forked from OSchip/llvm-project
1081 lines
40 KiB
C++
1081 lines
40 KiB
C++
//===--- TUScheduler.cpp -----------------------------------------*-C++-*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// For each file, managed by TUScheduler, we create a single ASTWorker that
|
|
// manages an AST for that file. All operations that modify or read the AST are
|
|
// run on a separate dedicated thread asynchronously in FIFO order.
|
|
//
|
|
// We start processing each update immediately after we receive it. If two or
|
|
// more updates come subsequently without reads in-between, we attempt to drop
|
|
// an older one to not waste time building the ASTs we don't need.
|
|
//
|
|
// The processing thread of the ASTWorker is also responsible for building the
|
|
// preamble. However, unlike AST, the same preamble can be read concurrently, so
|
|
// we run each of async preamble reads on its own thread.
|
|
//
|
|
// To limit the concurrent load that clangd produces we maintain a semaphore
|
|
// that keeps more than a fixed number of threads from running concurrently.
|
|
//
|
|
// Rationale for cancelling updates.
|
|
// LSP clients can send updates to clangd on each keystroke. Some files take
|
|
// significant time to parse (e.g. a few seconds) and clangd can get starved by
|
|
// the updates to those files. Therefore we try to process only the last update,
|
|
// if possible.
|
|
// Our current strategy to do that is the following:
|
|
// - For each update we immediately schedule rebuild of the AST.
|
|
// - Rebuild of the AST checks if it was cancelled before doing any actual work.
|
|
// If it was, it does not do an actual rebuild, only reports llvm::None to the
|
|
// callback
|
|
// - When adding an update, we cancel the last update in the queue if it didn't
|
|
// have any reads.
|
|
// There is probably a optimal ways to do that. One approach we might take is
|
|
// the following:
|
|
// - For each update we remember the pending inputs, but delay rebuild of the
|
|
// AST for some timeout.
|
|
// - If subsequent updates come before rebuild was started, we replace the
|
|
// pending inputs and reset the timer.
|
|
// - If any reads of the AST are scheduled, we start building the AST
|
|
// immediately.
|
|
|
|
#include "TUScheduler.h"
|
|
#include "Cancellation.h"
|
|
#include "Compiler.h"
|
|
#include "Context.h"
|
|
#include "Diagnostics.h"
|
|
#include "GlobalCompilationDatabase.h"
|
|
#include "Logger.h"
|
|
#include "ParsedAST.h"
|
|
#include "Preamble.h"
|
|
#include "Trace.h"
|
|
#include "index/CanonicalIncludes.h"
|
|
#include "clang/Frontend/CompilerInvocation.h"
|
|
#include "clang/Tooling/CompilationDatabase.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/Support/Errc.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/Threading.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <queue>
|
|
#include <thread>
|
|
|
|
namespace clang {
|
|
namespace clangd {
|
|
using std::chrono::steady_clock;
|
|
|
|
namespace {
|
|
class ASTWorker;
|
|
} // namespace
|
|
|
|
static clang::clangd::Key<std::string> kFileBeingProcessed;
|
|
|
|
llvm::Optional<llvm::StringRef> TUScheduler::getFileBeingProcessedInContext() {
|
|
if (auto *File = Context::current().get(kFileBeingProcessed))
|
|
return llvm::StringRef(*File);
|
|
return None;
|
|
}
|
|
|
|
/// An LRU cache of idle ASTs.
|
|
/// Because we want to limit the overall number of these we retain, the cache
|
|
/// owns ASTs (and may evict them) while their workers are idle.
|
|
/// Workers borrow ASTs when active, and return them when done.
|
|
class TUScheduler::ASTCache {
|
|
public:
|
|
using Key = const ASTWorker *;
|
|
|
|
ASTCache(unsigned MaxRetainedASTs) : MaxRetainedASTs(MaxRetainedASTs) {}
|
|
|
|
/// Returns result of getUsedBytes() for the AST cached by \p K.
|
|
/// If no AST is cached, 0 is returned.
|
|
std::size_t getUsedBytes(Key K) {
|
|
std::lock_guard<std::mutex> Lock(Mut);
|
|
auto It = findByKey(K);
|
|
if (It == LRU.end() || !It->second)
|
|
return 0;
|
|
return It->second->getUsedBytes();
|
|
}
|
|
|
|
/// Store the value in the pool, possibly removing the last used AST.
|
|
/// The value should not be in the pool when this function is called.
|
|
void put(Key K, std::unique_ptr<ParsedAST> V) {
|
|
std::unique_lock<std::mutex> Lock(Mut);
|
|
assert(findByKey(K) == LRU.end());
|
|
|
|
LRU.insert(LRU.begin(), {K, std::move(V)});
|
|
if (LRU.size() <= MaxRetainedASTs)
|
|
return;
|
|
// We're past the limit, remove the last element.
|
|
std::unique_ptr<ParsedAST> ForCleanup = std::move(LRU.back().second);
|
|
LRU.pop_back();
|
|
// Run the expensive destructor outside the lock.
|
|
Lock.unlock();
|
|
ForCleanup.reset();
|
|
}
|
|
|
|
/// Returns the cached value for \p K, or llvm::None if the value is not in
|
|
/// the cache anymore. If nullptr was cached for \p K, this function will
|
|
/// return a null unique_ptr wrapped into an optional.
|
|
llvm::Optional<std::unique_ptr<ParsedAST>> take(Key K) {
|
|
std::unique_lock<std::mutex> Lock(Mut);
|
|
auto Existing = findByKey(K);
|
|
if (Existing == LRU.end())
|
|
return None;
|
|
std::unique_ptr<ParsedAST> V = std::move(Existing->second);
|
|
LRU.erase(Existing);
|
|
// GCC 4.8 fails to compile `return V;`, as it tries to call the copy
|
|
// constructor of unique_ptr, so we call the move ctor explicitly to avoid
|
|
// this miscompile.
|
|
return llvm::Optional<std::unique_ptr<ParsedAST>>(std::move(V));
|
|
}
|
|
|
|
private:
|
|
using KVPair = std::pair<Key, std::unique_ptr<ParsedAST>>;
|
|
|
|
std::vector<KVPair>::iterator findByKey(Key K) {
|
|
return llvm::find_if(LRU, [K](const KVPair &P) { return P.first == K; });
|
|
}
|
|
|
|
std::mutex Mut;
|
|
unsigned MaxRetainedASTs;
|
|
/// Items sorted in LRU order, i.e. first item is the most recently accessed
|
|
/// one.
|
|
std::vector<KVPair> LRU; /* GUARDED_BY(Mut) */
|
|
};
|
|
|
|
namespace {
|
|
class ASTWorkerHandle;
|
|
|
|
/// Owns one instance of the AST, schedules updates and reads of it.
|
|
/// Also responsible for building and providing access to the preamble.
|
|
/// Each ASTWorker processes the async requests sent to it on a separate
|
|
/// dedicated thread.
|
|
/// The ASTWorker that manages the AST is shared by both the processing thread
|
|
/// and the TUScheduler. The TUScheduler should discard an ASTWorker when
|
|
/// remove() is called, but its thread may be busy and we don't want to block.
|
|
/// So the workers are accessed via an ASTWorkerHandle. Destroying the handle
|
|
/// signals the worker to exit its run loop and gives up shared ownership of the
|
|
/// worker.
|
|
class ASTWorker {
|
|
friend class ASTWorkerHandle;
|
|
ASTWorker(PathRef FileName, const GlobalCompilationDatabase &CDB,
|
|
TUScheduler::ASTCache &LRUCache, Semaphore &Barrier, bool RunSync,
|
|
DebouncePolicy UpdateDebounce, bool StorePreamblesInMemory,
|
|
ParsingCallbacks &Callbacks);
|
|
|
|
public:
|
|
/// Create a new ASTWorker and return a handle to it.
|
|
/// The processing thread is spawned using \p Tasks. However, when \p Tasks
|
|
/// is null, all requests will be processed on the calling thread
|
|
/// synchronously instead. \p Barrier is acquired when processing each
|
|
/// request, it is used to limit the number of actively running threads.
|
|
static ASTWorkerHandle
|
|
create(PathRef FileName, const GlobalCompilationDatabase &CDB,
|
|
TUScheduler::ASTCache &IdleASTs, AsyncTaskRunner *Tasks,
|
|
Semaphore &Barrier, DebouncePolicy UpdateDebounce,
|
|
bool StorePreamblesInMemory, ParsingCallbacks &Callbacks);
|
|
~ASTWorker();
|
|
|
|
void update(ParseInputs Inputs, WantDiagnostics);
|
|
void
|
|
runWithAST(llvm::StringRef Name,
|
|
llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action);
|
|
bool blockUntilIdle(Deadline Timeout) const;
|
|
|
|
std::shared_ptr<const PreambleData> getPossiblyStalePreamble() const;
|
|
|
|
/// Obtain a preamble reflecting all updates so far. Threadsafe.
|
|
/// It may be delivered immediately, or later on the worker thread.
|
|
void getCurrentPreamble(
|
|
llvm::unique_function<void(std::shared_ptr<const PreambleData>)>);
|
|
/// Returns compile command from the current file inputs.
|
|
tooling::CompileCommand getCurrentCompileCommand() const;
|
|
|
|
/// Wait for the first build of preamble to finish. Preamble itself can be
|
|
/// accessed via getPossiblyStalePreamble(). Note that this function will
|
|
/// return after an unsuccessful build of the preamble too, i.e. result of
|
|
/// getPossiblyStalePreamble() can be null even after this function returns.
|
|
void waitForFirstPreamble() const;
|
|
|
|
std::size_t getUsedBytes() const;
|
|
bool isASTCached() const;
|
|
|
|
private:
|
|
// Must be called exactly once on processing thread. Will return after
|
|
// stop() is called on a separate thread and all pending requests are
|
|
// processed.
|
|
void run();
|
|
/// Signal that run() should finish processing pending requests and exit.
|
|
void stop();
|
|
/// Adds a new task to the end of the request queue.
|
|
void startTask(llvm::StringRef Name, llvm::unique_function<void()> Task,
|
|
llvm::Optional<WantDiagnostics> UpdateType);
|
|
/// Updates the TUStatus and emits it. Only called in the worker thread.
|
|
void emitTUStatus(TUAction FAction,
|
|
const TUStatus::BuildDetails *Detail = nullptr);
|
|
|
|
/// Determines the next action to perform.
|
|
/// All actions that should never run are discarded.
|
|
/// Returns a deadline for the next action. If it's expired, run now.
|
|
/// scheduleLocked() is called again at the deadline, or if requests arrive.
|
|
Deadline scheduleLocked();
|
|
/// Should the first task in the queue be skipped instead of run?
|
|
bool shouldSkipHeadLocked() const;
|
|
/// This is private because `FileInputs.FS` is not thread-safe and thus not
|
|
/// safe to share. Callers should make sure not to expose `FS` via a public
|
|
/// interface.
|
|
std::shared_ptr<const ParseInputs> getCurrentFileInputs() const;
|
|
|
|
struct Request {
|
|
llvm::unique_function<void()> Action;
|
|
std::string Name;
|
|
steady_clock::time_point AddTime;
|
|
Context Ctx;
|
|
llvm::Optional<WantDiagnostics> UpdateType;
|
|
};
|
|
|
|
/// Handles retention of ASTs.
|
|
TUScheduler::ASTCache &IdleASTs;
|
|
const bool RunSync;
|
|
/// Time to wait after an update to see whether another update obsoletes it.
|
|
const DebouncePolicy UpdateDebounce;
|
|
/// File that ASTWorker is responsible for.
|
|
const Path FileName;
|
|
const GlobalCompilationDatabase &CDB;
|
|
/// Whether to keep the built preambles in memory or on disk.
|
|
const bool StorePreambleInMemory;
|
|
/// Callback invoked when preamble or main file AST is built.
|
|
ParsingCallbacks &Callbacks;
|
|
/// Only accessed by the worker thread.
|
|
TUStatus Status;
|
|
|
|
Semaphore &Barrier;
|
|
/// Whether the 'onMainAST' callback ran for the current FileInputs.
|
|
bool RanASTCallback = false;
|
|
/// Guards members used by both TUScheduler and the worker thread.
|
|
mutable std::mutex Mutex;
|
|
/// File inputs, currently being used by the worker.
|
|
/// Inputs are written and read by the worker thread, compile command can also
|
|
/// be consumed by clients of ASTWorker.
|
|
std::shared_ptr<const ParseInputs> FileInputs; /* GUARDED_BY(Mutex) */
|
|
std::shared_ptr<const PreambleData> LastBuiltPreamble; /* GUARDED_BY(Mutex) */
|
|
/// Times of recent AST rebuilds, used for UpdateDebounce computation.
|
|
llvm::SmallVector<DebouncePolicy::clock::duration, 8>
|
|
RebuildTimes; /* GUARDED_BY(Mutex) */
|
|
/// Becomes ready when the first preamble build finishes.
|
|
Notification PreambleWasBuilt;
|
|
/// Set to true to signal run() to finish processing.
|
|
bool Done; /* GUARDED_BY(Mutex) */
|
|
std::deque<Request> Requests; /* GUARDED_BY(Mutex) */
|
|
mutable std::condition_variable RequestsCV;
|
|
/// Guards the callback that publishes results of AST-related computations
|
|
/// (diagnostics, highlightings) and file statuses.
|
|
std::mutex PublishMu;
|
|
// Used to prevent remove document + add document races that lead to
|
|
// out-of-order callbacks for publishing results of onMainAST callback.
|
|
//
|
|
// The lifetime of the old/new ASTWorkers will overlap, but their handles
|
|
// don't. When the old handle is destroyed, the old worker will stop reporting
|
|
// any results to the user.
|
|
bool CanPublishResults = true; /* GUARDED_BY(PublishMu) */
|
|
};
|
|
|
|
/// A smart-pointer-like class that points to an active ASTWorker.
|
|
/// In destructor, signals to the underlying ASTWorker that no new requests will
|
|
/// be sent and the processing loop may exit (after running all pending
|
|
/// requests).
|
|
class ASTWorkerHandle {
|
|
friend class ASTWorker;
|
|
ASTWorkerHandle(std::shared_ptr<ASTWorker> Worker)
|
|
: Worker(std::move(Worker)) {
|
|
assert(this->Worker);
|
|
}
|
|
|
|
public:
|
|
ASTWorkerHandle(const ASTWorkerHandle &) = delete;
|
|
ASTWorkerHandle &operator=(const ASTWorkerHandle &) = delete;
|
|
ASTWorkerHandle(ASTWorkerHandle &&) = default;
|
|
ASTWorkerHandle &operator=(ASTWorkerHandle &&) = default;
|
|
|
|
~ASTWorkerHandle() {
|
|
if (Worker)
|
|
Worker->stop();
|
|
}
|
|
|
|
ASTWorker &operator*() {
|
|
assert(Worker && "Handle was moved from");
|
|
return *Worker;
|
|
}
|
|
|
|
ASTWorker *operator->() {
|
|
assert(Worker && "Handle was moved from");
|
|
return Worker.get();
|
|
}
|
|
|
|
/// Returns an owning reference to the underlying ASTWorker that can outlive
|
|
/// the ASTWorkerHandle. However, no new requests to an active ASTWorker can
|
|
/// be schedule via the returned reference, i.e. only reads of the preamble
|
|
/// are possible.
|
|
std::shared_ptr<const ASTWorker> lock() { return Worker; }
|
|
|
|
private:
|
|
std::shared_ptr<ASTWorker> Worker;
|
|
};
|
|
|
|
ASTWorkerHandle
|
|
ASTWorker::create(PathRef FileName, const GlobalCompilationDatabase &CDB,
|
|
TUScheduler::ASTCache &IdleASTs, AsyncTaskRunner *Tasks,
|
|
Semaphore &Barrier, DebouncePolicy UpdateDebounce,
|
|
bool StorePreamblesInMemory, ParsingCallbacks &Callbacks) {
|
|
std::shared_ptr<ASTWorker> Worker(
|
|
new ASTWorker(FileName, CDB, IdleASTs, Barrier, /*RunSync=*/!Tasks,
|
|
UpdateDebounce, StorePreamblesInMemory, Callbacks));
|
|
if (Tasks)
|
|
Tasks->runAsync("worker:" + llvm::sys::path::filename(FileName),
|
|
[Worker]() { Worker->run(); });
|
|
|
|
return ASTWorkerHandle(std::move(Worker));
|
|
}
|
|
|
|
ASTWorker::ASTWorker(PathRef FileName, const GlobalCompilationDatabase &CDB,
|
|
TUScheduler::ASTCache &LRUCache, Semaphore &Barrier,
|
|
bool RunSync, DebouncePolicy UpdateDebounce,
|
|
bool StorePreamblesInMemory, ParsingCallbacks &Callbacks)
|
|
: IdleASTs(LRUCache), RunSync(RunSync), UpdateDebounce(UpdateDebounce),
|
|
FileName(FileName), CDB(CDB),
|
|
StorePreambleInMemory(StorePreamblesInMemory),
|
|
Callbacks(Callbacks), Status{TUAction(TUAction::Idle, ""),
|
|
TUStatus::BuildDetails()},
|
|
Barrier(Barrier), Done(false) {
|
|
auto Inputs = std::make_shared<ParseInputs>();
|
|
// Set a fallback command because compile command can be accessed before
|
|
// `Inputs` is initialized. Other fields are only used after initialization
|
|
// from client inputs.
|
|
Inputs->CompileCommand = CDB.getFallbackCommand(FileName);
|
|
FileInputs = std::move(Inputs);
|
|
}
|
|
|
|
ASTWorker::~ASTWorker() {
|
|
// Make sure we remove the cached AST, if any.
|
|
IdleASTs.take(this);
|
|
#ifndef NDEBUG
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
assert(Done && "handle was not destroyed");
|
|
assert(Requests.empty() && "unprocessed requests when destroying ASTWorker");
|
|
#endif
|
|
}
|
|
|
|
void ASTWorker::update(ParseInputs Inputs, WantDiagnostics WantDiags) {
|
|
llvm::StringRef TaskName = "Update";
|
|
auto Task = [=]() mutable {
|
|
auto RunPublish = [&](llvm::function_ref<void()> Publish) {
|
|
// Ensure we only publish results from the worker if the file was not
|
|
// removed, making sure there are not race conditions.
|
|
std::lock_guard<std::mutex> Lock(PublishMu);
|
|
if (CanPublishResults)
|
|
Publish();
|
|
};
|
|
|
|
// Get the actual command as `Inputs` does not have a command.
|
|
// FIXME: some build systems like Bazel will take time to preparing
|
|
// environment to build the file, it would be nice if we could emit a
|
|
// "PreparingBuild" status to inform users, it is non-trivial given the
|
|
// current implementation.
|
|
if (auto Cmd = CDB.getCompileCommand(FileName))
|
|
Inputs.CompileCommand = *Cmd;
|
|
else
|
|
// FIXME: consider using old command if it's not a fallback one.
|
|
Inputs.CompileCommand = CDB.getFallbackCommand(FileName);
|
|
auto PrevInputs = getCurrentFileInputs();
|
|
// Will be used to check if we can avoid rebuilding the AST.
|
|
bool InputsAreTheSame =
|
|
std::tie(PrevInputs->CompileCommand, PrevInputs->Contents) ==
|
|
std::tie(Inputs.CompileCommand, Inputs.Contents);
|
|
|
|
tooling::CompileCommand OldCommand = PrevInputs->CompileCommand;
|
|
bool RanCallbackForPrevInputs = RanASTCallback;
|
|
{
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
FileInputs = std::make_shared<ParseInputs>(Inputs);
|
|
}
|
|
RanASTCallback = false;
|
|
emitTUStatus({TUAction::BuildingPreamble, TaskName});
|
|
log("Updating file {0} with command {1}\n[{2}]\n{3}", FileName,
|
|
Inputs.CompileCommand.Heuristic,
|
|
Inputs.CompileCommand.Directory,
|
|
llvm::join(Inputs.CompileCommand.CommandLine, " "));
|
|
// Rebuild the preamble and the AST.
|
|
StoreDiags CompilerInvocationDiagConsumer;
|
|
std::vector<std::string> CC1Args;
|
|
std::unique_ptr<CompilerInvocation> Invocation = buildCompilerInvocation(
|
|
Inputs, CompilerInvocationDiagConsumer, &CC1Args);
|
|
// Log cc1 args even (especially!) if creating invocation failed.
|
|
if (!CC1Args.empty())
|
|
vlog("Driver produced command: cc1 {0}", llvm::join(CC1Args, " "));
|
|
std::vector<Diag> CompilerInvocationDiags =
|
|
CompilerInvocationDiagConsumer.take();
|
|
if (!Invocation) {
|
|
elog("Could not build CompilerInvocation for file {0}", FileName);
|
|
// Remove the old AST if it's still in cache.
|
|
IdleASTs.take(this);
|
|
TUStatus::BuildDetails Details;
|
|
Details.BuildFailed = true;
|
|
emitTUStatus({TUAction::BuildingPreamble, TaskName}, &Details);
|
|
// Report the diagnostics we collected when parsing the command line.
|
|
Callbacks.onFailedAST(FileName, std::move(CompilerInvocationDiags),
|
|
RunPublish);
|
|
// Make sure anyone waiting for the preamble gets notified it could not
|
|
// be built.
|
|
PreambleWasBuilt.notify();
|
|
return;
|
|
}
|
|
|
|
std::shared_ptr<const PreambleData> OldPreamble =
|
|
Inputs.ForceRebuild ? std::shared_ptr<const PreambleData>()
|
|
: getPossiblyStalePreamble();
|
|
std::shared_ptr<const PreambleData> NewPreamble = buildPreamble(
|
|
FileName, *Invocation, OldPreamble, OldCommand, Inputs,
|
|
StorePreambleInMemory,
|
|
[this](ASTContext &Ctx, std::shared_ptr<clang::Preprocessor> PP,
|
|
const CanonicalIncludes &CanonIncludes) {
|
|
Callbacks.onPreambleAST(FileName, Ctx, std::move(PP), CanonIncludes);
|
|
});
|
|
|
|
bool CanReuseAST = InputsAreTheSame && (OldPreamble == NewPreamble);
|
|
{
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
LastBuiltPreamble = NewPreamble;
|
|
}
|
|
// Before doing the expensive AST reparse, we want to release our reference
|
|
// to the old preamble, so it can be freed if there are no other references
|
|
// to it.
|
|
OldPreamble.reset();
|
|
PreambleWasBuilt.notify();
|
|
emitTUStatus({TUAction::BuildingFile, TaskName});
|
|
if (!CanReuseAST) {
|
|
IdleASTs.take(this); // Remove the old AST if it's still in cache.
|
|
} else {
|
|
// We don't need to rebuild the AST, check if we need to run the callback.
|
|
if (RanCallbackForPrevInputs) {
|
|
RanASTCallback = true;
|
|
// Take a shortcut and don't report the diagnostics, since they should
|
|
// not changed. All the clients should handle the lack of OnUpdated()
|
|
// call anyway to handle empty result from buildAST.
|
|
// FIXME(ibiryukov): the AST could actually change if non-preamble
|
|
// includes changed, but we choose to ignore it.
|
|
// FIXME(ibiryukov): should we refresh the cache in IdleASTs for the
|
|
// current file at this point?
|
|
log("Skipping rebuild of the AST for {0}, inputs are the same.",
|
|
FileName);
|
|
TUStatus::BuildDetails Details;
|
|
Details.ReuseAST = true;
|
|
emitTUStatus({TUAction::BuildingFile, TaskName}, &Details);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// We only need to build the AST if diagnostics were requested.
|
|
if (WantDiags == WantDiagnostics::No)
|
|
return;
|
|
|
|
{
|
|
std::lock_guard<std::mutex> Lock(PublishMu);
|
|
// No need to rebuild the AST if we won't send the diagnostics. However,
|
|
// note that we don't prevent preamble rebuilds.
|
|
if (!CanPublishResults)
|
|
return;
|
|
}
|
|
|
|
// Get the AST for diagnostics.
|
|
llvm::Optional<std::unique_ptr<ParsedAST>> AST = IdleASTs.take(this);
|
|
auto RebuildStartTime = DebouncePolicy::clock::now();
|
|
if (!AST) {
|
|
llvm::Optional<ParsedAST> NewAST =
|
|
buildAST(FileName, std::move(Invocation), CompilerInvocationDiags,
|
|
Inputs, NewPreamble);
|
|
AST = NewAST ? std::make_unique<ParsedAST>(std::move(*NewAST)) : nullptr;
|
|
if (!(*AST)) { // buildAST fails.
|
|
TUStatus::BuildDetails Details;
|
|
Details.BuildFailed = true;
|
|
emitTUStatus({TUAction::BuildingFile, TaskName}, &Details);
|
|
}
|
|
} else {
|
|
// We are reusing the AST.
|
|
TUStatus::BuildDetails Details;
|
|
Details.ReuseAST = true;
|
|
emitTUStatus({TUAction::BuildingFile, TaskName}, &Details);
|
|
}
|
|
|
|
// We want to report the diagnostics even if this update was cancelled.
|
|
// It seems more useful than making the clients wait indefinitely if they
|
|
// spam us with updates.
|
|
// Note *AST can still be null if buildAST fails.
|
|
if (*AST) {
|
|
{
|
|
// Try to record the AST-build time, to inform future update debouncing.
|
|
// This is best-effort only: if the lock is held, don't bother.
|
|
auto RebuildDuration = DebouncePolicy::clock::now() - RebuildStartTime;
|
|
std::unique_lock<std::mutex> Lock(Mutex, std::try_to_lock);
|
|
if (Lock.owns_lock()) {
|
|
// Do not let RebuildTimes grow beyond its small-size (i.e. capacity).
|
|
if (RebuildTimes.size() == RebuildTimes.capacity())
|
|
RebuildTimes.erase(RebuildTimes.begin());
|
|
RebuildTimes.push_back(RebuildDuration);
|
|
}
|
|
}
|
|
trace::Span Span("Running main AST callback");
|
|
|
|
Callbacks.onMainAST(FileName, **AST, RunPublish);
|
|
RanASTCallback = true;
|
|
} else {
|
|
// Failed to build the AST, at least report diagnostics from the command
|
|
// line if there were any.
|
|
// FIXME: we might have got more errors while trying to build the AST,
|
|
// surface them too.
|
|
Callbacks.onFailedAST(FileName, CompilerInvocationDiags, RunPublish);
|
|
}
|
|
// Stash the AST in the cache for further use.
|
|
IdleASTs.put(this, std::move(*AST));
|
|
};
|
|
startTask(TaskName, std::move(Task), WantDiags);
|
|
}
|
|
|
|
void ASTWorker::runWithAST(
|
|
llvm::StringRef Name,
|
|
llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action) {
|
|
auto Task = [=, Action = std::move(Action)]() mutable {
|
|
if (isCancelled())
|
|
return Action(llvm::make_error<CancelledError>());
|
|
llvm::Optional<std::unique_ptr<ParsedAST>> AST = IdleASTs.take(this);
|
|
auto CurrentInputs = getCurrentFileInputs();
|
|
if (!AST) {
|
|
StoreDiags CompilerInvocationDiagConsumer;
|
|
std::unique_ptr<CompilerInvocation> Invocation = buildCompilerInvocation(
|
|
*CurrentInputs, CompilerInvocationDiagConsumer);
|
|
// Try rebuilding the AST.
|
|
llvm::Optional<ParsedAST> NewAST =
|
|
Invocation
|
|
? buildAST(FileName,
|
|
std::make_unique<CompilerInvocation>(*Invocation),
|
|
CompilerInvocationDiagConsumer.take(), *CurrentInputs,
|
|
getPossiblyStalePreamble())
|
|
: None;
|
|
AST = NewAST ? std::make_unique<ParsedAST>(std::move(*NewAST)) : nullptr;
|
|
}
|
|
// Make sure we put the AST back into the LRU cache.
|
|
auto _ = llvm::make_scope_exit(
|
|
[&AST, this]() { IdleASTs.put(this, std::move(*AST)); });
|
|
// Run the user-provided action.
|
|
if (!*AST)
|
|
return Action(llvm::make_error<llvm::StringError>(
|
|
"invalid AST", llvm::errc::invalid_argument));
|
|
Action(InputsAndAST{*CurrentInputs, **AST});
|
|
};
|
|
startTask(Name, std::move(Task), /*UpdateType=*/None);
|
|
}
|
|
|
|
std::shared_ptr<const PreambleData>
|
|
ASTWorker::getPossiblyStalePreamble() const {
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
return LastBuiltPreamble;
|
|
}
|
|
|
|
void ASTWorker::getCurrentPreamble(
|
|
llvm::unique_function<void(std::shared_ptr<const PreambleData>)> Callback) {
|
|
// We could just call startTask() to throw the read on the queue, knowing
|
|
// it will run after any updates. But we know this task is cheap, so to
|
|
// improve latency we cheat: insert it on the queue after the last update.
|
|
std::unique_lock<std::mutex> Lock(Mutex);
|
|
auto LastUpdate =
|
|
std::find_if(Requests.rbegin(), Requests.rend(),
|
|
[](const Request &R) { return R.UpdateType.hasValue(); });
|
|
// If there were no writes in the queue, the preamble is ready now.
|
|
if (LastUpdate == Requests.rend()) {
|
|
Lock.unlock();
|
|
return Callback(getPossiblyStalePreamble());
|
|
}
|
|
assert(!RunSync && "Running synchronously, but queue is non-empty!");
|
|
Requests.insert(LastUpdate.base(),
|
|
Request{[Callback = std::move(Callback), this]() mutable {
|
|
Callback(getPossiblyStalePreamble());
|
|
},
|
|
"GetPreamble", steady_clock::now(),
|
|
Context::current().clone(),
|
|
/*UpdateType=*/None});
|
|
Lock.unlock();
|
|
RequestsCV.notify_all();
|
|
}
|
|
|
|
void ASTWorker::waitForFirstPreamble() const { PreambleWasBuilt.wait(); }
|
|
|
|
std::shared_ptr<const ParseInputs> ASTWorker::getCurrentFileInputs() const {
|
|
std::unique_lock<std::mutex> Lock(Mutex);
|
|
return FileInputs;
|
|
}
|
|
|
|
tooling::CompileCommand ASTWorker::getCurrentCompileCommand() const {
|
|
std::unique_lock<std::mutex> Lock(Mutex);
|
|
return FileInputs->CompileCommand;
|
|
}
|
|
|
|
std::size_t ASTWorker::getUsedBytes() const {
|
|
// Note that we don't report the size of ASTs currently used for processing
|
|
// the in-flight requests. We used this information for debugging purposes
|
|
// only, so this should be fine.
|
|
std::size_t Result = IdleASTs.getUsedBytes(this);
|
|
if (auto Preamble = getPossiblyStalePreamble())
|
|
Result += Preamble->Preamble.getSize();
|
|
return Result;
|
|
}
|
|
|
|
bool ASTWorker::isASTCached() const { return IdleASTs.getUsedBytes(this) != 0; }
|
|
|
|
void ASTWorker::stop() {
|
|
{
|
|
std::lock_guard<std::mutex> Lock(PublishMu);
|
|
CanPublishResults = false;
|
|
}
|
|
{
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
assert(!Done && "stop() called twice");
|
|
Done = true;
|
|
}
|
|
RequestsCV.notify_all();
|
|
}
|
|
|
|
void ASTWorker::startTask(llvm::StringRef Name,
|
|
llvm::unique_function<void()> Task,
|
|
llvm::Optional<WantDiagnostics> UpdateType) {
|
|
if (RunSync) {
|
|
assert(!Done && "running a task after stop()");
|
|
trace::Span Tracer(Name + ":" + llvm::sys::path::filename(FileName));
|
|
Task();
|
|
return;
|
|
}
|
|
|
|
{
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
assert(!Done && "running a task after stop()");
|
|
Requests.push_back(
|
|
{std::move(Task), std::string(Name), steady_clock::now(),
|
|
Context::current().derive(kFileBeingProcessed, FileName), UpdateType});
|
|
}
|
|
RequestsCV.notify_all();
|
|
}
|
|
|
|
void ASTWorker::emitTUStatus(TUAction Action,
|
|
const TUStatus::BuildDetails *Details) {
|
|
Status.Action = std::move(Action);
|
|
if (Details)
|
|
Status.Details = *Details;
|
|
std::lock_guard<std::mutex> Lock(PublishMu);
|
|
// Do not emit TU statuses when the ASTWorker is shutting down.
|
|
if (CanPublishResults) {
|
|
Callbacks.onFileUpdated(FileName, Status);
|
|
}
|
|
}
|
|
|
|
void ASTWorker::run() {
|
|
while (true) {
|
|
Request Req;
|
|
{
|
|
std::unique_lock<std::mutex> Lock(Mutex);
|
|
for (auto Wait = scheduleLocked(); !Wait.expired();
|
|
Wait = scheduleLocked()) {
|
|
if (Done) {
|
|
if (Requests.empty())
|
|
return;
|
|
else // Even though Done is set, finish pending requests.
|
|
break; // However, skip delays to shutdown fast.
|
|
}
|
|
|
|
// Tracing: we have a next request, attribute this sleep to it.
|
|
llvm::Optional<WithContext> Ctx;
|
|
llvm::Optional<trace::Span> Tracer;
|
|
if (!Requests.empty()) {
|
|
Ctx.emplace(Requests.front().Ctx.clone());
|
|
Tracer.emplace("Debounce");
|
|
SPAN_ATTACH(*Tracer, "next_request", Requests.front().Name);
|
|
if (!(Wait == Deadline::infinity())) {
|
|
emitTUStatus({TUAction::Queued, Req.Name});
|
|
SPAN_ATTACH(*Tracer, "sleep_ms",
|
|
std::chrono::duration_cast<std::chrono::milliseconds>(
|
|
Wait.time() - steady_clock::now())
|
|
.count());
|
|
}
|
|
}
|
|
|
|
wait(Lock, RequestsCV, Wait);
|
|
}
|
|
Req = std::move(Requests.front());
|
|
// Leave it on the queue for now, so waiters don't see an empty queue.
|
|
} // unlock Mutex
|
|
|
|
{
|
|
std::unique_lock<Semaphore> Lock(Barrier, std::try_to_lock);
|
|
if (!Lock.owns_lock()) {
|
|
emitTUStatus({TUAction::Queued, Req.Name});
|
|
Lock.lock();
|
|
}
|
|
WithContext Guard(std::move(Req.Ctx));
|
|
trace::Span Tracer(Req.Name);
|
|
emitTUStatus({TUAction::RunningAction, Req.Name});
|
|
Req.Action();
|
|
}
|
|
|
|
bool IsEmpty = false;
|
|
{
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
Requests.pop_front();
|
|
IsEmpty = Requests.empty();
|
|
}
|
|
if (IsEmpty)
|
|
emitTUStatus({TUAction::Idle, /*Name*/ ""});
|
|
RequestsCV.notify_all();
|
|
}
|
|
}
|
|
|
|
Deadline ASTWorker::scheduleLocked() {
|
|
if (Requests.empty())
|
|
return Deadline::infinity(); // Wait for new requests.
|
|
// Handle cancelled requests first so the rest of the scheduler doesn't.
|
|
for (auto I = Requests.begin(), E = Requests.end(); I != E; ++I) {
|
|
if (!isCancelled(I->Ctx)) {
|
|
// Cancellations after the first read don't affect current scheduling.
|
|
if (I->UpdateType == None)
|
|
break;
|
|
continue;
|
|
}
|
|
// Cancelled reads are moved to the front of the queue and run immediately.
|
|
if (I->UpdateType == None) {
|
|
Request R = std::move(*I);
|
|
Requests.erase(I);
|
|
Requests.push_front(std::move(R));
|
|
return Deadline::zero();
|
|
}
|
|
// Cancelled updates are downgraded to auto-diagnostics, and may be elided.
|
|
if (I->UpdateType == WantDiagnostics::Yes)
|
|
I->UpdateType = WantDiagnostics::Auto;
|
|
}
|
|
|
|
while (shouldSkipHeadLocked())
|
|
Requests.pop_front();
|
|
assert(!Requests.empty() && "skipped the whole queue");
|
|
// Some updates aren't dead yet, but never end up being used.
|
|
// e.g. the first keystroke is live until obsoleted by the second.
|
|
// We debounce "maybe-unused" writes, sleeping in case they become dead.
|
|
// But don't delay reads (including updates where diagnostics are needed).
|
|
for (const auto &R : Requests)
|
|
if (R.UpdateType == None || R.UpdateType == WantDiagnostics::Yes)
|
|
return Deadline::zero();
|
|
// Front request needs to be debounced, so determine when we're ready.
|
|
Deadline D(Requests.front().AddTime + UpdateDebounce.compute(RebuildTimes));
|
|
return D;
|
|
}
|
|
|
|
// Returns true if Requests.front() is a dead update that can be skipped.
|
|
bool ASTWorker::shouldSkipHeadLocked() const {
|
|
assert(!Requests.empty());
|
|
auto Next = Requests.begin();
|
|
auto UpdateType = Next->UpdateType;
|
|
if (!UpdateType) // Only skip updates.
|
|
return false;
|
|
++Next;
|
|
// An update is live if its AST might still be read.
|
|
// That is, if it's not immediately followed by another update.
|
|
if (Next == Requests.end() || !Next->UpdateType)
|
|
return false;
|
|
// The other way an update can be live is if its diagnostics might be used.
|
|
switch (*UpdateType) {
|
|
case WantDiagnostics::Yes:
|
|
return false; // Always used.
|
|
case WantDiagnostics::No:
|
|
return true; // Always dead.
|
|
case WantDiagnostics::Auto:
|
|
// Used unless followed by an update that generates diagnostics.
|
|
for (; Next != Requests.end(); ++Next)
|
|
if (Next->UpdateType == WantDiagnostics::Yes ||
|
|
Next->UpdateType == WantDiagnostics::Auto)
|
|
return true; // Prefer later diagnostics.
|
|
return false;
|
|
}
|
|
llvm_unreachable("Unknown WantDiagnostics");
|
|
}
|
|
|
|
bool ASTWorker::blockUntilIdle(Deadline Timeout) const {
|
|
std::unique_lock<std::mutex> Lock(Mutex);
|
|
return wait(Lock, RequestsCV, Timeout, [&] { return Requests.empty(); });
|
|
}
|
|
|
|
// Render a TUAction to a user-facing string representation.
|
|
// TUAction represents clangd-internal states, we don't intend to expose them
|
|
// to users (say C++ programmers) directly to avoid confusion, we use terms that
|
|
// are familiar by C++ programmers.
|
|
std::string renderTUAction(const TUAction &Action) {
|
|
std::string Result;
|
|
llvm::raw_string_ostream OS(Result);
|
|
switch (Action.S) {
|
|
case TUAction::Queued:
|
|
OS << "file is queued";
|
|
break;
|
|
case TUAction::RunningAction:
|
|
OS << "running " << Action.Name;
|
|
break;
|
|
case TUAction::BuildingPreamble:
|
|
OS << "parsing includes";
|
|
break;
|
|
case TUAction::BuildingFile:
|
|
OS << "parsing main file";
|
|
break;
|
|
case TUAction::Idle:
|
|
OS << "idle";
|
|
break;
|
|
}
|
|
return OS.str();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
unsigned getDefaultAsyncThreadsCount() {
|
|
return llvm::heavyweight_hardware_concurrency().compute_thread_count();
|
|
}
|
|
|
|
FileStatus TUStatus::render(PathRef File) const {
|
|
FileStatus FStatus;
|
|
FStatus.uri = URIForFile::canonicalize(File, /*TUPath=*/File);
|
|
FStatus.state = renderTUAction(Action);
|
|
return FStatus;
|
|
}
|
|
|
|
struct TUScheduler::FileData {
|
|
/// Latest inputs, passed to TUScheduler::update().
|
|
std::string Contents;
|
|
ASTWorkerHandle Worker;
|
|
};
|
|
|
|
TUScheduler::TUScheduler(const GlobalCompilationDatabase &CDB,
|
|
const Options &Opts,
|
|
std::unique_ptr<ParsingCallbacks> Callbacks)
|
|
: CDB(CDB), StorePreamblesInMemory(Opts.StorePreamblesInMemory),
|
|
Callbacks(Callbacks ? move(Callbacks)
|
|
: std::make_unique<ParsingCallbacks>()),
|
|
Barrier(Opts.AsyncThreadsCount),
|
|
IdleASTs(
|
|
std::make_unique<ASTCache>(Opts.RetentionPolicy.MaxRetainedASTs)),
|
|
UpdateDebounce(Opts.UpdateDebounce) {
|
|
if (0 < Opts.AsyncThreadsCount) {
|
|
PreambleTasks.emplace();
|
|
WorkerThreads.emplace();
|
|
}
|
|
}
|
|
|
|
TUScheduler::~TUScheduler() {
|
|
// Notify all workers that they need to stop.
|
|
Files.clear();
|
|
|
|
// Wait for all in-flight tasks to finish.
|
|
if (PreambleTasks)
|
|
PreambleTasks->wait();
|
|
if (WorkerThreads)
|
|
WorkerThreads->wait();
|
|
}
|
|
|
|
bool TUScheduler::blockUntilIdle(Deadline D) const {
|
|
for (auto &File : Files)
|
|
if (!File.getValue()->Worker->blockUntilIdle(D))
|
|
return false;
|
|
if (PreambleTasks)
|
|
if (!PreambleTasks->wait(D))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool TUScheduler::update(PathRef File, ParseInputs Inputs,
|
|
WantDiagnostics WantDiags) {
|
|
std::unique_ptr<FileData> &FD = Files[File];
|
|
bool NewFile = FD == nullptr;
|
|
if (!FD) {
|
|
// Create a new worker to process the AST-related tasks.
|
|
ASTWorkerHandle Worker = ASTWorker::create(
|
|
File, CDB, *IdleASTs,
|
|
WorkerThreads ? WorkerThreads.getPointer() : nullptr, Barrier,
|
|
UpdateDebounce, StorePreamblesInMemory, *Callbacks);
|
|
FD = std::unique_ptr<FileData>(
|
|
new FileData{Inputs.Contents, std::move(Worker)});
|
|
} else {
|
|
FD->Contents = Inputs.Contents;
|
|
}
|
|
FD->Worker->update(std::move(Inputs), WantDiags);
|
|
return NewFile;
|
|
}
|
|
|
|
void TUScheduler::remove(PathRef File) {
|
|
bool Removed = Files.erase(File);
|
|
if (!Removed)
|
|
elog("Trying to remove file from TUScheduler that is not tracked: {0}",
|
|
File);
|
|
}
|
|
|
|
llvm::StringRef TUScheduler::getContents(PathRef File) const {
|
|
auto It = Files.find(File);
|
|
if (It == Files.end()) {
|
|
elog("getContents() for untracked file: {0}", File);
|
|
return "";
|
|
}
|
|
return It->second->Contents;
|
|
}
|
|
|
|
llvm::StringMap<std::string> TUScheduler::getAllFileContents() const {
|
|
llvm::StringMap<std::string> Results;
|
|
for (auto &It : Files)
|
|
Results.try_emplace(It.getKey(), It.getValue()->Contents);
|
|
return Results;
|
|
}
|
|
|
|
void TUScheduler::run(llvm::StringRef Name,
|
|
llvm::unique_function<void()> Action) {
|
|
if (!PreambleTasks)
|
|
return Action();
|
|
PreambleTasks->runAsync(Name, [this, Ctx = Context::current().clone(),
|
|
Action = std::move(Action)]() mutable {
|
|
std::lock_guard<Semaphore> BarrierLock(Barrier);
|
|
WithContext WC(std::move(Ctx));
|
|
Action();
|
|
});
|
|
}
|
|
|
|
void TUScheduler::runWithAST(
|
|
llvm::StringRef Name, PathRef File,
|
|
llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action) {
|
|
auto It = Files.find(File);
|
|
if (It == Files.end()) {
|
|
Action(llvm::make_error<LSPError>(
|
|
"trying to get AST for non-added document", ErrorCode::InvalidParams));
|
|
return;
|
|
}
|
|
|
|
It->second->Worker->runWithAST(Name, std::move(Action));
|
|
}
|
|
|
|
void TUScheduler::runWithPreamble(llvm::StringRef Name, PathRef File,
|
|
PreambleConsistency Consistency,
|
|
Callback<InputsAndPreamble> Action) {
|
|
auto It = Files.find(File);
|
|
if (It == Files.end()) {
|
|
Action(llvm::make_error<LSPError>(
|
|
"trying to get preamble for non-added document",
|
|
ErrorCode::InvalidParams));
|
|
return;
|
|
}
|
|
|
|
if (!PreambleTasks) {
|
|
trace::Span Tracer(Name);
|
|
SPAN_ATTACH(Tracer, "file", File);
|
|
std::shared_ptr<const PreambleData> Preamble =
|
|
It->second->Worker->getPossiblyStalePreamble();
|
|
Action(InputsAndPreamble{It->second->Contents,
|
|
It->second->Worker->getCurrentCompileCommand(),
|
|
Preamble.get()});
|
|
return;
|
|
}
|
|
|
|
// Future is populated if the task needs a specific preamble.
|
|
std::future<std::shared_ptr<const PreambleData>> ConsistentPreamble;
|
|
if (Consistency == Consistent) {
|
|
std::promise<std::shared_ptr<const PreambleData>> Promise;
|
|
ConsistentPreamble = Promise.get_future();
|
|
It->second->Worker->getCurrentPreamble(
|
|
[Promise = std::move(Promise)](
|
|
std::shared_ptr<const PreambleData> Preamble) mutable {
|
|
Promise.set_value(std::move(Preamble));
|
|
});
|
|
}
|
|
|
|
std::shared_ptr<const ASTWorker> Worker = It->second->Worker.lock();
|
|
auto Task =
|
|
[Worker, Consistency, Name = Name.str(), File = File.str(),
|
|
Contents = It->second->Contents,
|
|
Command = Worker->getCurrentCompileCommand(),
|
|
Ctx = Context::current().derive(kFileBeingProcessed, std::string(File)),
|
|
ConsistentPreamble = std::move(ConsistentPreamble),
|
|
Action = std::move(Action), this]() mutable {
|
|
std::shared_ptr<const PreambleData> Preamble;
|
|
if (ConsistentPreamble.valid()) {
|
|
Preamble = ConsistentPreamble.get();
|
|
} else {
|
|
if (Consistency != PreambleConsistency::StaleOrAbsent) {
|
|
// Wait until the preamble is built for the first time, if preamble
|
|
// is required. This avoids extra work of processing the preamble
|
|
// headers in parallel multiple times.
|
|
Worker->waitForFirstPreamble();
|
|
}
|
|
Preamble = Worker->getPossiblyStalePreamble();
|
|
}
|
|
|
|
std::lock_guard<Semaphore> BarrierLock(Barrier);
|
|
WithContext Guard(std::move(Ctx));
|
|
trace::Span Tracer(Name);
|
|
SPAN_ATTACH(Tracer, "file", File);
|
|
Action(InputsAndPreamble{Contents, Command, Preamble.get()});
|
|
};
|
|
|
|
PreambleTasks->runAsync("task:" + llvm::sys::path::filename(File),
|
|
std::move(Task));
|
|
}
|
|
|
|
std::vector<std::pair<Path, std::size_t>>
|
|
TUScheduler::getUsedBytesPerFile() const {
|
|
std::vector<std::pair<Path, std::size_t>> Result;
|
|
Result.reserve(Files.size());
|
|
for (auto &&PathAndFile : Files)
|
|
Result.push_back({std::string(PathAndFile.first()),
|
|
PathAndFile.second->Worker->getUsedBytes()});
|
|
return Result;
|
|
}
|
|
|
|
std::vector<Path> TUScheduler::getFilesWithCachedAST() const {
|
|
std::vector<Path> Result;
|
|
for (auto &&PathAndFile : Files) {
|
|
if (!PathAndFile.second->Worker->isASTCached())
|
|
continue;
|
|
Result.push_back(std::string(PathAndFile.first()));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
DebouncePolicy::clock::duration
|
|
DebouncePolicy::compute(llvm::ArrayRef<clock::duration> History) const {
|
|
assert(Min <= Max && "Invalid policy");
|
|
if (History.empty())
|
|
return Max; // Arbitrary.
|
|
|
|
// Base the result on the median rebuild.
|
|
// nth_element needs a mutable array, take the chance to bound the data size.
|
|
History = History.take_back(15);
|
|
llvm::SmallVector<clock::duration, 15> Recent(History.begin(), History.end());
|
|
auto Median = Recent.begin() + Recent.size() / 2;
|
|
std::nth_element(Recent.begin(), Median, Recent.end());
|
|
|
|
clock::duration Target =
|
|
std::chrono::duration_cast<clock::duration>(RebuildRatio * *Median);
|
|
if (Target > Max)
|
|
return Max;
|
|
if (Target < Min)
|
|
return Min;
|
|
return Target;
|
|
}
|
|
|
|
DebouncePolicy DebouncePolicy::fixed(clock::duration T) {
|
|
DebouncePolicy P;
|
|
P.Min = P.Max = T;
|
|
return P;
|
|
}
|
|
|
|
} // namespace clangd
|
|
} // namespace clang
|