llvm-project/clang-tools-extra/clangd/Threading.cpp

116 lines
3.0 KiB
C++

#include "Threading.h"
#include "Trace.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Config/config.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Threading.h"
#include <thread>
#ifdef HAVE_PTHREAD_H
#include <pthread.h>
#endif
using namespace llvm;
namespace clang {
namespace clangd {
void Notification::notify() {
{
std::lock_guard<std::mutex> Lock(Mu);
Notified = true;
}
CV.notify_all();
}
void Notification::wait() const {
std::unique_lock<std::mutex> Lock(Mu);
CV.wait(Lock, [this] { return Notified; });
}
Semaphore::Semaphore(std::size_t MaxLocks) : FreeSlots(MaxLocks) {}
void Semaphore::lock() {
trace::Span Span("WaitForFreeSemaphoreSlot");
// trace::Span can also acquire locks in ctor and dtor, we make sure it
// happens when Semaphore's own lock is not held.
{
std::unique_lock<std::mutex> Lock(Mutex);
SlotsChanged.wait(Lock, [&]() { return FreeSlots > 0; });
--FreeSlots;
}
}
void Semaphore::unlock() {
std::unique_lock<std::mutex> Lock(Mutex);
++FreeSlots;
Lock.unlock();
SlotsChanged.notify_one();
}
AsyncTaskRunner::~AsyncTaskRunner() { wait(); }
bool AsyncTaskRunner::wait(Deadline D) const {
std::unique_lock<std::mutex> Lock(Mutex);
return clangd::wait(Lock, TasksReachedZero, D,
[&] { return InFlightTasks == 0; });
}
void AsyncTaskRunner::runAsync(const Twine &Name,
unique_function<void()> Action) {
{
std::lock_guard<std::mutex> Lock(Mutex);
++InFlightTasks;
}
auto CleanupTask = make_scope_exit([this]() {
std::lock_guard<std::mutex> Lock(Mutex);
int NewTasksCnt = --InFlightTasks;
if (NewTasksCnt == 0) {
// Note: we can't unlock here because we don't want the object to be
// destroyed before we notify.
TasksReachedZero.notify_one();
}
});
std::thread(
[](std::string Name, decltype(Action) Action, decltype(CleanupTask)) {
set_thread_name(Name);
Action();
// Make sure function stored by Action is destroyed before CleanupTask
// is run.
Action = nullptr;
},
Name.str(), std::move(Action), std::move(CleanupTask))
.detach();
}
Deadline timeoutSeconds(Optional<double> Seconds) {
using namespace std::chrono;
if (!Seconds)
return Deadline::infinity();
return steady_clock::now() +
duration_cast<steady_clock::duration>(duration<double>(*Seconds));
}
void wait(std::unique_lock<std::mutex> &Lock, std::condition_variable &CV,
Deadline D) {
if (D == Deadline::zero())
return;
if (D == Deadline::infinity())
return CV.wait(Lock);
CV.wait_until(Lock, D.time());
}
void setThreadPriority(std::thread &T, ThreadPriority Priority) {
#if defined(HAVE_PTHREAD_H) && defined(__linux__)
sched_param priority;
priority.sched_priority = 0;
pthread_setschedparam(
T.native_handle(),
Priority == ThreadPriority::Low ? SCHED_IDLE : SCHED_OTHER, &priority);
#endif
}
} // namespace clangd
} // namespace clang