x4x?xi32>)
outs(%0 : tensor<?x?x4x?xi32>) {
^bb0(%arg2: index, %arg3: index, %arg4: index, %arg5: index, %arg6: i32, %arg7 : i32): // no predecessors
%2 = index_cast %arg2 : index to i32
%3 = addi %arg6, %2 : i32
linalg.yield %3 : i32
} -> tensor<?x?x4x?xi32>
return %1 : tensor<?x?x4x?xi32>
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d1, d2)>
// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d3)>
// CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 4 + d2, d3)>
// CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK: func @indexed_generic_op_reshape_producer_fusion
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?x?xi32>
// CHECK: %[[T0:.+]] = linalg.tensor_reshape %[[ARG0]]
// CHECK-SAME: [#[[MAP0]], #[[MAP1]], #[[MAP2]]]
// CHECK: linalg.indexed_generic
// CHECK-SAME: indexing_maps = [#[[MAP3]], #[[MAP4]]]
// CHECK-SAME: ins(%[[ARG0]] : tensor<?x?x?xi32>)
// CHECK-SAME: outs(%[[T0]] : tensor<?x?x4x?xi32>)
// -----
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func @indexed_generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?x4x5xi32>)
-> tensor<?x?xi32> {
%0 = linalg.indexed_generic {
indexing_maps = [#map0, #map0],
iterator_types = ["parallel", "parallel", "parallel", "parallel"] }
ins(%arg0 : tensor<?x?x4x5xi32>) outs(%arg0 : tensor<?x?x4x5xi32>) {
^bb0(%arg2: index, %arg3: index, %arg4: index, %arg5: index, %arg6: i32, %arg7: i32): // no predecessors
%2 = index_cast %arg2 : index to i32
%3 = addi %arg6, %2 : i32
linalg.yield %3 : i32
} -> tensor<?x?x4x5xi32>
%1 = linalg.tensor_reshape %0 [affine_map<(i, j, k, l) -> (i)>,
affine_map<(i, j, k, l) -> (j, k, l)>] :
tensor<?x?x4x5xi32> into tensor<?x?xi32>
return %1 : tensor<?x?xi32>
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)>
// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>
// CHECK: func @indexed_generic_op_reshape_consumer_fusion
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x4x5xi32>
// CHECK: %[[T0:.+]] = linalg.tensor_reshape %[[ARG0]]
// CHECK-SAME: [#[[MAP0]], #[[MAP1]]]
// CHECK: linalg.indexed_generic
// CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP3]]]
// CHECK-SAME: outs(%[[T0]] : tensor<?x?xi32>)
// CHECK-NOT: linalg.tensor_reshape
// -----
#map0 = affine_map<(d0, d1, d2) -> (d0)>
#map1 = affine_map<(d0, d1, d2) -> (d1, d2)>
#map2 = affine_map<(d0, d1, d2) -> (d0, d2, d1)>
#map3 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
func @generic_op_021_permultation_reshape_producer_fusion(%arg0 : tensor<3x35xf32>) -> tensor<3x7x5xf32> {
%0 = linalg.tensor_reshape %arg0 [#map0, #map1] : tensor<3x35xf32> into tensor<3x5x7xf32>
%1 = linalg.init_tensor [3, 7, 5] : tensor<3x7x5xf32>
%2 = linalg.generic
{indexing_maps = [#map2, #map3],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%0 : tensor<3x5x7xf32>) outs(%1 : tensor<3x7x5xf32>) {
^bb0(%arg2: f32, %arg3 : f32): // no predecessors
linalg.yield %arg2 : f32
} -> tensor<3x7x5xf32>
return %2 : tensor<3x7x5xf32>
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1 + d2 * 7)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK: func @generic_op_021_permultation_reshape_producer_fusion
// CHECK-NOT: linalg.tensor_reshape
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
// -----
#map0 = affine_map<(d0, d1, d2) -> (d0)>
#map1 = affine_map<(d0, d1, d2) -> (d1, d2)>
#map2 = affine_map<(d0, d1, d2) -> (d1, d2, d0)>
#map3 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
func @generic_op_120_permultation_reshape_producer_fusion(%arg0 : tensor<3x35xf32>) -> tensor<5x7x3xf32> {
%0 = linalg.tensor_reshape %arg0 [#map0, #map1] : tensor<3x35xf32> into tensor<3x5x7xf32>
%1 = linalg.init_tensor [5, 7, 3] : tensor<5x7x3xf32>
%2 = linalg.generic
{indexing_maps = [#map2, #map3],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%0 : tensor<3x5x7xf32>) outs(%1 : tensor<5x7x3xf32>) {
^bb0(%arg2: f32, %arg3: f32): // no predecessors
linalg.yield %arg2 : f32
} -> tensor<5x7x3xf32>
return %2 : tensor<5x7x3xf32>
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0 * 7 + d1)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK: func @generic_op_120_permultation_reshape_producer_fusion
// CHECK-NOT: linalg.tensor_reshape
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
// -----
#map0 = affine_map<(d0, d1, d2) -> (d0)>
#map1 = affine_map<(d0, d1, d2) -> (d1, d2)>
#map2 = affine_map<(d0, d1, d2) -> (d1, d0, d2)>
#map3 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
func @generic_op_102_permultation_reshape_producer_fusion(%arg0 : tensor<3x35xf32>) -> tensor<5x3x7xf32> {
%0 = linalg.tensor_reshape %arg0 [#map0, #map1] : tensor<3x35xf32> into tensor<3x5x7xf32>
%1 = linalg.init_tensor [5, 3, 7] : tensor<5x3x7xf32>
%2 = linalg.generic
{indexing_maps = [#map2, #map3],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%0 : tensor<3x5x7xf32>) outs(%1 : tensor<5x3x7xf32>) {
^bb0(%arg2: f32, %arg3: f32): // no predecessors
linalg.yield %arg2 : f32
} -> tensor<5x3x7xf32>
return %2 : tensor<5x3x7xf32>
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d1, d0 * 7 + d2)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK: func @generic_op_102_permultation_reshape_producer_fusion
// CHECK-NOT: linalg.tensor_reshape
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
// -----
#map0 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d1, d0, d2)>
#map2 = affine_map<(d0, d1, d2) -> (d0)>
#map3 = affine_map<(d0, d1, d2) -> (d1, d2)>
func @generic_op_102_permultation_reshape_consumer_fusion(%arg0 : tensor<3x5x7xf32>) -> tensor<5x21xf32> {
%0 = linalg.init_tensor [5, 3, 7] : tensor<5x3x7xf32>
%1 = linalg.generic
{indexing_maps = [#map0, #map1],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%arg0 : tensor<3x5x7xf32>) outs(%0 : tensor<5x3x7xf32>) {
^bb0(%arg2: f32, %arg3 : f32): // no predecessors
linalg.yield %arg2 : f32
} -> tensor<5x3x7xf32>
%2 = linalg.tensor_reshape %1 [#map2, #map3] : tensor<5x3x7xf32> into tensor<5x21xf32>
return %2 : tensor<5x21xf32>
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d1, d2)>
// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2) -> (d1, d0 * 7 + d2)>
// CHECK: func @generic_op_102_permultation_reshape_consumer_fusion
// CHECK-SAME: %[[ARG0:.+]]: tensor<3x5x7xf32>
// CHECK: %[[T0:.+]] = linalg.init_tensor [5, 3, 7]
// CHECK: %[[T1:.+]] = linalg.tensor_reshape %[[T0]]
// CHECK-SAME: [#[[MAP0]], #[[MAP1]]]
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP3]]]
// CHECK-SAME: ins(%[[ARG0]] : tensor<3x5x7xf32>)
// CHECK-SAME: outs(%[[T1]] : tensor<5x21xf32>)
// -----
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func @generic_op_reshape_consumer_nofusion(%arg0 : tensor<?x?x?x5xf32>,
%arg1 : tensor<?x?x?x5xf32>) ->
tensor<?x?xf32>
{
// expected-remark @+1 {{fused op indexing map is not affine}}
%0 = linalg.generic {
indexing_maps = [#map0, #map0, #map0],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
ins(%arg0, %arg1 : tensor<?x?x?x5xf32>, tensor<?x?x?x5xf32>)
outs(%arg0 : tensor<?x?x?x5xf32>) {
^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors
%1 = mulf %arg3, %arg4 : f32
linalg.yield %1 : f32
} -> tensor<?x?x?x5xf32>
%1 = linalg.tensor_reshape %0 [affine_map<(i, j, k, l) -> (i)>,
affine_map<(i, j, k, l) -> (j, k, l)>] :
tensor<?x?x?x5xf32> into tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}