forked from OSchip/llvm-project
2577 lines
105 KiB
C++
2577 lines
105 KiB
C++
//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
|
|
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//===----------------------------------------------------------------------===/
|
|
|
|
//
|
|
// This file implements semantic analysis for C++ templates.
|
|
//===----------------------------------------------------------------------===/
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
|
|
using namespace clang;
|
|
|
|
/// isTemplateName - Determines whether the identifier II is a
|
|
/// template name in the current scope, and returns the template
|
|
/// declaration if II names a template. An optional CXXScope can be
|
|
/// passed to indicate the C++ scope in which the identifier will be
|
|
/// found.
|
|
TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S,
|
|
TemplateTy &TemplateResult,
|
|
const CXXScopeSpec *SS) {
|
|
NamedDecl *IIDecl = LookupParsedName(S, SS, &II, LookupOrdinaryName);
|
|
|
|
TemplateNameKind TNK = TNK_Non_template;
|
|
TemplateDecl *Template = 0;
|
|
|
|
if (IIDecl) {
|
|
if ((Template = dyn_cast<TemplateDecl>(IIDecl))) {
|
|
if (isa<FunctionTemplateDecl>(IIDecl))
|
|
TNK = TNK_Function_template;
|
|
else if (isa<ClassTemplateDecl>(IIDecl) ||
|
|
isa<TemplateTemplateParmDecl>(IIDecl))
|
|
TNK = TNK_Type_template;
|
|
else
|
|
assert(false && "Unknown template declaration kind");
|
|
} else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) {
|
|
// C++ [temp.local]p1:
|
|
// Like normal (non-template) classes, class templates have an
|
|
// injected-class-name (Clause 9). The injected-class-name
|
|
// can be used with or without a template-argument-list. When
|
|
// it is used without a template-argument-list, it is
|
|
// equivalent to the injected-class-name followed by the
|
|
// template-parameters of the class template enclosed in
|
|
// <>. When it is used with a template-argument-list, it
|
|
// refers to the specified class template specialization,
|
|
// which could be the current specialization or another
|
|
// specialization.
|
|
if (Record->isInjectedClassName()) {
|
|
Record = cast<CXXRecordDecl>(Context.getCanonicalDecl(Record));
|
|
if ((Template = Record->getDescribedClassTemplate()))
|
|
TNK = TNK_Type_template;
|
|
else if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
|
|
Template = Spec->getSpecializedTemplate();
|
|
TNK = TNK_Type_template;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: What follows is a gross hack.
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(IIDecl)) {
|
|
if (FD->getType()->isDependentType()) {
|
|
TemplateResult = TemplateTy::make(FD);
|
|
return TNK_Function_template;
|
|
}
|
|
} else if (OverloadedFunctionDecl *Ovl
|
|
= dyn_cast<OverloadedFunctionDecl>(IIDecl)) {
|
|
for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
|
|
FEnd = Ovl->function_end();
|
|
F != FEnd; ++F) {
|
|
if ((*F)->getType()->isDependentType()) {
|
|
TemplateResult = TemplateTy::make(Ovl);
|
|
return TNK_Function_template;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TNK != TNK_Non_template) {
|
|
if (SS && SS->isSet() && !SS->isInvalid()) {
|
|
NestedNameSpecifier *Qualifier
|
|
= static_cast<NestedNameSpecifier *>(SS->getScopeRep());
|
|
TemplateResult
|
|
= TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
|
|
false,
|
|
Template));
|
|
} else
|
|
TemplateResult = TemplateTy::make(TemplateName(Template));
|
|
}
|
|
}
|
|
return TNK;
|
|
}
|
|
|
|
/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
|
|
/// that the template parameter 'PrevDecl' is being shadowed by a new
|
|
/// declaration at location Loc. Returns true to indicate that this is
|
|
/// an error, and false otherwise.
|
|
bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
|
|
assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
|
|
|
|
// Microsoft Visual C++ permits template parameters to be shadowed.
|
|
if (getLangOptions().Microsoft)
|
|
return false;
|
|
|
|
// C++ [temp.local]p4:
|
|
// A template-parameter shall not be redeclared within its
|
|
// scope (including nested scopes).
|
|
Diag(Loc, diag::err_template_param_shadow)
|
|
<< cast<NamedDecl>(PrevDecl)->getDeclName();
|
|
Diag(PrevDecl->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
|
|
/// the parameter D to reference the templated declaration and return a pointer
|
|
/// to the template declaration. Otherwise, do nothing to D and return null.
|
|
TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
|
|
if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
|
|
D = DeclPtrTy::make(Temp->getTemplatedDecl());
|
|
return Temp;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// ActOnTypeParameter - Called when a C++ template type parameter
|
|
/// (e.g., "typename T") has been parsed. Typename specifies whether
|
|
/// the keyword "typename" was used to declare the type parameter
|
|
/// (otherwise, "class" was used), and KeyLoc is the location of the
|
|
/// "class" or "typename" keyword. ParamName is the name of the
|
|
/// parameter (NULL indicates an unnamed template parameter) and
|
|
/// ParamName is the location of the parameter name (if any).
|
|
/// If the type parameter has a default argument, it will be added
|
|
/// later via ActOnTypeParameterDefault.
|
|
Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename,
|
|
SourceLocation KeyLoc,
|
|
IdentifierInfo *ParamName,
|
|
SourceLocation ParamNameLoc,
|
|
unsigned Depth, unsigned Position) {
|
|
assert(S->isTemplateParamScope() &&
|
|
"Template type parameter not in template parameter scope!");
|
|
bool Invalid = false;
|
|
|
|
if (ParamName) {
|
|
NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
|
|
if (PrevDecl && PrevDecl->isTemplateParameter())
|
|
Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
|
|
PrevDecl);
|
|
}
|
|
|
|
SourceLocation Loc = ParamNameLoc;
|
|
if (!ParamName)
|
|
Loc = KeyLoc;
|
|
|
|
TemplateTypeParmDecl *Param
|
|
= TemplateTypeParmDecl::Create(Context, CurContext, Loc,
|
|
Depth, Position, ParamName, Typename);
|
|
if (Invalid)
|
|
Param->setInvalidDecl();
|
|
|
|
if (ParamName) {
|
|
// Add the template parameter into the current scope.
|
|
S->AddDecl(DeclPtrTy::make(Param));
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
|
|
return DeclPtrTy::make(Param);
|
|
}
|
|
|
|
/// ActOnTypeParameterDefault - Adds a default argument (the type
|
|
/// Default) to the given template type parameter (TypeParam).
|
|
void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
|
|
SourceLocation EqualLoc,
|
|
SourceLocation DefaultLoc,
|
|
TypeTy *DefaultT) {
|
|
TemplateTypeParmDecl *Parm
|
|
= cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
|
|
QualType Default = QualType::getFromOpaquePtr(DefaultT);
|
|
|
|
// C++ [temp.param]p14:
|
|
// A template-parameter shall not be used in its own default argument.
|
|
// FIXME: Implement this check! Needs a recursive walk over the types.
|
|
|
|
// Check the template argument itself.
|
|
if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
|
|
Parm->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
Parm->setDefaultArgument(Default, DefaultLoc, false);
|
|
}
|
|
|
|
/// \brief Check that the type of a non-type template parameter is
|
|
/// well-formed.
|
|
///
|
|
/// \returns the (possibly-promoted) parameter type if valid;
|
|
/// otherwise, produces a diagnostic and returns a NULL type.
|
|
QualType
|
|
Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
|
|
// C++ [temp.param]p4:
|
|
//
|
|
// A non-type template-parameter shall have one of the following
|
|
// (optionally cv-qualified) types:
|
|
//
|
|
// -- integral or enumeration type,
|
|
if (T->isIntegralType() || T->isEnumeralType() ||
|
|
// -- pointer to object or pointer to function,
|
|
(T->isPointerType() &&
|
|
(T->getAsPointerType()->getPointeeType()->isObjectType() ||
|
|
T->getAsPointerType()->getPointeeType()->isFunctionType())) ||
|
|
// -- reference to object or reference to function,
|
|
T->isReferenceType() ||
|
|
// -- pointer to member.
|
|
T->isMemberPointerType() ||
|
|
// If T is a dependent type, we can't do the check now, so we
|
|
// assume that it is well-formed.
|
|
T->isDependentType())
|
|
return T;
|
|
// C++ [temp.param]p8:
|
|
//
|
|
// A non-type template-parameter of type "array of T" or
|
|
// "function returning T" is adjusted to be of type "pointer to
|
|
// T" or "pointer to function returning T", respectively.
|
|
else if (T->isArrayType())
|
|
// FIXME: Keep the type prior to promotion?
|
|
return Context.getArrayDecayedType(T);
|
|
else if (T->isFunctionType())
|
|
// FIXME: Keep the type prior to promotion?
|
|
return Context.getPointerType(T);
|
|
|
|
Diag(Loc, diag::err_template_nontype_parm_bad_type)
|
|
<< T;
|
|
|
|
return QualType();
|
|
}
|
|
|
|
/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
|
|
/// template parameter (e.g., "int Size" in "template<int Size>
|
|
/// class Array") has been parsed. S is the current scope and D is
|
|
/// the parsed declarator.
|
|
Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
|
|
unsigned Depth,
|
|
unsigned Position) {
|
|
QualType T = GetTypeForDeclarator(D, S);
|
|
|
|
assert(S->isTemplateParamScope() &&
|
|
"Non-type template parameter not in template parameter scope!");
|
|
bool Invalid = false;
|
|
|
|
IdentifierInfo *ParamName = D.getIdentifier();
|
|
if (ParamName) {
|
|
NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
|
|
if (PrevDecl && PrevDecl->isTemplateParameter())
|
|
Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
|
|
PrevDecl);
|
|
}
|
|
|
|
T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
|
|
if (T.isNull()) {
|
|
T = Context.IntTy; // Recover with an 'int' type.
|
|
Invalid = true;
|
|
}
|
|
|
|
NonTypeTemplateParmDecl *Param
|
|
= NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
|
|
Depth, Position, ParamName, T);
|
|
if (Invalid)
|
|
Param->setInvalidDecl();
|
|
|
|
if (D.getIdentifier()) {
|
|
// Add the template parameter into the current scope.
|
|
S->AddDecl(DeclPtrTy::make(Param));
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
return DeclPtrTy::make(Param);
|
|
}
|
|
|
|
/// \brief Adds a default argument to the given non-type template
|
|
/// parameter.
|
|
void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
|
|
SourceLocation EqualLoc,
|
|
ExprArg DefaultE) {
|
|
NonTypeTemplateParmDecl *TemplateParm
|
|
= cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
|
|
Expr *Default = static_cast<Expr *>(DefaultE.get());
|
|
|
|
// C++ [temp.param]p14:
|
|
// A template-parameter shall not be used in its own default argument.
|
|
// FIXME: Implement this check! Needs a recursive walk over the types.
|
|
|
|
// Check the well-formedness of the default template argument.
|
|
TemplateArgument Converted;
|
|
if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
|
|
Converted)) {
|
|
TemplateParm->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
|
|
}
|
|
|
|
|
|
/// ActOnTemplateTemplateParameter - Called when a C++ template template
|
|
/// parameter (e.g. T in template <template <typename> class T> class array)
|
|
/// has been parsed. S is the current scope.
|
|
Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
|
|
SourceLocation TmpLoc,
|
|
TemplateParamsTy *Params,
|
|
IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
unsigned Depth,
|
|
unsigned Position)
|
|
{
|
|
assert(S->isTemplateParamScope() &&
|
|
"Template template parameter not in template parameter scope!");
|
|
|
|
// Construct the parameter object.
|
|
TemplateTemplateParmDecl *Param =
|
|
TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
|
|
Position, Name,
|
|
(TemplateParameterList*)Params);
|
|
|
|
// Make sure the parameter is valid.
|
|
// FIXME: Decl object is not currently invalidated anywhere so this doesn't
|
|
// do anything yet. However, if the template parameter list or (eventual)
|
|
// default value is ever invalidated, that will propagate here.
|
|
bool Invalid = false;
|
|
if (Invalid) {
|
|
Param->setInvalidDecl();
|
|
}
|
|
|
|
// If the tt-param has a name, then link the identifier into the scope
|
|
// and lookup mechanisms.
|
|
if (Name) {
|
|
S->AddDecl(DeclPtrTy::make(Param));
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
|
|
return DeclPtrTy::make(Param);
|
|
}
|
|
|
|
/// \brief Adds a default argument to the given template template
|
|
/// parameter.
|
|
void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
|
|
SourceLocation EqualLoc,
|
|
ExprArg DefaultE) {
|
|
TemplateTemplateParmDecl *TemplateParm
|
|
= cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
|
|
|
|
// Since a template-template parameter's default argument is an
|
|
// id-expression, it must be a DeclRefExpr.
|
|
DeclRefExpr *Default
|
|
= cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
|
|
|
|
// C++ [temp.param]p14:
|
|
// A template-parameter shall not be used in its own default argument.
|
|
// FIXME: Implement this check! Needs a recursive walk over the types.
|
|
|
|
// Check the well-formedness of the template argument.
|
|
if (!isa<TemplateDecl>(Default->getDecl())) {
|
|
Diag(Default->getSourceRange().getBegin(),
|
|
diag::err_template_arg_must_be_template)
|
|
<< Default->getSourceRange();
|
|
TemplateParm->setInvalidDecl();
|
|
return;
|
|
}
|
|
if (CheckTemplateArgument(TemplateParm, Default)) {
|
|
TemplateParm->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
DefaultE.release();
|
|
TemplateParm->setDefaultArgument(Default);
|
|
}
|
|
|
|
/// ActOnTemplateParameterList - Builds a TemplateParameterList that
|
|
/// contains the template parameters in Params/NumParams.
|
|
Sema::TemplateParamsTy *
|
|
Sema::ActOnTemplateParameterList(unsigned Depth,
|
|
SourceLocation ExportLoc,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc,
|
|
DeclPtrTy *Params, unsigned NumParams,
|
|
SourceLocation RAngleLoc) {
|
|
if (ExportLoc.isValid())
|
|
Diag(ExportLoc, diag::note_template_export_unsupported);
|
|
|
|
return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
|
|
(Decl**)Params, NumParams, RAngleLoc);
|
|
}
|
|
|
|
Sema::DeclResult
|
|
Sema::ActOnClassTemplate(Scope *S, unsigned TagSpec, TagKind TK,
|
|
SourceLocation KWLoc, const CXXScopeSpec &SS,
|
|
IdentifierInfo *Name, SourceLocation NameLoc,
|
|
AttributeList *Attr,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
AccessSpecifier AS) {
|
|
assert(TemplateParameterLists.size() > 0 && "No template parameter lists?");
|
|
assert(TK != TK_Reference && "Can only declare or define class templates");
|
|
bool Invalid = false;
|
|
|
|
// Check that we can declare a template here.
|
|
if (CheckTemplateDeclScope(S, TemplateParameterLists))
|
|
return true;
|
|
|
|
TagDecl::TagKind Kind;
|
|
switch (TagSpec) {
|
|
default: assert(0 && "Unknown tag type!");
|
|
case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
|
|
case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
|
|
case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
|
|
}
|
|
|
|
// There is no such thing as an unnamed class template.
|
|
if (!Name) {
|
|
Diag(KWLoc, diag::err_template_unnamed_class);
|
|
return true;
|
|
}
|
|
|
|
// Find any previous declaration with this name.
|
|
LookupResult Previous = LookupParsedName(S, &SS, Name, LookupOrdinaryName,
|
|
true);
|
|
assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
|
|
NamedDecl *PrevDecl = 0;
|
|
if (Previous.begin() != Previous.end())
|
|
PrevDecl = *Previous.begin();
|
|
|
|
DeclContext *SemanticContext = CurContext;
|
|
if (SS.isNotEmpty() && !SS.isInvalid()) {
|
|
SemanticContext = computeDeclContext(SS);
|
|
|
|
// FIXME: need to match up several levels of template parameter lists here.
|
|
}
|
|
|
|
// FIXME: member templates!
|
|
TemplateParameterList *TemplateParams
|
|
= static_cast<TemplateParameterList *>(*TemplateParameterLists.release());
|
|
|
|
// If there is a previous declaration with the same name, check
|
|
// whether this is a valid redeclaration.
|
|
ClassTemplateDecl *PrevClassTemplate
|
|
= dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
|
|
if (PrevClassTemplate) {
|
|
// Ensure that the template parameter lists are compatible.
|
|
if (!TemplateParameterListsAreEqual(TemplateParams,
|
|
PrevClassTemplate->getTemplateParameters(),
|
|
/*Complain=*/true))
|
|
return true;
|
|
|
|
// C++ [temp.class]p4:
|
|
// In a redeclaration, partial specialization, explicit
|
|
// specialization or explicit instantiation of a class template,
|
|
// the class-key shall agree in kind with the original class
|
|
// template declaration (7.1.5.3).
|
|
RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
|
|
if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag)
|
|
<< Name
|
|
<< CodeModificationHint::CreateReplacement(KWLoc,
|
|
PrevRecordDecl->getKindName());
|
|
Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
|
|
Kind = PrevRecordDecl->getTagKind();
|
|
}
|
|
|
|
// Check for redefinition of this class template.
|
|
if (TK == TK_Definition) {
|
|
if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
|
|
Diag(NameLoc, diag::err_redefinition) << Name;
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
// FIXME: Would it make sense to try to "forget" the previous
|
|
// definition, as part of error recovery?
|
|
return true;
|
|
}
|
|
}
|
|
} else if (PrevDecl && PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = 0;
|
|
} else if (PrevDecl) {
|
|
// C++ [temp]p5:
|
|
// A class template shall not have the same name as any other
|
|
// template, class, function, object, enumeration, enumerator,
|
|
// namespace, or type in the same scope (3.3), except as specified
|
|
// in (14.5.4).
|
|
Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
|
|
// Check the template parameter list of this declaration, possibly
|
|
// merging in the template parameter list from the previous class
|
|
// template declaration.
|
|
if (CheckTemplateParameterList(TemplateParams,
|
|
PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
|
|
Invalid = true;
|
|
|
|
// FIXME: If we had a scope specifier, we better have a previous template
|
|
// declaration!
|
|
|
|
CXXRecordDecl *NewClass =
|
|
CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name,
|
|
PrevClassTemplate?
|
|
PrevClassTemplate->getTemplatedDecl() : 0,
|
|
/*DelayTypeCreation=*/true);
|
|
|
|
ClassTemplateDecl *NewTemplate
|
|
= ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
|
|
DeclarationName(Name), TemplateParams,
|
|
NewClass, PrevClassTemplate);
|
|
NewClass->setDescribedClassTemplate(NewTemplate);
|
|
|
|
// Build the type for the class template declaration now.
|
|
QualType T =
|
|
Context.getTypeDeclType(NewClass,
|
|
PrevClassTemplate?
|
|
PrevClassTemplate->getTemplatedDecl() : 0);
|
|
assert(T->isDependentType() && "Class template type is not dependent?");
|
|
(void)T;
|
|
|
|
// Set the access specifier.
|
|
SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
|
|
|
|
// Set the lexical context of these templates
|
|
NewClass->setLexicalDeclContext(CurContext);
|
|
NewTemplate->setLexicalDeclContext(CurContext);
|
|
|
|
if (TK == TK_Definition)
|
|
NewClass->startDefinition();
|
|
|
|
if (Attr)
|
|
ProcessDeclAttributeList(NewClass, Attr);
|
|
|
|
PushOnScopeChains(NewTemplate, S);
|
|
|
|
if (Invalid) {
|
|
NewTemplate->setInvalidDecl();
|
|
NewClass->setInvalidDecl();
|
|
}
|
|
return DeclPtrTy::make(NewTemplate);
|
|
}
|
|
|
|
/// \brief Checks the validity of a template parameter list, possibly
|
|
/// considering the template parameter list from a previous
|
|
/// declaration.
|
|
///
|
|
/// If an "old" template parameter list is provided, it must be
|
|
/// equivalent (per TemplateParameterListsAreEqual) to the "new"
|
|
/// template parameter list.
|
|
///
|
|
/// \param NewParams Template parameter list for a new template
|
|
/// declaration. This template parameter list will be updated with any
|
|
/// default arguments that are carried through from the previous
|
|
/// template parameter list.
|
|
///
|
|
/// \param OldParams If provided, template parameter list from a
|
|
/// previous declaration of the same template. Default template
|
|
/// arguments will be merged from the old template parameter list to
|
|
/// the new template parameter list.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
|
|
TemplateParameterList *OldParams) {
|
|
bool Invalid = false;
|
|
|
|
// C++ [temp.param]p10:
|
|
// The set of default template-arguments available for use with a
|
|
// template declaration or definition is obtained by merging the
|
|
// default arguments from the definition (if in scope) and all
|
|
// declarations in scope in the same way default function
|
|
// arguments are (8.3.6).
|
|
bool SawDefaultArgument = false;
|
|
SourceLocation PreviousDefaultArgLoc;
|
|
|
|
// Dummy initialization to avoid warnings.
|
|
TemplateParameterList::iterator OldParam = NewParams->end();
|
|
if (OldParams)
|
|
OldParam = OldParams->begin();
|
|
|
|
for (TemplateParameterList::iterator NewParam = NewParams->begin(),
|
|
NewParamEnd = NewParams->end();
|
|
NewParam != NewParamEnd; ++NewParam) {
|
|
// Variables used to diagnose redundant default arguments
|
|
bool RedundantDefaultArg = false;
|
|
SourceLocation OldDefaultLoc;
|
|
SourceLocation NewDefaultLoc;
|
|
|
|
// Variables used to diagnose missing default arguments
|
|
bool MissingDefaultArg = false;
|
|
|
|
// Merge default arguments for template type parameters.
|
|
if (TemplateTypeParmDecl *NewTypeParm
|
|
= dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
|
|
TemplateTypeParmDecl *OldTypeParm
|
|
= OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
|
|
|
|
if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
|
|
NewTypeParm->hasDefaultArgument()) {
|
|
OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
|
|
NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
|
|
SawDefaultArgument = true;
|
|
RedundantDefaultArg = true;
|
|
PreviousDefaultArgLoc = NewDefaultLoc;
|
|
} else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
|
|
// Merge the default argument from the old declaration to the
|
|
// new declaration.
|
|
SawDefaultArgument = true;
|
|
NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
|
|
OldTypeParm->getDefaultArgumentLoc(),
|
|
true);
|
|
PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
|
|
} else if (NewTypeParm->hasDefaultArgument()) {
|
|
SawDefaultArgument = true;
|
|
PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
|
|
} else if (SawDefaultArgument)
|
|
MissingDefaultArg = true;
|
|
}
|
|
// Merge default arguments for non-type template parameters
|
|
else if (NonTypeTemplateParmDecl *NewNonTypeParm
|
|
= dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
|
|
NonTypeTemplateParmDecl *OldNonTypeParm
|
|
= OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
|
|
if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
|
|
NewNonTypeParm->hasDefaultArgument()) {
|
|
OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
|
|
NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
|
|
SawDefaultArgument = true;
|
|
RedundantDefaultArg = true;
|
|
PreviousDefaultArgLoc = NewDefaultLoc;
|
|
} else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
|
|
// Merge the default argument from the old declaration to the
|
|
// new declaration.
|
|
SawDefaultArgument = true;
|
|
// FIXME: We need to create a new kind of "default argument"
|
|
// expression that points to a previous template template
|
|
// parameter.
|
|
NewNonTypeParm->setDefaultArgument(
|
|
OldNonTypeParm->getDefaultArgument());
|
|
PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
|
|
} else if (NewNonTypeParm->hasDefaultArgument()) {
|
|
SawDefaultArgument = true;
|
|
PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
|
|
} else if (SawDefaultArgument)
|
|
MissingDefaultArg = true;
|
|
}
|
|
// Merge default arguments for template template parameters
|
|
else {
|
|
TemplateTemplateParmDecl *NewTemplateParm
|
|
= cast<TemplateTemplateParmDecl>(*NewParam);
|
|
TemplateTemplateParmDecl *OldTemplateParm
|
|
= OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
|
|
if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
|
|
NewTemplateParm->hasDefaultArgument()) {
|
|
OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
|
|
NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
|
|
SawDefaultArgument = true;
|
|
RedundantDefaultArg = true;
|
|
PreviousDefaultArgLoc = NewDefaultLoc;
|
|
} else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
|
|
// Merge the default argument from the old declaration to the
|
|
// new declaration.
|
|
SawDefaultArgument = true;
|
|
// FIXME: We need to create a new kind of "default argument" expression
|
|
// that points to a previous template template parameter.
|
|
NewTemplateParm->setDefaultArgument(
|
|
OldTemplateParm->getDefaultArgument());
|
|
PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
|
|
} else if (NewTemplateParm->hasDefaultArgument()) {
|
|
SawDefaultArgument = true;
|
|
PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
|
|
} else if (SawDefaultArgument)
|
|
MissingDefaultArg = true;
|
|
}
|
|
|
|
if (RedundantDefaultArg) {
|
|
// C++ [temp.param]p12:
|
|
// A template-parameter shall not be given default arguments
|
|
// by two different declarations in the same scope.
|
|
Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
|
|
Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
|
|
Invalid = true;
|
|
} else if (MissingDefaultArg) {
|
|
// C++ [temp.param]p11:
|
|
// If a template-parameter has a default template-argument,
|
|
// all subsequent template-parameters shall have a default
|
|
// template-argument supplied.
|
|
Diag((*NewParam)->getLocation(),
|
|
diag::err_template_param_default_arg_missing);
|
|
Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
|
|
Invalid = true;
|
|
}
|
|
|
|
// If we have an old template parameter list that we're merging
|
|
// in, move on to the next parameter.
|
|
if (OldParams)
|
|
++OldParam;
|
|
}
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
/// \brief Translates template arguments as provided by the parser
|
|
/// into template arguments used by semantic analysis.
|
|
static void
|
|
translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
|
|
SourceLocation *TemplateArgLocs,
|
|
llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
|
|
TemplateArgs.reserve(TemplateArgsIn.size());
|
|
|
|
void **Args = TemplateArgsIn.getArgs();
|
|
bool *ArgIsType = TemplateArgsIn.getArgIsType();
|
|
for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
|
|
TemplateArgs.push_back(
|
|
ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
|
|
QualType::getFromOpaquePtr(Args[Arg]))
|
|
: TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
|
|
}
|
|
}
|
|
|
|
/// \brief Build a canonical version of a template argument list.
|
|
///
|
|
/// This function builds a canonical version of the given template
|
|
/// argument list, where each of the template arguments has been
|
|
/// converted into its canonical form. This routine is typically used
|
|
/// to canonicalize a template argument list when the template name
|
|
/// itself is dependent. When the template name refers to an actual
|
|
/// template declaration, Sema::CheckTemplateArgumentList should be
|
|
/// used to check and canonicalize the template arguments.
|
|
///
|
|
/// \param TemplateArgs The incoming template arguments.
|
|
///
|
|
/// \param NumTemplateArgs The number of template arguments in \p
|
|
/// TemplateArgs.
|
|
///
|
|
/// \param Canonical A vector to be filled with the canonical versions
|
|
/// of the template arguments.
|
|
///
|
|
/// \param Context The ASTContext in which the template arguments live.
|
|
static void CanonicalizeTemplateArguments(const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs,
|
|
llvm::SmallVectorImpl<TemplateArgument> &Canonical,
|
|
ASTContext &Context) {
|
|
Canonical.reserve(NumTemplateArgs);
|
|
for (unsigned Idx = 0; Idx < NumTemplateArgs; ++Idx) {
|
|
switch (TemplateArgs[Idx].getKind()) {
|
|
case TemplateArgument::Null:
|
|
assert(false && "Should never see a NULL template argument here");
|
|
break;
|
|
|
|
case TemplateArgument::Expression:
|
|
// FIXME: Build canonical expression (!)
|
|
Canonical.push_back(TemplateArgs[Idx]);
|
|
break;
|
|
|
|
case TemplateArgument::Declaration:
|
|
Canonical.push_back(
|
|
TemplateArgument(SourceLocation(),
|
|
Context.getCanonicalDecl(TemplateArgs[Idx].getAsDecl())));
|
|
break;
|
|
|
|
case TemplateArgument::Integral:
|
|
Canonical.push_back(TemplateArgument(SourceLocation(),
|
|
*TemplateArgs[Idx].getAsIntegral(),
|
|
TemplateArgs[Idx].getIntegralType()));
|
|
break;
|
|
|
|
case TemplateArgument::Type: {
|
|
QualType CanonType
|
|
= Context.getCanonicalType(TemplateArgs[Idx].getAsType());
|
|
Canonical.push_back(TemplateArgument(SourceLocation(), CanonType));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
QualType Sema::CheckTemplateIdType(TemplateName Name,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs,
|
|
SourceLocation RAngleLoc) {
|
|
TemplateDecl *Template = Name.getAsTemplateDecl();
|
|
if (!Template) {
|
|
// The template name does not resolve to a template, so we just
|
|
// build a dependent template-id type.
|
|
|
|
// Canonicalize the template arguments to build the canonical
|
|
// template-id type.
|
|
llvm::SmallVector<TemplateArgument, 16> CanonicalTemplateArgs;
|
|
CanonicalizeTemplateArguments(TemplateArgs, NumTemplateArgs,
|
|
CanonicalTemplateArgs, Context);
|
|
|
|
TemplateName CanonName = Context.getCanonicalTemplateName(Name);
|
|
QualType CanonType
|
|
= Context.getTemplateSpecializationType(CanonName,
|
|
&CanonicalTemplateArgs[0],
|
|
CanonicalTemplateArgs.size());
|
|
|
|
// Build the dependent template-id type.
|
|
return Context.getTemplateSpecializationType(Name, TemplateArgs,
|
|
NumTemplateArgs, CanonType);
|
|
}
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// template.
|
|
TemplateArgumentListBuilder ConvertedTemplateArgs(Context);
|
|
if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
|
|
TemplateArgs, NumTemplateArgs, RAngleLoc,
|
|
ConvertedTemplateArgs))
|
|
return QualType();
|
|
|
|
assert((ConvertedTemplateArgs.size() ==
|
|
Template->getTemplateParameters()->size()) &&
|
|
"Converted template argument list is too short!");
|
|
|
|
QualType CanonType;
|
|
|
|
if (TemplateSpecializationType::anyDependentTemplateArguments(
|
|
TemplateArgs,
|
|
NumTemplateArgs)) {
|
|
// This class template specialization is a dependent
|
|
// type. Therefore, its canonical type is another class template
|
|
// specialization type that contains all of the converted
|
|
// arguments in canonical form. This ensures that, e.g., A<T> and
|
|
// A<T, T> have identical types when A is declared as:
|
|
//
|
|
// template<typename T, typename U = T> struct A;
|
|
TemplateName CanonName = Context.getCanonicalTemplateName(Name);
|
|
CanonType = Context.getTemplateSpecializationType(CanonName,
|
|
ConvertedTemplateArgs.getFlatArgumentList(),
|
|
ConvertedTemplateArgs.flatSize());
|
|
} else if (ClassTemplateDecl *ClassTemplate
|
|
= dyn_cast<ClassTemplateDecl>(Template)) {
|
|
// Find the class template specialization declaration that
|
|
// corresponds to these arguments.
|
|
llvm::FoldingSetNodeID ID;
|
|
ClassTemplateSpecializationDecl::Profile(ID,
|
|
ConvertedTemplateArgs.getFlatArgumentList(),
|
|
ConvertedTemplateArgs.flatSize());
|
|
void *InsertPos = 0;
|
|
ClassTemplateSpecializationDecl *Decl
|
|
= ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
|
|
if (!Decl) {
|
|
// This is the first time we have referenced this class template
|
|
// specialization. Create the canonical declaration and add it to
|
|
// the set of specializations.
|
|
Decl = ClassTemplateSpecializationDecl::Create(Context,
|
|
ClassTemplate->getDeclContext(),
|
|
TemplateLoc,
|
|
ClassTemplate,
|
|
ConvertedTemplateArgs, 0);
|
|
ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
|
|
Decl->setLexicalDeclContext(CurContext);
|
|
}
|
|
|
|
CanonType = Context.getTypeDeclType(Decl);
|
|
}
|
|
|
|
// Build the fully-sugared type for this class template
|
|
// specialization, which refers back to the class template
|
|
// specialization we created or found.
|
|
return Context.getTemplateSpecializationType(Name, TemplateArgs,
|
|
NumTemplateArgs, CanonType);
|
|
}
|
|
|
|
Action::TypeResult
|
|
Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation *TemplateArgLocs,
|
|
SourceLocation RAngleLoc) {
|
|
TemplateName Template = TemplateD.getAsVal<TemplateName>();
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
|
|
|
|
QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
|
|
TemplateArgs.data(),
|
|
TemplateArgs.size(),
|
|
RAngleLoc);
|
|
TemplateArgsIn.release();
|
|
|
|
if (Result.isNull())
|
|
return true;
|
|
|
|
return Result.getAsOpaquePtr();
|
|
}
|
|
|
|
/// \brief Form a dependent template name.
|
|
///
|
|
/// This action forms a dependent template name given the template
|
|
/// name and its (presumably dependent) scope specifier. For
|
|
/// example, given "MetaFun::template apply", the scope specifier \p
|
|
/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
|
|
/// of the "template" keyword, and "apply" is the \p Name.
|
|
Sema::TemplateTy
|
|
Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
|
|
const IdentifierInfo &Name,
|
|
SourceLocation NameLoc,
|
|
const CXXScopeSpec &SS) {
|
|
if (!SS.isSet() || SS.isInvalid())
|
|
return TemplateTy();
|
|
|
|
NestedNameSpecifier *Qualifier
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
|
|
// FIXME: member of the current instantiation
|
|
|
|
if (!Qualifier->isDependent()) {
|
|
// C++0x [temp.names]p5:
|
|
// If a name prefixed by the keyword template is not the name of
|
|
// a template, the program is ill-formed. [Note: the keyword
|
|
// template may not be applied to non-template members of class
|
|
// templates. -end note ] [ Note: as is the case with the
|
|
// typename prefix, the template prefix is allowed in cases
|
|
// where it is not strictly necessary; i.e., when the
|
|
// nested-name-specifier or the expression on the left of the ->
|
|
// or . is not dependent on a template-parameter, or the use
|
|
// does not appear in the scope of a template. -end note]
|
|
//
|
|
// Note: C++03 was more strict here, because it banned the use of
|
|
// the "template" keyword prior to a template-name that was not a
|
|
// dependent name. C++ DR468 relaxed this requirement (the
|
|
// "template" keyword is now permitted). We follow the C++0x
|
|
// rules, even in C++03 mode, retroactively applying the DR.
|
|
TemplateTy Template;
|
|
TemplateNameKind TNK = isTemplateName(Name, 0, Template, &SS);
|
|
if (TNK == TNK_Non_template) {
|
|
Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
|
|
<< &Name;
|
|
return TemplateTy();
|
|
}
|
|
|
|
return Template;
|
|
}
|
|
|
|
return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
|
|
}
|
|
|
|
/// \brief Check that the given template argument list is well-formed
|
|
/// for specializing the given template.
|
|
bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs,
|
|
SourceLocation RAngleLoc,
|
|
TemplateArgumentListBuilder &Converted) {
|
|
TemplateParameterList *Params = Template->getTemplateParameters();
|
|
unsigned NumParams = Params->size();
|
|
unsigned NumArgs = NumTemplateArgs;
|
|
bool Invalid = false;
|
|
|
|
if (NumArgs > NumParams ||
|
|
NumArgs < Params->getMinRequiredArguments()) {
|
|
// FIXME: point at either the first arg beyond what we can handle,
|
|
// or the '>', depending on whether we have too many or too few
|
|
// arguments.
|
|
SourceRange Range;
|
|
if (NumArgs > NumParams)
|
|
Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
|
|
Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
|
|
<< (NumArgs > NumParams)
|
|
<< (isa<ClassTemplateDecl>(Template)? 0 :
|
|
isa<FunctionTemplateDecl>(Template)? 1 :
|
|
isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
|
|
<< Template << Range;
|
|
Diag(Template->getLocation(), diag::note_template_decl_here)
|
|
<< Params->getSourceRange();
|
|
Invalid = true;
|
|
}
|
|
|
|
// C++ [temp.arg]p1:
|
|
// [...] The type and form of each template-argument specified in
|
|
// a template-id shall match the type and form specified for the
|
|
// corresponding parameter declared by the template in its
|
|
// template-parameter-list.
|
|
unsigned ArgIdx = 0;
|
|
for (TemplateParameterList::iterator Param = Params->begin(),
|
|
ParamEnd = Params->end();
|
|
Param != ParamEnd; ++Param, ++ArgIdx) {
|
|
// Decode the template argument
|
|
TemplateArgument Arg;
|
|
if (ArgIdx >= NumArgs) {
|
|
// Retrieve the default template argument from the template
|
|
// parameter.
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
|
|
if (!TTP->hasDefaultArgument())
|
|
break;
|
|
|
|
QualType ArgType = TTP->getDefaultArgument();
|
|
|
|
// If the argument type is dependent, instantiate it now based
|
|
// on the previously-computed template arguments.
|
|
if (ArgType->isDependentType()) {
|
|
InstantiatingTemplate Inst(*this, TemplateLoc,
|
|
Template, Converted.getFlatArgumentList(),
|
|
Converted.flatSize(),
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
|
|
TemplateArgumentList TemplateArgs(Context, Converted,
|
|
/*CopyArgs=*/false,
|
|
/*FlattenArgs=*/false);
|
|
ArgType = InstantiateType(ArgType, TemplateArgs,
|
|
TTP->getDefaultArgumentLoc(),
|
|
TTP->getDeclName());
|
|
}
|
|
|
|
if (ArgType.isNull())
|
|
return true;
|
|
|
|
Arg = TemplateArgument(TTP->getLocation(), ArgType);
|
|
} else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
|
|
if (!NTTP->hasDefaultArgument())
|
|
break;
|
|
|
|
InstantiatingTemplate Inst(*this, TemplateLoc,
|
|
Template, Converted.getFlatArgumentList(),
|
|
Converted.flatSize(),
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
|
|
TemplateArgumentList TemplateArgs(Context, Converted,
|
|
/*CopyArgs=*/false,
|
|
/*FlattenArgs=*/false);
|
|
|
|
Sema::OwningExprResult E = InstantiateExpr(NTTP->getDefaultArgument(),
|
|
TemplateArgs);
|
|
if (E.isInvalid())
|
|
return true;
|
|
|
|
Arg = TemplateArgument(E.takeAs<Expr>());
|
|
} else {
|
|
TemplateTemplateParmDecl *TempParm
|
|
= cast<TemplateTemplateParmDecl>(*Param);
|
|
|
|
if (!TempParm->hasDefaultArgument())
|
|
break;
|
|
|
|
// FIXME: Instantiate default argument
|
|
Arg = TemplateArgument(TempParm->getDefaultArgument());
|
|
}
|
|
} else {
|
|
// Retrieve the template argument produced by the user.
|
|
Arg = TemplateArgs[ArgIdx];
|
|
}
|
|
|
|
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
|
|
// Check template type parameters.
|
|
if (Arg.getKind() == TemplateArgument::Type) {
|
|
if (CheckTemplateArgument(TTP, Arg.getAsType(), Arg.getLocation()))
|
|
Invalid = true;
|
|
|
|
// Add the converted template type argument.
|
|
Converted.push_back(
|
|
TemplateArgument(Arg.getLocation(),
|
|
Context.getCanonicalType(Arg.getAsType())));
|
|
continue;
|
|
}
|
|
|
|
// C++ [temp.arg.type]p1:
|
|
// A template-argument for a template-parameter which is a
|
|
// type shall be a type-id.
|
|
|
|
// We have a template type parameter but the template argument
|
|
// is not a type.
|
|
Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
|
|
Diag((*Param)->getLocation(), diag::note_template_param_here);
|
|
Invalid = true;
|
|
} else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
|
|
// Check non-type template parameters.
|
|
|
|
// Instantiate the type of the non-type template parameter with
|
|
// the template arguments we've seen thus far.
|
|
QualType NTTPType = NTTP->getType();
|
|
if (NTTPType->isDependentType()) {
|
|
// Instantiate the type of the non-type template parameter.
|
|
InstantiatingTemplate Inst(*this, TemplateLoc,
|
|
Template, Converted.getFlatArgumentList(),
|
|
Converted.flatSize(),
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
|
|
TemplateArgumentList TemplateArgs(Context, Converted,
|
|
/*CopyArgs=*/false,
|
|
/*FlattenArgs=*/false);
|
|
NTTPType = InstantiateType(NTTPType, TemplateArgs,
|
|
NTTP->getLocation(),
|
|
NTTP->getDeclName());
|
|
// If that worked, check the non-type template parameter type
|
|
// for validity.
|
|
if (!NTTPType.isNull())
|
|
NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
|
|
NTTP->getLocation());
|
|
|
|
if (NTTPType.isNull()) {
|
|
Invalid = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
assert(false && "Should never see a NULL template argument here");
|
|
break;
|
|
|
|
case TemplateArgument::Expression: {
|
|
Expr *E = Arg.getAsExpr();
|
|
TemplateArgument Result;
|
|
if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
|
|
Invalid = true;
|
|
else
|
|
Converted.push_back(Result);
|
|
break;
|
|
}
|
|
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::Integral:
|
|
// We've already checked this template argument, so just copy
|
|
// it to the list of converted arguments.
|
|
Converted.push_back(Arg);
|
|
break;
|
|
|
|
case TemplateArgument::Type:
|
|
// We have a non-type template parameter but the template
|
|
// argument is a type.
|
|
|
|
// C++ [temp.arg]p2:
|
|
// In a template-argument, an ambiguity between a type-id and
|
|
// an expression is resolved to a type-id, regardless of the
|
|
// form of the corresponding template-parameter.
|
|
//
|
|
// We warn specifically about this case, since it can be rather
|
|
// confusing for users.
|
|
if (Arg.getAsType()->isFunctionType())
|
|
Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
|
|
<< Arg.getAsType();
|
|
else
|
|
Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
|
|
Diag((*Param)->getLocation(), diag::note_template_param_here);
|
|
Invalid = true;
|
|
}
|
|
} else {
|
|
// Check template template parameters.
|
|
TemplateTemplateParmDecl *TempParm
|
|
= cast<TemplateTemplateParmDecl>(*Param);
|
|
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
assert(false && "Should never see a NULL template argument here");
|
|
break;
|
|
|
|
case TemplateArgument::Expression: {
|
|
Expr *ArgExpr = Arg.getAsExpr();
|
|
if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
|
|
isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
|
|
if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
|
|
Invalid = true;
|
|
|
|
// Add the converted template argument.
|
|
Decl *D
|
|
= Context.getCanonicalDecl(cast<DeclRefExpr>(ArgExpr)->getDecl());
|
|
Converted.push_back(TemplateArgument(Arg.getLocation(), D));
|
|
continue;
|
|
}
|
|
}
|
|
// fall through
|
|
|
|
case TemplateArgument::Type: {
|
|
// We have a template template parameter but the template
|
|
// argument does not refer to a template.
|
|
Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
|
|
Invalid = true;
|
|
break;
|
|
}
|
|
|
|
case TemplateArgument::Declaration:
|
|
// We've already checked this template argument, so just copy
|
|
// it to the list of converted arguments.
|
|
Converted.push_back(Arg);
|
|
break;
|
|
|
|
case TemplateArgument::Integral:
|
|
assert(false && "Integral argument with template template parameter");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
/// \brief Check a template argument against its corresponding
|
|
/// template type parameter.
|
|
///
|
|
/// This routine implements the semantics of C++ [temp.arg.type]. It
|
|
/// returns true if an error occurred, and false otherwise.
|
|
bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
|
|
QualType Arg, SourceLocation ArgLoc) {
|
|
// C++ [temp.arg.type]p2:
|
|
// A local type, a type with no linkage, an unnamed type or a type
|
|
// compounded from any of these types shall not be used as a
|
|
// template-argument for a template type-parameter.
|
|
//
|
|
// FIXME: Perform the recursive and no-linkage type checks.
|
|
const TagType *Tag = 0;
|
|
if (const EnumType *EnumT = Arg->getAsEnumType())
|
|
Tag = EnumT;
|
|
else if (const RecordType *RecordT = Arg->getAsRecordType())
|
|
Tag = RecordT;
|
|
if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
|
|
return Diag(ArgLoc, diag::err_template_arg_local_type)
|
|
<< QualType(Tag, 0);
|
|
else if (Tag && !Tag->getDecl()->getDeclName() &&
|
|
!Tag->getDecl()->getTypedefForAnonDecl()) {
|
|
Diag(ArgLoc, diag::err_template_arg_unnamed_type);
|
|
Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Checks whether the given template argument is the address
|
|
/// of an object or function according to C++ [temp.arg.nontype]p1.
|
|
bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
|
|
NamedDecl *&Entity) {
|
|
bool Invalid = false;
|
|
|
|
// See through any implicit casts we added to fix the type.
|
|
if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
|
|
Arg = Cast->getSubExpr();
|
|
|
|
// C++0x allows nullptr, and there's no further checking to be done for that.
|
|
if (Arg->getType()->isNullPtrType())
|
|
return false;
|
|
|
|
// C++ [temp.arg.nontype]p1:
|
|
//
|
|
// A template-argument for a non-type, non-template
|
|
// template-parameter shall be one of: [...]
|
|
//
|
|
// -- the address of an object or function with external
|
|
// linkage, including function templates and function
|
|
// template-ids but excluding non-static class members,
|
|
// expressed as & id-expression where the & is optional if
|
|
// the name refers to a function or array, or if the
|
|
// corresponding template-parameter is a reference; or
|
|
DeclRefExpr *DRE = 0;
|
|
|
|
// Ignore (and complain about) any excess parentheses.
|
|
while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
|
|
if (!Invalid) {
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_extra_parens)
|
|
<< Arg->getSourceRange();
|
|
Invalid = true;
|
|
}
|
|
|
|
Arg = Parens->getSubExpr();
|
|
}
|
|
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
|
|
if (UnOp->getOpcode() == UnaryOperator::AddrOf)
|
|
DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
|
|
} else
|
|
DRE = dyn_cast<DeclRefExpr>(Arg);
|
|
|
|
if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
|
|
return Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_not_object_or_func_form)
|
|
<< Arg->getSourceRange();
|
|
|
|
// Cannot refer to non-static data members
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
|
|
return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
|
|
<< Field << Arg->getSourceRange();
|
|
|
|
// Cannot refer to non-static member functions
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
|
|
if (!Method->isStatic())
|
|
return Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_method)
|
|
<< Method << Arg->getSourceRange();
|
|
|
|
// Functions must have external linkage.
|
|
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
|
|
if (Func->getStorageClass() == FunctionDecl::Static) {
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_function_not_extern)
|
|
<< Func << Arg->getSourceRange();
|
|
Diag(Func->getLocation(), diag::note_template_arg_internal_object)
|
|
<< true;
|
|
return true;
|
|
}
|
|
|
|
// Okay: we've named a function with external linkage.
|
|
Entity = Func;
|
|
return Invalid;
|
|
}
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
if (!Var->hasGlobalStorage()) {
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_object_not_extern)
|
|
<< Var << Arg->getSourceRange();
|
|
Diag(Var->getLocation(), diag::note_template_arg_internal_object)
|
|
<< true;
|
|
return true;
|
|
}
|
|
|
|
// Okay: we've named an object with external linkage
|
|
Entity = Var;
|
|
return Invalid;
|
|
}
|
|
|
|
// We found something else, but we don't know specifically what it is.
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_not_object_or_func)
|
|
<< Arg->getSourceRange();
|
|
Diag(DRE->getDecl()->getLocation(),
|
|
diag::note_template_arg_refers_here);
|
|
return true;
|
|
}
|
|
|
|
/// \brief Checks whether the given template argument is a pointer to
|
|
/// member constant according to C++ [temp.arg.nontype]p1.
|
|
bool
|
|
Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
|
|
bool Invalid = false;
|
|
|
|
// See through any implicit casts we added to fix the type.
|
|
if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
|
|
Arg = Cast->getSubExpr();
|
|
|
|
// C++0x allows nullptr, and there's no further checking to be done for that.
|
|
if (Arg->getType()->isNullPtrType())
|
|
return false;
|
|
|
|
// C++ [temp.arg.nontype]p1:
|
|
//
|
|
// A template-argument for a non-type, non-template
|
|
// template-parameter shall be one of: [...]
|
|
//
|
|
// -- a pointer to member expressed as described in 5.3.1.
|
|
QualifiedDeclRefExpr *DRE = 0;
|
|
|
|
// Ignore (and complain about) any excess parentheses.
|
|
while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
|
|
if (!Invalid) {
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_extra_parens)
|
|
<< Arg->getSourceRange();
|
|
Invalid = true;
|
|
}
|
|
|
|
Arg = Parens->getSubExpr();
|
|
}
|
|
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
|
|
if (UnOp->getOpcode() == UnaryOperator::AddrOf)
|
|
DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
|
|
|
|
if (!DRE)
|
|
return Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_not_pointer_to_member_form)
|
|
<< Arg->getSourceRange();
|
|
|
|
if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
|
|
assert((isa<FieldDecl>(DRE->getDecl()) ||
|
|
!cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
|
|
"Only non-static member pointers can make it here");
|
|
|
|
// Okay: this is the address of a non-static member, and therefore
|
|
// a member pointer constant.
|
|
Member = DRE->getDecl();
|
|
return Invalid;
|
|
}
|
|
|
|
// We found something else, but we don't know specifically what it is.
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_not_pointer_to_member_form)
|
|
<< Arg->getSourceRange();
|
|
Diag(DRE->getDecl()->getLocation(),
|
|
diag::note_template_arg_refers_here);
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check a template argument against its corresponding
|
|
/// non-type template parameter.
|
|
///
|
|
/// This routine implements the semantics of C++ [temp.arg.nontype].
|
|
/// It returns true if an error occurred, and false otherwise. \p
|
|
/// InstantiatedParamType is the type of the non-type template
|
|
/// parameter after it has been instantiated.
|
|
///
|
|
/// If no error was detected, Converted receives the converted template argument.
|
|
bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
|
|
QualType InstantiatedParamType, Expr *&Arg,
|
|
TemplateArgument &Converted) {
|
|
SourceLocation StartLoc = Arg->getSourceRange().getBegin();
|
|
|
|
// If either the parameter has a dependent type or the argument is
|
|
// type-dependent, there's nothing we can check now.
|
|
// FIXME: Add template argument to Converted!
|
|
if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
|
|
// FIXME: Produce a cloned, canonical expression?
|
|
Converted = TemplateArgument(Arg);
|
|
return false;
|
|
}
|
|
|
|
// C++ [temp.arg.nontype]p5:
|
|
// The following conversions are performed on each expression used
|
|
// as a non-type template-argument. If a non-type
|
|
// template-argument cannot be converted to the type of the
|
|
// corresponding template-parameter then the program is
|
|
// ill-formed.
|
|
//
|
|
// -- for a non-type template-parameter of integral or
|
|
// enumeration type, integral promotions (4.5) and integral
|
|
// conversions (4.7) are applied.
|
|
QualType ParamType = InstantiatedParamType;
|
|
QualType ArgType = Arg->getType();
|
|
if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
|
|
// C++ [temp.arg.nontype]p1:
|
|
// A template-argument for a non-type, non-template
|
|
// template-parameter shall be one of:
|
|
//
|
|
// -- an integral constant-expression of integral or enumeration
|
|
// type; or
|
|
// -- the name of a non-type template-parameter; or
|
|
SourceLocation NonConstantLoc;
|
|
llvm::APSInt Value;
|
|
if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_not_integral_or_enumeral)
|
|
<< ArgType << Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
} else if (!Arg->isValueDependent() &&
|
|
!Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
|
|
Diag(NonConstantLoc, diag::err_template_arg_not_ice)
|
|
<< ArgType << Arg->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// FIXME: We need some way to more easily get the unqualified form
|
|
// of the types without going all the way to the
|
|
// canonical type.
|
|
if (Context.getCanonicalType(ParamType).getCVRQualifiers())
|
|
ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
|
|
if (Context.getCanonicalType(ArgType).getCVRQualifiers())
|
|
ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
|
|
|
|
// Try to convert the argument to the parameter's type.
|
|
if (ParamType == ArgType) {
|
|
// Okay: no conversion necessary
|
|
} else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
|
|
!ParamType->isEnumeralType()) {
|
|
// This is an integral promotion or conversion.
|
|
ImpCastExprToType(Arg, ParamType);
|
|
} else {
|
|
// We can't perform this conversion.
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_not_convertible)
|
|
<< Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
QualType IntegerType = Context.getCanonicalType(ParamType);
|
|
if (const EnumType *Enum = IntegerType->getAsEnumType())
|
|
IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
|
|
|
|
if (!Arg->isValueDependent()) {
|
|
// Check that an unsigned parameter does not receive a negative
|
|
// value.
|
|
if (IntegerType->isUnsignedIntegerType()
|
|
&& (Value.isSigned() && Value.isNegative())) {
|
|
Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
|
|
<< Value.toString(10) << Param->getType()
|
|
<< Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
// Check that we don't overflow the template parameter type.
|
|
unsigned AllowedBits = Context.getTypeSize(IntegerType);
|
|
if (Value.getActiveBits() > AllowedBits) {
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_too_large)
|
|
<< Value.toString(10) << Param->getType()
|
|
<< Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
if (Value.getBitWidth() != AllowedBits)
|
|
Value.extOrTrunc(AllowedBits);
|
|
Value.setIsSigned(IntegerType->isSignedIntegerType());
|
|
}
|
|
|
|
// Add the value of this argument to the list of converted
|
|
// arguments. We use the bitwidth and signedness of the template
|
|
// parameter.
|
|
if (Arg->isValueDependent()) {
|
|
// The argument is value-dependent. Create a new
|
|
// TemplateArgument with the converted expression.
|
|
Converted = TemplateArgument(Arg);
|
|
return false;
|
|
}
|
|
|
|
Converted = TemplateArgument(StartLoc, Value,
|
|
ParamType->isEnumeralType() ? ParamType
|
|
: IntegerType);
|
|
return false;
|
|
}
|
|
|
|
// Handle pointer-to-function, reference-to-function, and
|
|
// pointer-to-member-function all in (roughly) the same way.
|
|
if (// -- For a non-type template-parameter of type pointer to
|
|
// function, only the function-to-pointer conversion (4.3) is
|
|
// applied. If the template-argument represents a set of
|
|
// overloaded functions (or a pointer to such), the matching
|
|
// function is selected from the set (13.4).
|
|
// In C++0x, any std::nullptr_t value can be converted.
|
|
(ParamType->isPointerType() &&
|
|
ParamType->getAsPointerType()->getPointeeType()->isFunctionType()) ||
|
|
// -- For a non-type template-parameter of type reference to
|
|
// function, no conversions apply. If the template-argument
|
|
// represents a set of overloaded functions, the matching
|
|
// function is selected from the set (13.4).
|
|
(ParamType->isReferenceType() &&
|
|
ParamType->getAsReferenceType()->getPointeeType()->isFunctionType()) ||
|
|
// -- For a non-type template-parameter of type pointer to
|
|
// member function, no conversions apply. If the
|
|
// template-argument represents a set of overloaded member
|
|
// functions, the matching member function is selected from
|
|
// the set (13.4).
|
|
// Again, C++0x allows a std::nullptr_t value.
|
|
(ParamType->isMemberPointerType() &&
|
|
ParamType->getAsMemberPointerType()->getPointeeType()
|
|
->isFunctionType())) {
|
|
if (Context.hasSameUnqualifiedType(ArgType,
|
|
ParamType.getNonReferenceType())) {
|
|
// We don't have to do anything: the types already match.
|
|
} else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
|
|
ParamType->isMemberPointerType())) {
|
|
ArgType = ParamType;
|
|
ImpCastExprToType(Arg, ParamType);
|
|
} else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
|
|
ArgType = Context.getPointerType(ArgType);
|
|
ImpCastExprToType(Arg, ArgType);
|
|
} else if (FunctionDecl *Fn
|
|
= ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
|
|
if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
|
|
return true;
|
|
|
|
FixOverloadedFunctionReference(Arg, Fn);
|
|
ArgType = Arg->getType();
|
|
if (ArgType->isFunctionType() && ParamType->isPointerType()) {
|
|
ArgType = Context.getPointerType(Arg->getType());
|
|
ImpCastExprToType(Arg, ArgType);
|
|
}
|
|
}
|
|
|
|
if (!Context.hasSameUnqualifiedType(ArgType,
|
|
ParamType.getNonReferenceType())) {
|
|
// We can't perform this conversion.
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_not_convertible)
|
|
<< Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
if (ParamType->isMemberPointerType()) {
|
|
NamedDecl *Member = 0;
|
|
if (CheckTemplateArgumentPointerToMember(Arg, Member))
|
|
return true;
|
|
|
|
Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
|
|
Converted = TemplateArgument(StartLoc, Member);
|
|
return false;
|
|
}
|
|
|
|
NamedDecl *Entity = 0;
|
|
if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
|
|
return true;
|
|
|
|
Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
|
|
Converted = TemplateArgument(StartLoc, Entity);
|
|
return false;
|
|
}
|
|
|
|
if (ParamType->isPointerType()) {
|
|
// -- for a non-type template-parameter of type pointer to
|
|
// object, qualification conversions (4.4) and the
|
|
// array-to-pointer conversion (4.2) are applied.
|
|
// C++0x also allows a value of std::nullptr_t.
|
|
assert(ParamType->getAsPointerType()->getPointeeType()->isObjectType() &&
|
|
"Only object pointers allowed here");
|
|
|
|
if (ArgType->isNullPtrType()) {
|
|
ArgType = ParamType;
|
|
ImpCastExprToType(Arg, ParamType);
|
|
} else if (ArgType->isArrayType()) {
|
|
ArgType = Context.getArrayDecayedType(ArgType);
|
|
ImpCastExprToType(Arg, ArgType);
|
|
}
|
|
|
|
if (IsQualificationConversion(ArgType, ParamType)) {
|
|
ArgType = ParamType;
|
|
ImpCastExprToType(Arg, ParamType);
|
|
}
|
|
|
|
if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
|
|
// We can't perform this conversion.
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_not_convertible)
|
|
<< Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
NamedDecl *Entity = 0;
|
|
if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
|
|
return true;
|
|
|
|
Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
|
|
Converted = TemplateArgument(StartLoc, Entity);
|
|
return false;
|
|
}
|
|
|
|
if (const ReferenceType *ParamRefType = ParamType->getAsReferenceType()) {
|
|
// -- For a non-type template-parameter of type reference to
|
|
// object, no conversions apply. The type referred to by the
|
|
// reference may be more cv-qualified than the (otherwise
|
|
// identical) type of the template-argument. The
|
|
// template-parameter is bound directly to the
|
|
// template-argument, which must be an lvalue.
|
|
assert(ParamRefType->getPointeeType()->isObjectType() &&
|
|
"Only object references allowed here");
|
|
|
|
if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_no_ref_bind)
|
|
<< InstantiatedParamType << Arg->getType()
|
|
<< Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
unsigned ParamQuals
|
|
= Context.getCanonicalType(ParamType).getCVRQualifiers();
|
|
unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
|
|
|
|
if ((ParamQuals | ArgQuals) != ParamQuals) {
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_ref_bind_ignores_quals)
|
|
<< InstantiatedParamType << Arg->getType()
|
|
<< Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
NamedDecl *Entity = 0;
|
|
if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
|
|
return true;
|
|
|
|
Entity = cast<NamedDecl>(Context.getCanonicalDecl(Entity));
|
|
Converted = TemplateArgument(StartLoc, Entity);
|
|
return false;
|
|
}
|
|
|
|
// -- For a non-type template-parameter of type pointer to data
|
|
// member, qualification conversions (4.4) are applied.
|
|
// C++0x allows std::nullptr_t values.
|
|
assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
|
|
|
|
if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
|
|
// Types match exactly: nothing more to do here.
|
|
} else if (ArgType->isNullPtrType()) {
|
|
ImpCastExprToType(Arg, ParamType);
|
|
} else if (IsQualificationConversion(ArgType, ParamType)) {
|
|
ImpCastExprToType(Arg, ParamType);
|
|
} else {
|
|
// We can't perform this conversion.
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::err_template_arg_not_convertible)
|
|
<< Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
NamedDecl *Member = 0;
|
|
if (CheckTemplateArgumentPointerToMember(Arg, Member))
|
|
return true;
|
|
|
|
Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
|
|
Converted = TemplateArgument(StartLoc, Member);
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check a template argument against its corresponding
|
|
/// template template parameter.
|
|
///
|
|
/// This routine implements the semantics of C++ [temp.arg.template].
|
|
/// It returns true if an error occurred, and false otherwise.
|
|
bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
|
|
DeclRefExpr *Arg) {
|
|
assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
|
|
TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
|
|
|
|
// C++ [temp.arg.template]p1:
|
|
// A template-argument for a template template-parameter shall be
|
|
// the name of a class template, expressed as id-expression. Only
|
|
// primary class templates are considered when matching the
|
|
// template template argument with the corresponding parameter;
|
|
// partial specializations are not considered even if their
|
|
// parameter lists match that of the template template parameter.
|
|
if (!isa<ClassTemplateDecl>(Template)) {
|
|
assert(isa<FunctionTemplateDecl>(Template) &&
|
|
"Only function templates are possible here");
|
|
Diag(Arg->getSourceRange().getBegin(),
|
|
diag::note_template_arg_refers_here_func)
|
|
<< Template;
|
|
}
|
|
|
|
return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
|
|
Param->getTemplateParameters(),
|
|
true, true,
|
|
Arg->getSourceRange().getBegin());
|
|
}
|
|
|
|
/// \brief Determine whether the given template parameter lists are
|
|
/// equivalent.
|
|
///
|
|
/// \param New The new template parameter list, typically written in the
|
|
/// source code as part of a new template declaration.
|
|
///
|
|
/// \param Old The old template parameter list, typically found via
|
|
/// name lookup of the template declared with this template parameter
|
|
/// list.
|
|
///
|
|
/// \param Complain If true, this routine will produce a diagnostic if
|
|
/// the template parameter lists are not equivalent.
|
|
///
|
|
/// \param IsTemplateTemplateParm If true, this routine is being
|
|
/// called to compare the template parameter lists of a template
|
|
/// template parameter.
|
|
///
|
|
/// \param TemplateArgLoc If this source location is valid, then we
|
|
/// are actually checking the template parameter list of a template
|
|
/// argument (New) against the template parameter list of its
|
|
/// corresponding template template parameter (Old). We produce
|
|
/// slightly different diagnostics in this scenario.
|
|
///
|
|
/// \returns True if the template parameter lists are equal, false
|
|
/// otherwise.
|
|
bool
|
|
Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
|
|
TemplateParameterList *Old,
|
|
bool Complain,
|
|
bool IsTemplateTemplateParm,
|
|
SourceLocation TemplateArgLoc) {
|
|
if (Old->size() != New->size()) {
|
|
if (Complain) {
|
|
unsigned NextDiag = diag::err_template_param_list_different_arity;
|
|
if (TemplateArgLoc.isValid()) {
|
|
Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
|
|
NextDiag = diag::note_template_param_list_different_arity;
|
|
}
|
|
Diag(New->getTemplateLoc(), NextDiag)
|
|
<< (New->size() > Old->size())
|
|
<< IsTemplateTemplateParm
|
|
<< SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
|
|
Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
|
|
<< IsTemplateTemplateParm
|
|
<< SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
for (TemplateParameterList::iterator OldParm = Old->begin(),
|
|
OldParmEnd = Old->end(), NewParm = New->begin();
|
|
OldParm != OldParmEnd; ++OldParm, ++NewParm) {
|
|
if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
|
|
unsigned NextDiag = diag::err_template_param_different_kind;
|
|
if (TemplateArgLoc.isValid()) {
|
|
Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
|
|
NextDiag = diag::note_template_param_different_kind;
|
|
}
|
|
Diag((*NewParm)->getLocation(), NextDiag)
|
|
<< IsTemplateTemplateParm;
|
|
Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
|
|
<< IsTemplateTemplateParm;
|
|
return false;
|
|
}
|
|
|
|
if (isa<TemplateTypeParmDecl>(*OldParm)) {
|
|
// Okay; all template type parameters are equivalent (since we
|
|
// know we're at the same index).
|
|
#if 0
|
|
// FIXME: Enable this code in debug mode *after* we properly go through
|
|
// and "instantiate" the template parameter lists of template template
|
|
// parameters. It's only after this instantiation that (1) any dependent
|
|
// types within the template parameter list of the template template
|
|
// parameter can be checked, and (2) the template type parameter depths
|
|
// will match up.
|
|
QualType OldParmType
|
|
= Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
|
|
QualType NewParmType
|
|
= Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
|
|
assert(Context.getCanonicalType(OldParmType) ==
|
|
Context.getCanonicalType(NewParmType) &&
|
|
"type parameter mismatch?");
|
|
#endif
|
|
} else if (NonTypeTemplateParmDecl *OldNTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
|
|
// The types of non-type template parameters must agree.
|
|
NonTypeTemplateParmDecl *NewNTTP
|
|
= cast<NonTypeTemplateParmDecl>(*NewParm);
|
|
if (Context.getCanonicalType(OldNTTP->getType()) !=
|
|
Context.getCanonicalType(NewNTTP->getType())) {
|
|
if (Complain) {
|
|
unsigned NextDiag = diag::err_template_nontype_parm_different_type;
|
|
if (TemplateArgLoc.isValid()) {
|
|
Diag(TemplateArgLoc,
|
|
diag::err_template_arg_template_params_mismatch);
|
|
NextDiag = diag::note_template_nontype_parm_different_type;
|
|
}
|
|
Diag(NewNTTP->getLocation(), NextDiag)
|
|
<< NewNTTP->getType()
|
|
<< IsTemplateTemplateParm;
|
|
Diag(OldNTTP->getLocation(),
|
|
diag::note_template_nontype_parm_prev_declaration)
|
|
<< OldNTTP->getType();
|
|
}
|
|
return false;
|
|
}
|
|
} else {
|
|
// The template parameter lists of template template
|
|
// parameters must agree.
|
|
// FIXME: Could we perform a faster "type" comparison here?
|
|
assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
|
|
"Only template template parameters handled here");
|
|
TemplateTemplateParmDecl *OldTTP
|
|
= cast<TemplateTemplateParmDecl>(*OldParm);
|
|
TemplateTemplateParmDecl *NewTTP
|
|
= cast<TemplateTemplateParmDecl>(*NewParm);
|
|
if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
|
|
OldTTP->getTemplateParameters(),
|
|
Complain,
|
|
/*IsTemplateTemplateParm=*/true,
|
|
TemplateArgLoc))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check whether a template can be declared within this scope.
|
|
///
|
|
/// If the template declaration is valid in this scope, returns
|
|
/// false. Otherwise, issues a diagnostic and returns true.
|
|
bool
|
|
Sema::CheckTemplateDeclScope(Scope *S,
|
|
MultiTemplateParamsArg &TemplateParameterLists) {
|
|
assert(TemplateParameterLists.size() > 0 && "Not a template");
|
|
|
|
// Find the nearest enclosing declaration scope.
|
|
while ((S->getFlags() & Scope::DeclScope) == 0 ||
|
|
(S->getFlags() & Scope::TemplateParamScope) != 0)
|
|
S = S->getParent();
|
|
|
|
TemplateParameterList *TemplateParams =
|
|
static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
|
|
SourceLocation TemplateLoc = TemplateParams->getTemplateLoc();
|
|
SourceRange TemplateRange
|
|
= SourceRange(TemplateLoc, TemplateParams->getRAngleLoc());
|
|
|
|
// C++ [temp]p2:
|
|
// A template-declaration can appear only as a namespace scope or
|
|
// class scope declaration.
|
|
DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
|
|
while (Ctx && isa<LinkageSpecDecl>(Ctx)) {
|
|
if (cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
|
|
return Diag(TemplateLoc, diag::err_template_linkage)
|
|
<< TemplateRange;
|
|
|
|
Ctx = Ctx->getParent();
|
|
}
|
|
|
|
if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
|
|
return false;
|
|
|
|
return Diag(TemplateLoc, diag::err_template_outside_namespace_or_class_scope)
|
|
<< TemplateRange;
|
|
}
|
|
|
|
/// \brief Check whether a class template specialization or explicit
|
|
/// instantiation in the current context is well-formed.
|
|
///
|
|
/// This routine determines whether a class template specialization or
|
|
/// explicit instantiation can be declared in the current context
|
|
/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
|
|
/// appropriate diagnostics if there was an error. It returns true if
|
|
// there was an error that we cannot recover from, and false otherwise.
|
|
bool
|
|
Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
|
|
ClassTemplateSpecializationDecl *PrevDecl,
|
|
SourceLocation TemplateNameLoc,
|
|
SourceRange ScopeSpecifierRange,
|
|
bool ExplicitInstantiation) {
|
|
// C++ [temp.expl.spec]p2:
|
|
// An explicit specialization shall be declared in the namespace
|
|
// of which the template is a member, or, for member templates, in
|
|
// the namespace of which the enclosing class or enclosing class
|
|
// template is a member. An explicit specialization of a member
|
|
// function, member class or static data member of a class
|
|
// template shall be declared in the namespace of which the class
|
|
// template is a member. Such a declaration may also be a
|
|
// definition. If the declaration is not a definition, the
|
|
// specialization may be defined later in the name- space in which
|
|
// the explicit specialization was declared, or in a namespace
|
|
// that encloses the one in which the explicit specialization was
|
|
// declared.
|
|
if (CurContext->getLookupContext()->isFunctionOrMethod()) {
|
|
Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
|
|
<< ExplicitInstantiation << ClassTemplate;
|
|
return true;
|
|
}
|
|
|
|
DeclContext *DC = CurContext->getEnclosingNamespaceContext();
|
|
DeclContext *TemplateContext
|
|
= ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
|
|
if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
|
|
!ExplicitInstantiation) {
|
|
// There is no prior declaration of this entity, so this
|
|
// specialization must be in the same context as the template
|
|
// itself.
|
|
if (DC != TemplateContext) {
|
|
if (isa<TranslationUnitDecl>(TemplateContext))
|
|
Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
|
|
<< ClassTemplate << ScopeSpecifierRange;
|
|
else if (isa<NamespaceDecl>(TemplateContext))
|
|
Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
|
|
<< ClassTemplate << cast<NamedDecl>(TemplateContext)
|
|
<< ScopeSpecifierRange;
|
|
|
|
Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// We have a previous declaration of this entity. Make sure that
|
|
// this redeclaration (or definition) occurs in an enclosing namespace.
|
|
if (!CurContext->Encloses(TemplateContext)) {
|
|
// FIXME: In C++98, we would like to turn these errors into warnings,
|
|
// dependent on a -Wc++0x flag.
|
|
bool SuppressedDiag = false;
|
|
if (isa<TranslationUnitDecl>(TemplateContext)) {
|
|
if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
|
|
Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
|
|
<< ExplicitInstantiation << ClassTemplate << ScopeSpecifierRange;
|
|
else
|
|
SuppressedDiag = true;
|
|
} else if (isa<NamespaceDecl>(TemplateContext)) {
|
|
if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
|
|
Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
|
|
<< ExplicitInstantiation << ClassTemplate
|
|
<< cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
|
|
else
|
|
SuppressedDiag = true;
|
|
}
|
|
|
|
if (!SuppressedDiag)
|
|
Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Sema::DeclResult
|
|
Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagKind TK,
|
|
SourceLocation KWLoc,
|
|
const CXXScopeSpec &SS,
|
|
TemplateTy TemplateD,
|
|
SourceLocation TemplateNameLoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation *TemplateArgLocs,
|
|
SourceLocation RAngleLoc,
|
|
AttributeList *Attr,
|
|
MultiTemplateParamsArg TemplateParameterLists) {
|
|
// Find the class template we're specializing
|
|
TemplateName Name = TemplateD.getAsVal<TemplateName>();
|
|
ClassTemplateDecl *ClassTemplate
|
|
= cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
|
|
|
|
bool isPartialSpecialization = false;
|
|
|
|
// Check the validity of the template headers that introduce this
|
|
// template.
|
|
// FIXME: Once we have member templates, we'll need to check
|
|
// C++ [temp.expl.spec]p17-18, where we could have multiple levels of
|
|
// template<> headers.
|
|
if (TemplateParameterLists.size() == 0)
|
|
Diag(KWLoc, diag::err_template_spec_needs_header)
|
|
<< CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
|
|
else {
|
|
TemplateParameterList *TemplateParams
|
|
= static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
|
|
if (TemplateParameterLists.size() > 1) {
|
|
Diag(TemplateParams->getTemplateLoc(),
|
|
diag::err_template_spec_extra_headers);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: We'll need more checks, here!
|
|
if (TemplateParams->size() > 0)
|
|
isPartialSpecialization = true;
|
|
}
|
|
|
|
// Check that the specialization uses the same tag kind as the
|
|
// original template.
|
|
TagDecl::TagKind Kind;
|
|
switch (TagSpec) {
|
|
default: assert(0 && "Unknown tag type!");
|
|
case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
|
|
case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
|
|
case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
|
|
}
|
|
if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
|
|
Kind, KWLoc,
|
|
*ClassTemplate->getIdentifier())) {
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag)
|
|
<< ClassTemplate
|
|
<< CodeModificationHint::CreateReplacement(KWLoc,
|
|
ClassTemplate->getTemplatedDecl()->getKindName());
|
|
Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
|
|
diag::note_previous_use);
|
|
Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
|
|
}
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// template.
|
|
TemplateArgumentListBuilder ConvertedTemplateArgs(Context);
|
|
if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
|
|
&TemplateArgs[0], TemplateArgs.size(),
|
|
RAngleLoc, ConvertedTemplateArgs))
|
|
return true;
|
|
|
|
assert((ConvertedTemplateArgs.size() ==
|
|
ClassTemplate->getTemplateParameters()->size()) &&
|
|
"Converted template argument list is too short!");
|
|
|
|
// Find the class template (partial) specialization declaration that
|
|
// corresponds to these arguments.
|
|
llvm::FoldingSetNodeID ID;
|
|
if (isPartialSpecialization)
|
|
// FIXME: Template parameter list matters, too
|
|
ClassTemplatePartialSpecializationDecl::Profile(ID,
|
|
ConvertedTemplateArgs.getFlatArgumentList(),
|
|
ConvertedTemplateArgs.flatSize());
|
|
else
|
|
ClassTemplateSpecializationDecl::Profile(ID,
|
|
ConvertedTemplateArgs.getFlatArgumentList(),
|
|
ConvertedTemplateArgs.flatSize());
|
|
void *InsertPos = 0;
|
|
ClassTemplateSpecializationDecl *PrevDecl = 0;
|
|
|
|
if (isPartialSpecialization)
|
|
PrevDecl
|
|
= ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
|
|
InsertPos);
|
|
else
|
|
PrevDecl
|
|
= ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
ClassTemplateSpecializationDecl *Specialization = 0;
|
|
|
|
// Check whether we can declare a class template specialization in
|
|
// the current scope.
|
|
if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
|
|
TemplateNameLoc,
|
|
SS.getRange(),
|
|
/*ExplicitInstantiation=*/false))
|
|
return true;
|
|
|
|
if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
|
|
// Since the only prior class template specialization with these
|
|
// arguments was referenced but not declared, reuse that
|
|
// declaration node as our own, updating its source location to
|
|
// reflect our new declaration.
|
|
Specialization = PrevDecl;
|
|
Specialization->setLocation(TemplateNameLoc);
|
|
PrevDecl = 0;
|
|
} else if (isPartialSpecialization) {
|
|
// FIXME: extra checking for partial specializations
|
|
|
|
// Create a new class template partial specialization declaration node.
|
|
TemplateParameterList *TemplateParams
|
|
= static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
|
|
ClassTemplatePartialSpecializationDecl *PrevPartial
|
|
= cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
|
|
ClassTemplatePartialSpecializationDecl *Partial
|
|
= ClassTemplatePartialSpecializationDecl::Create(Context,
|
|
ClassTemplate->getDeclContext(),
|
|
TemplateNameLoc,
|
|
TemplateParams,
|
|
ClassTemplate,
|
|
ConvertedTemplateArgs,
|
|
PrevPartial);
|
|
|
|
if (PrevPartial) {
|
|
ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
|
|
ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
|
|
} else {
|
|
ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
|
|
}
|
|
Specialization = Partial;
|
|
} else {
|
|
// Create a new class template specialization declaration node for
|
|
// this explicit specialization.
|
|
Specialization
|
|
= ClassTemplateSpecializationDecl::Create(Context,
|
|
ClassTemplate->getDeclContext(),
|
|
TemplateNameLoc,
|
|
ClassTemplate,
|
|
ConvertedTemplateArgs,
|
|
PrevDecl);
|
|
|
|
if (PrevDecl) {
|
|
ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
|
|
ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
|
|
} else {
|
|
ClassTemplate->getSpecializations().InsertNode(Specialization,
|
|
InsertPos);
|
|
}
|
|
}
|
|
|
|
// Note that this is an explicit specialization.
|
|
Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
|
|
|
|
// Check that this isn't a redefinition of this specialization.
|
|
if (TK == TK_Definition) {
|
|
if (RecordDecl *Def = Specialization->getDefinition(Context)) {
|
|
// FIXME: Should also handle explicit specialization after implicit
|
|
// instantiation with a special diagnostic.
|
|
SourceRange Range(TemplateNameLoc, RAngleLoc);
|
|
Diag(TemplateNameLoc, diag::err_redefinition)
|
|
<< Context.getTypeDeclType(Specialization) << Range;
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
Specialization->setInvalidDecl();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Build the fully-sugared type for this class template
|
|
// specialization as the user wrote in the specialization
|
|
// itself. This means that we'll pretty-print the type retrieved
|
|
// from the specialization's declaration the way that the user
|
|
// actually wrote the specialization, rather than formatting the
|
|
// name based on the "canonical" representation used to store the
|
|
// template arguments in the specialization.
|
|
QualType WrittenTy
|
|
= Context.getTemplateSpecializationType(Name,
|
|
&TemplateArgs[0],
|
|
TemplateArgs.size(),
|
|
Context.getTypeDeclType(Specialization));
|
|
Specialization->setTypeAsWritten(WrittenTy);
|
|
TemplateArgsIn.release();
|
|
|
|
// C++ [temp.expl.spec]p9:
|
|
// A template explicit specialization is in the scope of the
|
|
// namespace in which the template was defined.
|
|
//
|
|
// We actually implement this paragraph where we set the semantic
|
|
// context (in the creation of the ClassTemplateSpecializationDecl),
|
|
// but we also maintain the lexical context where the actual
|
|
// definition occurs.
|
|
Specialization->setLexicalDeclContext(CurContext);
|
|
|
|
// We may be starting the definition of this specialization.
|
|
if (TK == TK_Definition)
|
|
Specialization->startDefinition();
|
|
|
|
// Add the specialization into its lexical context, so that it can
|
|
// be seen when iterating through the list of declarations in that
|
|
// context. However, specializations are not found by name lookup.
|
|
CurContext->addDecl(Context, Specialization);
|
|
return DeclPtrTy::make(Specialization);
|
|
}
|
|
|
|
// Explicit instantiation of a class template specialization
|
|
Sema::DeclResult
|
|
Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
|
|
unsigned TagSpec,
|
|
SourceLocation KWLoc,
|
|
const CXXScopeSpec &SS,
|
|
TemplateTy TemplateD,
|
|
SourceLocation TemplateNameLoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation *TemplateArgLocs,
|
|
SourceLocation RAngleLoc,
|
|
AttributeList *Attr) {
|
|
// Find the class template we're specializing
|
|
TemplateName Name = TemplateD.getAsVal<TemplateName>();
|
|
ClassTemplateDecl *ClassTemplate
|
|
= cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
|
|
|
|
// Check that the specialization uses the same tag kind as the
|
|
// original template.
|
|
TagDecl::TagKind Kind;
|
|
switch (TagSpec) {
|
|
default: assert(0 && "Unknown tag type!");
|
|
case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
|
|
case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
|
|
case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
|
|
}
|
|
if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
|
|
Kind, KWLoc,
|
|
*ClassTemplate->getIdentifier())) {
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag)
|
|
<< ClassTemplate
|
|
<< CodeModificationHint::CreateReplacement(KWLoc,
|
|
ClassTemplate->getTemplatedDecl()->getKindName());
|
|
Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
|
|
diag::note_previous_use);
|
|
Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
|
|
}
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// [...] An explicit instantiation shall appear in an enclosing
|
|
// namespace of its template. [...]
|
|
//
|
|
// This is C++ DR 275.
|
|
if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
|
|
TemplateNameLoc,
|
|
SS.getRange(),
|
|
/*ExplicitInstantiation=*/true))
|
|
return true;
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// template.
|
|
TemplateArgumentListBuilder ConvertedTemplateArgs(Context);
|
|
if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
|
|
TemplateArgs.data(), TemplateArgs.size(),
|
|
RAngleLoc, ConvertedTemplateArgs))
|
|
return true;
|
|
|
|
assert((ConvertedTemplateArgs.size() ==
|
|
ClassTemplate->getTemplateParameters()->size()) &&
|
|
"Converted template argument list is too short!");
|
|
|
|
// Find the class template specialization declaration that
|
|
// corresponds to these arguments.
|
|
llvm::FoldingSetNodeID ID;
|
|
ClassTemplateSpecializationDecl::Profile(ID,
|
|
ConvertedTemplateArgs.getFlatArgumentList(),
|
|
ConvertedTemplateArgs.flatSize());
|
|
void *InsertPos = 0;
|
|
ClassTemplateSpecializationDecl *PrevDecl
|
|
= ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
ClassTemplateSpecializationDecl *Specialization = 0;
|
|
|
|
bool SpecializationRequiresInstantiation = true;
|
|
if (PrevDecl) {
|
|
if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) {
|
|
// This particular specialization has already been declared or
|
|
// instantiated. We cannot explicitly instantiate it.
|
|
Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
|
|
<< Context.getTypeDeclType(PrevDecl);
|
|
Diag(PrevDecl->getLocation(),
|
|
diag::note_previous_explicit_instantiation);
|
|
return DeclPtrTy::make(PrevDecl);
|
|
}
|
|
|
|
if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
|
|
// C++ DR 259, C++0x [temp.explicit]p4:
|
|
// For a given set of template parameters, if an explicit
|
|
// instantiation of a template appears after a declaration of
|
|
// an explicit specialization for that template, the explicit
|
|
// instantiation has no effect.
|
|
if (!getLangOptions().CPlusPlus0x) {
|
|
Diag(TemplateNameLoc,
|
|
diag::ext_explicit_instantiation_after_specialization)
|
|
<< Context.getTypeDeclType(PrevDecl);
|
|
Diag(PrevDecl->getLocation(),
|
|
diag::note_previous_template_specialization);
|
|
}
|
|
|
|
// Create a new class template specialization declaration node
|
|
// for this explicit specialization. This node is only used to
|
|
// record the existence of this explicit instantiation for
|
|
// accurate reproduction of the source code; we don't actually
|
|
// use it for anything, since it is semantically irrelevant.
|
|
Specialization
|
|
= ClassTemplateSpecializationDecl::Create(Context,
|
|
ClassTemplate->getDeclContext(),
|
|
TemplateNameLoc,
|
|
ClassTemplate,
|
|
ConvertedTemplateArgs, 0);
|
|
Specialization->setLexicalDeclContext(CurContext);
|
|
CurContext->addDecl(Context, Specialization);
|
|
return DeclPtrTy::make(Specialization);
|
|
}
|
|
|
|
// If we have already (implicitly) instantiated this
|
|
// specialization, there is less work to do.
|
|
if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
|
|
SpecializationRequiresInstantiation = false;
|
|
|
|
// Since the only prior class template specialization with these
|
|
// arguments was referenced but not declared, reuse that
|
|
// declaration node as our own, updating its source location to
|
|
// reflect our new declaration.
|
|
Specialization = PrevDecl;
|
|
Specialization->setLocation(TemplateNameLoc);
|
|
PrevDecl = 0;
|
|
} else {
|
|
// Create a new class template specialization declaration node for
|
|
// this explicit specialization.
|
|
Specialization
|
|
= ClassTemplateSpecializationDecl::Create(Context,
|
|
ClassTemplate->getDeclContext(),
|
|
TemplateNameLoc,
|
|
ClassTemplate,
|
|
ConvertedTemplateArgs, 0);
|
|
|
|
ClassTemplate->getSpecializations().InsertNode(Specialization,
|
|
InsertPos);
|
|
}
|
|
|
|
// Build the fully-sugared type for this explicit instantiation as
|
|
// the user wrote in the explicit instantiation itself. This means
|
|
// that we'll pretty-print the type retrieved from the
|
|
// specialization's declaration the way that the user actually wrote
|
|
// the explicit instantiation, rather than formatting the name based
|
|
// on the "canonical" representation used to store the template
|
|
// arguments in the specialization.
|
|
QualType WrittenTy
|
|
= Context.getTemplateSpecializationType(Name,
|
|
TemplateArgs.data(),
|
|
TemplateArgs.size(),
|
|
Context.getTypeDeclType(Specialization));
|
|
Specialization->setTypeAsWritten(WrittenTy);
|
|
TemplateArgsIn.release();
|
|
|
|
// Add the explicit instantiation into its lexical context. However,
|
|
// since explicit instantiations are never found by name lookup, we
|
|
// just put it into the declaration context directly.
|
|
Specialization->setLexicalDeclContext(CurContext);
|
|
CurContext->addDecl(Context, Specialization);
|
|
|
|
// C++ [temp.explicit]p3:
|
|
// A definition of a class template or class member template
|
|
// shall be in scope at the point of the explicit instantiation of
|
|
// the class template or class member template.
|
|
//
|
|
// This check comes when we actually try to perform the
|
|
// instantiation.
|
|
if (SpecializationRequiresInstantiation)
|
|
InstantiateClassTemplateSpecialization(Specialization, true);
|
|
else // Instantiate the members of this class template specialization.
|
|
InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization);
|
|
|
|
return DeclPtrTy::make(Specialization);
|
|
}
|
|
|
|
// Explicit instantiation of a member class of a class template.
|
|
Sema::DeclResult
|
|
Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
|
|
unsigned TagSpec,
|
|
SourceLocation KWLoc,
|
|
const CXXScopeSpec &SS,
|
|
IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
AttributeList *Attr) {
|
|
|
|
bool Owned = false;
|
|
DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TK_Reference,
|
|
KWLoc, SS, Name, NameLoc, Attr, AS_none, Owned);
|
|
if (!TagD)
|
|
return true;
|
|
|
|
TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
|
|
if (Tag->isEnum()) {
|
|
Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
|
|
<< Context.getTypeDeclType(Tag);
|
|
return true;
|
|
}
|
|
|
|
if (Tag->isInvalidDecl())
|
|
return true;
|
|
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
|
|
CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
|
|
if (!Pattern) {
|
|
Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
|
|
<< Context.getTypeDeclType(Record);
|
|
Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
|
|
return true;
|
|
}
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// [...] An explicit instantiation shall appear in an enclosing
|
|
// namespace of its template. [...]
|
|
//
|
|
// This is C++ DR 275.
|
|
if (getLangOptions().CPlusPlus0x) {
|
|
// FIXME: In C++98, we would like to turn these errors into warnings,
|
|
// dependent on a -Wc++0x flag.
|
|
DeclContext *PatternContext
|
|
= Pattern->getDeclContext()->getEnclosingNamespaceContext();
|
|
if (!CurContext->Encloses(PatternContext)) {
|
|
Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
|
|
<< Record << cast<NamedDecl>(PatternContext) << SS.getRange();
|
|
Diag(Pattern->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
}
|
|
|
|
if (!Record->getDefinition(Context)) {
|
|
// If the class has a definition, instantiate it (and all of its
|
|
// members, recursively).
|
|
Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
|
|
if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
|
|
getTemplateInstantiationArgs(Record),
|
|
/*ExplicitInstantiation=*/true))
|
|
return true;
|
|
} else // Instantiate all of the members of class.
|
|
InstantiateClassMembers(TemplateLoc, Record,
|
|
getTemplateInstantiationArgs(Record));
|
|
|
|
// FIXME: We don't have any representation for explicit instantiations of
|
|
// member classes. Such a representation is not needed for compilation, but it
|
|
// should be available for clients that want to see all of the declarations in
|
|
// the source code.
|
|
return TagD;
|
|
}
|
|
|
|
Sema::TypeResult
|
|
Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
|
|
const IdentifierInfo &II, SourceLocation IdLoc) {
|
|
NestedNameSpecifier *NNS
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
if (!NNS)
|
|
return true;
|
|
|
|
QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
|
|
if (T.isNull())
|
|
return true;
|
|
return T.getAsOpaquePtr();
|
|
}
|
|
|
|
Sema::TypeResult
|
|
Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
|
|
SourceLocation TemplateLoc, TypeTy *Ty) {
|
|
QualType T = QualType::getFromOpaquePtr(Ty);
|
|
NestedNameSpecifier *NNS
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
const TemplateSpecializationType *TemplateId
|
|
= T->getAsTemplateSpecializationType();
|
|
assert(TemplateId && "Expected a template specialization type");
|
|
|
|
if (NNS->isDependent())
|
|
return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
|
|
|
|
return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
|
|
}
|
|
|
|
/// \brief Build the type that describes a C++ typename specifier,
|
|
/// e.g., "typename T::type".
|
|
QualType
|
|
Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
|
|
SourceRange Range) {
|
|
CXXRecordDecl *CurrentInstantiation = 0;
|
|
if (NNS->isDependent()) {
|
|
CurrentInstantiation = getCurrentInstantiationOf(NNS);
|
|
|
|
// If the nested-name-specifier does not refer to the current
|
|
// instantiation, then build a typename type.
|
|
if (!CurrentInstantiation)
|
|
return Context.getTypenameType(NNS, &II);
|
|
}
|
|
|
|
DeclContext *Ctx = 0;
|
|
|
|
if (CurrentInstantiation)
|
|
Ctx = CurrentInstantiation;
|
|
else {
|
|
CXXScopeSpec SS;
|
|
SS.setScopeRep(NNS);
|
|
SS.setRange(Range);
|
|
if (RequireCompleteDeclContext(SS))
|
|
return QualType();
|
|
|
|
Ctx = computeDeclContext(SS);
|
|
}
|
|
assert(Ctx && "No declaration context?");
|
|
|
|
DeclarationName Name(&II);
|
|
LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
|
|
false);
|
|
unsigned DiagID = 0;
|
|
Decl *Referenced = 0;
|
|
switch (Result.getKind()) {
|
|
case LookupResult::NotFound:
|
|
if (Ctx->isTranslationUnit())
|
|
DiagID = diag::err_typename_nested_not_found_global;
|
|
else
|
|
DiagID = diag::err_typename_nested_not_found;
|
|
break;
|
|
|
|
case LookupResult::Found:
|
|
if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
|
|
// We found a type. Build a QualifiedNameType, since the
|
|
// typename-specifier was just sugar. FIXME: Tell
|
|
// QualifiedNameType that it has a "typename" prefix.
|
|
return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
|
|
}
|
|
|
|
DiagID = diag::err_typename_nested_not_type;
|
|
Referenced = Result.getAsDecl();
|
|
break;
|
|
|
|
case LookupResult::FoundOverloaded:
|
|
DiagID = diag::err_typename_nested_not_type;
|
|
Referenced = *Result.begin();
|
|
break;
|
|
|
|
case LookupResult::AmbiguousBaseSubobjectTypes:
|
|
case LookupResult::AmbiguousBaseSubobjects:
|
|
case LookupResult::AmbiguousReference:
|
|
DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
|
|
return QualType();
|
|
}
|
|
|
|
// If we get here, it's because name lookup did not find a
|
|
// type. Emit an appropriate diagnostic and return an error.
|
|
if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
|
|
Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
|
|
else
|
|
Diag(Range.getEnd(), DiagID) << Range << Name;
|
|
if (Referenced)
|
|
Diag(Referenced->getLocation(), diag::note_typename_refers_here)
|
|
<< Name;
|
|
return QualType();
|
|
}
|