forked from OSchip/llvm-project
258 lines
9.1 KiB
C++
258 lines
9.1 KiB
C++
//===- ICF.cpp ------------------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Identical COMDAT Folding is a feature to merge COMDAT sections not by
|
|
// name (which is regular COMDAT handling) but by contents. If two COMDAT
|
|
// sections have the same data, relocations, attributes, etc., then the two
|
|
// are considered identical and merged by the linker. This optimization
|
|
// makes outputs smaller.
|
|
//
|
|
// ICF is theoretically a problem of reducing graphs by merging as many
|
|
// identical subgraphs as possible, if we consider sections as vertices and
|
|
// relocations as edges. This may be a bit more complicated problem than you
|
|
// might think. The order of processing sections matters since merging two
|
|
// sections can make other sections, whose relocations now point to the same
|
|
// section, mergeable. Graphs may contain cycles, which is common in COFF.
|
|
// We need a sophisticated algorithm to do this properly and efficiently.
|
|
//
|
|
// What we do in this file is this. We split sections into groups. Sections
|
|
// in the same group are considered identical.
|
|
//
|
|
// First, all sections are grouped by their "constant" values. Constant
|
|
// values are values that are never changed by ICF, such as section contents,
|
|
// section name, number of relocations, type and offset of each relocation,
|
|
// etc. Because we do not care about some relocation targets in this step,
|
|
// two sections in the same group may not be identical, but at least two
|
|
// sections in different groups can never be identical.
|
|
//
|
|
// Then, we try to split each group by relocation targets. Relocations are
|
|
// considered identical if and only if the relocation targets are in the
|
|
// same group. Splitting a group may make more groups to be splittable,
|
|
// because two relocations that were previously considered identical might
|
|
// now point to different groups. We repeat this step until the convergence
|
|
// is obtained.
|
|
//
|
|
// This algorithm is so-called "optimistic" algorithm described in
|
|
// http://research.google.com/pubs/pub36912.html.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Chunks.h"
|
|
#include "Symbols.h"
|
|
#include "lld/Core/Parallel.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace lld {
|
|
namespace coff {
|
|
|
|
static const size_t NJOBS = 256;
|
|
typedef std::vector<SectionChunk *>::iterator ChunkIterator;
|
|
typedef bool (*Comparator)(const SectionChunk *, const SectionChunk *);
|
|
|
|
class ICF {
|
|
public:
|
|
void run(const std::vector<Chunk *> &V);
|
|
|
|
private:
|
|
static uint64_t getHash(SectionChunk *C);
|
|
static bool equalsConstant(const SectionChunk *A, const SectionChunk *B);
|
|
static bool equalsVariable(const SectionChunk *A, const SectionChunk *B);
|
|
bool forEachGroup(std::vector<SectionChunk *> &Chunks, Comparator Eq);
|
|
bool partition(ChunkIterator Begin, ChunkIterator End, Comparator Eq);
|
|
|
|
std::atomic<uint64_t> NextID = { 1 };
|
|
};
|
|
|
|
// Entry point to ICF.
|
|
void doICF(const std::vector<Chunk *> &Chunks) {
|
|
ICF().run(Chunks);
|
|
}
|
|
|
|
uint64_t ICF::getHash(SectionChunk *C) {
|
|
return hash_combine(C->getPermissions(),
|
|
hash_value(C->SectionName),
|
|
C->NumRelocs,
|
|
uint32_t(C->Header->SizeOfRawData),
|
|
uint32_t(C->Header->SizeOfRawData),
|
|
C->Checksum);
|
|
}
|
|
|
|
bool ICF::equalsConstant(const SectionChunk *A, const SectionChunk *B) {
|
|
if (A->AssocChildren.size() != B->AssocChildren.size() ||
|
|
A->NumRelocs != B->NumRelocs) {
|
|
return false;
|
|
}
|
|
|
|
// Compare associative sections.
|
|
for (size_t I = 0, E = A->AssocChildren.size(); I != E; ++I)
|
|
if (A->AssocChildren[I]->GroupID != B->AssocChildren[I]->GroupID)
|
|
return false;
|
|
|
|
// Compare relocations.
|
|
auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) {
|
|
if (R1.Type != R2.Type ||
|
|
R1.VirtualAddress != R2.VirtualAddress) {
|
|
return false;
|
|
}
|
|
SymbolBody *B1 = A->File->getSymbolBody(R1.SymbolTableIndex)->repl();
|
|
SymbolBody *B2 = B->File->getSymbolBody(R2.SymbolTableIndex)->repl();
|
|
if (B1 == B2)
|
|
return true;
|
|
if (auto *D1 = dyn_cast<DefinedRegular>(B1))
|
|
if (auto *D2 = dyn_cast<DefinedRegular>(B2))
|
|
return D1->getValue() == D2->getValue() &&
|
|
D1->getChunk()->GroupID == D2->getChunk()->GroupID;
|
|
return false;
|
|
};
|
|
if (!std::equal(A->Relocs.begin(), A->Relocs.end(), B->Relocs.begin(), Eq))
|
|
return false;
|
|
|
|
// Compare section attributes and contents.
|
|
return A->getPermissions() == B->getPermissions() &&
|
|
A->SectionName == B->SectionName &&
|
|
A->Header->SizeOfRawData == B->Header->SizeOfRawData &&
|
|
A->Checksum == B->Checksum &&
|
|
A->getContents() == B->getContents();
|
|
}
|
|
|
|
bool ICF::equalsVariable(const SectionChunk *A, const SectionChunk *B) {
|
|
// Compare associative sections.
|
|
for (size_t I = 0, E = A->AssocChildren.size(); I != E; ++I)
|
|
if (A->AssocChildren[I]->GroupID != B->AssocChildren[I]->GroupID)
|
|
return false;
|
|
|
|
// Compare relocations.
|
|
auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) {
|
|
SymbolBody *B1 = A->File->getSymbolBody(R1.SymbolTableIndex)->repl();
|
|
SymbolBody *B2 = B->File->getSymbolBody(R2.SymbolTableIndex)->repl();
|
|
if (B1 == B2)
|
|
return true;
|
|
if (auto *D1 = dyn_cast<DefinedRegular>(B1))
|
|
if (auto *D2 = dyn_cast<DefinedRegular>(B2))
|
|
return D1->getChunk()->GroupID == D2->getChunk()->GroupID;
|
|
return false;
|
|
};
|
|
return std::equal(A->Relocs.begin(), A->Relocs.end(), B->Relocs.begin(), Eq);
|
|
}
|
|
|
|
bool ICF::partition(ChunkIterator Begin, ChunkIterator End, Comparator Eq) {
|
|
bool R = false;
|
|
for (auto It = Begin;;) {
|
|
SectionChunk *Head = *It;
|
|
auto Bound = std::partition(It + 1, End, [&](SectionChunk *SC) {
|
|
return Eq(Head, SC);
|
|
});
|
|
if (Bound == End)
|
|
return R;
|
|
size_t ID = NextID++;
|
|
std::for_each(It, Bound, [&](SectionChunk *SC) { SC->GroupID = ID; });
|
|
It = Bound;
|
|
R = true;
|
|
}
|
|
}
|
|
|
|
bool ICF::forEachGroup(std::vector<SectionChunk *> &Chunks, Comparator Eq) {
|
|
bool R = false;
|
|
for (auto It = Chunks.begin(), End = Chunks.end(); It != End;) {
|
|
SectionChunk *Head = *It;
|
|
auto Bound = std::find_if(It + 1, End, [&](SectionChunk *SC) {
|
|
return SC->GroupID != Head->GroupID;
|
|
});
|
|
if (partition(It, Bound, Eq))
|
|
R = true;
|
|
It = Bound;
|
|
}
|
|
return R;
|
|
}
|
|
|
|
// Merge identical COMDAT sections.
|
|
// Two sections are considered the same if their section headers,
|
|
// contents and relocations are all the same.
|
|
void ICF::run(const std::vector<Chunk *> &Vec) {
|
|
// Collect only mergeable sections and group by hash value.
|
|
parallel_for_each(Vec.begin(), Vec.end(), [&](Chunk *C) {
|
|
if (auto *SC = dyn_cast<SectionChunk>(C)) {
|
|
bool Writable = SC->getPermissions() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
|
|
if (SC->isCOMDAT() && SC->isLive() && !Writable)
|
|
SC->GroupID = getHash(SC) | (uint64_t(1) << 63);
|
|
}
|
|
});
|
|
std::vector<std::vector<SectionChunk *>> VChunks(NJOBS);
|
|
for (Chunk *C : Vec) {
|
|
if (auto *SC = dyn_cast<SectionChunk>(C)) {
|
|
if (SC->GroupID) {
|
|
VChunks[SC->GroupID % NJOBS].push_back(SC);
|
|
} else {
|
|
SC->GroupID = NextID++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// From now on, sections in Chunks are ordered so that sections in
|
|
// the same group are consecutive in the vector.
|
|
parallel_for_each(VChunks.begin(), VChunks.end(),
|
|
[&](std::vector<SectionChunk *> &Chunks) {
|
|
std::sort(Chunks.begin(), Chunks.end(),
|
|
[](SectionChunk *A, SectionChunk *B) {
|
|
return A->GroupID < B->GroupID;
|
|
});
|
|
});
|
|
|
|
// Split groups until we get a convergence.
|
|
int Cnt = 1;
|
|
parallel_for_each(VChunks.begin(), VChunks.end(),
|
|
[&](std::vector<SectionChunk *> &Chunks) {
|
|
forEachGroup(Chunks, equalsConstant);
|
|
});
|
|
|
|
for (;;) {
|
|
std::atomic<bool> Redo(false);
|
|
parallel_for_each(VChunks.begin(), VChunks.end(),
|
|
[&](std::vector<SectionChunk *> &Chunks) {
|
|
if (forEachGroup(Chunks, equalsVariable))
|
|
Redo = true;
|
|
});
|
|
if (!Redo)
|
|
break;
|
|
++Cnt;
|
|
}
|
|
if (Config->Verbose)
|
|
llvm::outs() << "\nICF needed " << Cnt << " iterations.\n";
|
|
|
|
// Merge sections in the same group.
|
|
for (std::vector<SectionChunk *> &Chunks : VChunks) {
|
|
for (auto It = Chunks.begin(), End = Chunks.end(); It != End;) {
|
|
SectionChunk *Head = *It++;
|
|
auto Bound = std::find_if(It, End, [&](SectionChunk *SC) {
|
|
return Head->GroupID != SC->GroupID;
|
|
});
|
|
if (It == Bound)
|
|
continue;
|
|
if (Config->Verbose)
|
|
llvm::outs() << "Selected " << Head->getDebugName() << "\n";
|
|
while (It != Bound) {
|
|
SectionChunk *SC = *It++;
|
|
if (Config->Verbose)
|
|
llvm::outs() << " Removed " << SC->getDebugName() << "\n";
|
|
Head->replace(SC);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace coff
|
|
} // namespace lld
|