llvm-project/llvm/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp

1283 lines
39 KiB
C++

//===-- SparcAsmParser.cpp - Parse Sparc assembly to MCInst instructions --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/SparcMCExpr.h"
#include "MCTargetDesc/SparcMCTargetDesc.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
using namespace llvm;
// The generated AsmMatcher SparcGenAsmMatcher uses "Sparc" as the target
// namespace. But SPARC backend uses "SP" as its namespace.
namespace llvm {
namespace Sparc {
using namespace SP;
} // end namespace Sparc
} // end namespace llvm
namespace {
class SparcOperand;
class SparcAsmParser : public MCTargetAsmParser {
MCAsmParser &Parser;
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "SparcGenAsmMatcher.inc"
/// }
// public interface of the MCTargetAsmParser.
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
// Custom parse functions for Sparc specific operands.
OperandMatchResultTy parseMEMOperand(OperandVector &Operands);
OperandMatchResultTy parseOperand(OperandVector &Operands, StringRef Name);
OperandMatchResultTy
parseSparcAsmOperand(std::unique_ptr<SparcOperand> &Operand,
bool isCall = false);
OperandMatchResultTy parseBranchModifiers(OperandVector &Operands);
// Helper function for dealing with %lo / %hi in PIC mode.
const SparcMCExpr *adjustPICRelocation(SparcMCExpr::VariantKind VK,
const MCExpr *subExpr);
// returns true if Tok is matched to a register and returns register in RegNo.
bool matchRegisterName(const AsmToken &Tok, unsigned &RegNo,
unsigned &RegKind);
bool matchSparcAsmModifiers(const MCExpr *&EVal, SMLoc &EndLoc);
bool is64Bit() const {
return getSTI().getTargetTriple().getArch() == Triple::sparcv9;
}
bool expandSET(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
public:
SparcAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII,
const MCTargetOptions &Options)
: MCTargetAsmParser(Options, sti, MII), Parser(parser) {
Parser.addAliasForDirective(".half", ".2byte");
Parser.addAliasForDirective(".uahalf", ".2byte");
Parser.addAliasForDirective(".word", ".4byte");
Parser.addAliasForDirective(".uaword", ".4byte");
Parser.addAliasForDirective(".nword", is64Bit() ? ".8byte" : ".4byte");
if (is64Bit())
Parser.addAliasForDirective(".xword", ".8byte");
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
}
};
} // end anonymous namespace
static const MCPhysReg IntRegs[32] = {
Sparc::G0, Sparc::G1, Sparc::G2, Sparc::G3,
Sparc::G4, Sparc::G5, Sparc::G6, Sparc::G7,
Sparc::O0, Sparc::O1, Sparc::O2, Sparc::O3,
Sparc::O4, Sparc::O5, Sparc::O6, Sparc::O7,
Sparc::L0, Sparc::L1, Sparc::L2, Sparc::L3,
Sparc::L4, Sparc::L5, Sparc::L6, Sparc::L7,
Sparc::I0, Sparc::I1, Sparc::I2, Sparc::I3,
Sparc::I4, Sparc::I5, Sparc::I6, Sparc::I7 };
static const MCPhysReg FloatRegs[32] = {
Sparc::F0, Sparc::F1, Sparc::F2, Sparc::F3,
Sparc::F4, Sparc::F5, Sparc::F6, Sparc::F7,
Sparc::F8, Sparc::F9, Sparc::F10, Sparc::F11,
Sparc::F12, Sparc::F13, Sparc::F14, Sparc::F15,
Sparc::F16, Sparc::F17, Sparc::F18, Sparc::F19,
Sparc::F20, Sparc::F21, Sparc::F22, Sparc::F23,
Sparc::F24, Sparc::F25, Sparc::F26, Sparc::F27,
Sparc::F28, Sparc::F29, Sparc::F30, Sparc::F31 };
static const MCPhysReg DoubleRegs[32] = {
Sparc::D0, Sparc::D1, Sparc::D2, Sparc::D3,
Sparc::D4, Sparc::D5, Sparc::D6, Sparc::D7,
Sparc::D8, Sparc::D9, Sparc::D10, Sparc::D11,
Sparc::D12, Sparc::D13, Sparc::D14, Sparc::D15,
Sparc::D16, Sparc::D17, Sparc::D18, Sparc::D19,
Sparc::D20, Sparc::D21, Sparc::D22, Sparc::D23,
Sparc::D24, Sparc::D25, Sparc::D26, Sparc::D27,
Sparc::D28, Sparc::D29, Sparc::D30, Sparc::D31 };
static const MCPhysReg QuadFPRegs[32] = {
Sparc::Q0, Sparc::Q1, Sparc::Q2, Sparc::Q3,
Sparc::Q4, Sparc::Q5, Sparc::Q6, Sparc::Q7,
Sparc::Q8, Sparc::Q9, Sparc::Q10, Sparc::Q11,
Sparc::Q12, Sparc::Q13, Sparc::Q14, Sparc::Q15 };
static const MCPhysReg ASRRegs[32] = {
SP::Y, SP::ASR1, SP::ASR2, SP::ASR3,
SP::ASR4, SP::ASR5, SP::ASR6, SP::ASR7,
SP::ASR8, SP::ASR9, SP::ASR10, SP::ASR11,
SP::ASR12, SP::ASR13, SP::ASR14, SP::ASR15,
SP::ASR16, SP::ASR17, SP::ASR18, SP::ASR19,
SP::ASR20, SP::ASR21, SP::ASR22, SP::ASR23,
SP::ASR24, SP::ASR25, SP::ASR26, SP::ASR27,
SP::ASR28, SP::ASR29, SP::ASR30, SP::ASR31};
static const MCPhysReg IntPairRegs[] = {
Sparc::G0_G1, Sparc::G2_G3, Sparc::G4_G5, Sparc::G6_G7,
Sparc::O0_O1, Sparc::O2_O3, Sparc::O4_O5, Sparc::O6_O7,
Sparc::L0_L1, Sparc::L2_L3, Sparc::L4_L5, Sparc::L6_L7,
Sparc::I0_I1, Sparc::I2_I3, Sparc::I4_I5, Sparc::I6_I7};
static const MCPhysReg CoprocRegs[32] = {
Sparc::C0, Sparc::C1, Sparc::C2, Sparc::C3,
Sparc::C4, Sparc::C5, Sparc::C6, Sparc::C7,
Sparc::C8, Sparc::C9, Sparc::C10, Sparc::C11,
Sparc::C12, Sparc::C13, Sparc::C14, Sparc::C15,
Sparc::C16, Sparc::C17, Sparc::C18, Sparc::C19,
Sparc::C20, Sparc::C21, Sparc::C22, Sparc::C23,
Sparc::C24, Sparc::C25, Sparc::C26, Sparc::C27,
Sparc::C28, Sparc::C29, Sparc::C30, Sparc::C31 };
static const MCPhysReg CoprocPairRegs[] = {
Sparc::C0_C1, Sparc::C2_C3, Sparc::C4_C5, Sparc::C6_C7,
Sparc::C8_C9, Sparc::C10_C11, Sparc::C12_C13, Sparc::C14_C15,
Sparc::C16_C17, Sparc::C18_C19, Sparc::C20_C21, Sparc::C22_C23,
Sparc::C24_C25, Sparc::C26_C27, Sparc::C28_C29, Sparc::C30_C31};
namespace {
/// SparcOperand - Instances of this class represent a parsed Sparc machine
/// instruction.
class SparcOperand : public MCParsedAsmOperand {
public:
enum RegisterKind {
rk_None,
rk_IntReg,
rk_IntPairReg,
rk_FloatReg,
rk_DoubleReg,
rk_QuadReg,
rk_CoprocReg,
rk_CoprocPairReg,
rk_Special,
};
private:
enum KindTy {
k_Token,
k_Register,
k_Immediate,
k_MemoryReg,
k_MemoryImm
} Kind;
SMLoc StartLoc, EndLoc;
struct Token {
const char *Data;
unsigned Length;
};
struct RegOp {
unsigned RegNum;
RegisterKind Kind;
};
struct ImmOp {
const MCExpr *Val;
};
struct MemOp {
unsigned Base;
unsigned OffsetReg;
const MCExpr *Off;
};
union {
struct Token Tok;
struct RegOp Reg;
struct ImmOp Imm;
struct MemOp Mem;
};
public:
SparcOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
bool isToken() const override { return Kind == k_Token; }
bool isReg() const override { return Kind == k_Register; }
bool isImm() const override { return Kind == k_Immediate; }
bool isMem() const override { return isMEMrr() || isMEMri(); }
bool isMEMrr() const { return Kind == k_MemoryReg; }
bool isMEMri() const { return Kind == k_MemoryImm; }
bool isIntReg() const {
return (Kind == k_Register && Reg.Kind == rk_IntReg);
}
bool isFloatReg() const {
return (Kind == k_Register && Reg.Kind == rk_FloatReg);
}
bool isFloatOrDoubleReg() const {
return (Kind == k_Register && (Reg.Kind == rk_FloatReg
|| Reg.Kind == rk_DoubleReg));
}
bool isCoprocReg() const {
return (Kind == k_Register && Reg.Kind == rk_CoprocReg);
}
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const override {
assert((Kind == k_Register) && "Invalid access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert((Kind == k_Immediate) && "Invalid access!");
return Imm.Val;
}
unsigned getMemBase() const {
assert((Kind == k_MemoryReg || Kind == k_MemoryImm) && "Invalid access!");
return Mem.Base;
}
unsigned getMemOffsetReg() const {
assert((Kind == k_MemoryReg) && "Invalid access!");
return Mem.OffsetReg;
}
const MCExpr *getMemOff() const {
assert((Kind == k_MemoryImm) && "Invalid access!");
return Mem.Off;
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const override {
return StartLoc;
}
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const override {
return EndLoc;
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case k_Token: OS << "Token: " << getToken() << "\n"; break;
case k_Register: OS << "Reg: #" << getReg() << "\n"; break;
case k_Immediate: OS << "Imm: " << getImm() << "\n"; break;
case k_MemoryReg: OS << "Mem: " << getMemBase() << "+"
<< getMemOffsetReg() << "\n"; break;
case k_MemoryImm: assert(getMemOff() != nullptr);
OS << "Mem: " << getMemBase()
<< "+" << *getMemOff()
<< "\n"; break;
}
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getImm();
addExpr(Inst, Expr);
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const{
// Add as immediate when possible. Null MCExpr = 0.
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addMEMrrOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMemBase()));
assert(getMemOffsetReg() != 0 && "Invalid offset");
Inst.addOperand(MCOperand::createReg(getMemOffsetReg()));
}
void addMEMriOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMemBase()));
const MCExpr *Expr = getMemOff();
addExpr(Inst, Expr);
}
static std::unique_ptr<SparcOperand> CreateToken(StringRef Str, SMLoc S) {
auto Op = make_unique<SparcOperand>(k_Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<SparcOperand> CreateReg(unsigned RegNum, unsigned Kind,
SMLoc S, SMLoc E) {
auto Op = make_unique<SparcOperand>(k_Register);
Op->Reg.RegNum = RegNum;
Op->Reg.Kind = (SparcOperand::RegisterKind)Kind;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<SparcOperand> CreateImm(const MCExpr *Val, SMLoc S,
SMLoc E) {
auto Op = make_unique<SparcOperand>(k_Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static bool MorphToIntPairReg(SparcOperand &Op) {
unsigned Reg = Op.getReg();
assert(Op.Reg.Kind == rk_IntReg);
unsigned regIdx = 32;
if (Reg >= Sparc::G0 && Reg <= Sparc::G7)
regIdx = Reg - Sparc::G0;
else if (Reg >= Sparc::O0 && Reg <= Sparc::O7)
regIdx = Reg - Sparc::O0 + 8;
else if (Reg >= Sparc::L0 && Reg <= Sparc::L7)
regIdx = Reg - Sparc::L0 + 16;
else if (Reg >= Sparc::I0 && Reg <= Sparc::I7)
regIdx = Reg - Sparc::I0 + 24;
if (regIdx % 2 || regIdx > 31)
return false;
Op.Reg.RegNum = IntPairRegs[regIdx / 2];
Op.Reg.Kind = rk_IntPairReg;
return true;
}
static bool MorphToDoubleReg(SparcOperand &Op) {
unsigned Reg = Op.getReg();
assert(Op.Reg.Kind == rk_FloatReg);
unsigned regIdx = Reg - Sparc::F0;
if (regIdx % 2 || regIdx > 31)
return false;
Op.Reg.RegNum = DoubleRegs[regIdx / 2];
Op.Reg.Kind = rk_DoubleReg;
return true;
}
static bool MorphToQuadReg(SparcOperand &Op) {
unsigned Reg = Op.getReg();
unsigned regIdx = 0;
switch (Op.Reg.Kind) {
default: llvm_unreachable("Unexpected register kind!");
case rk_FloatReg:
regIdx = Reg - Sparc::F0;
if (regIdx % 4 || regIdx > 31)
return false;
Reg = QuadFPRegs[regIdx / 4];
break;
case rk_DoubleReg:
regIdx = Reg - Sparc::D0;
if (regIdx % 2 || regIdx > 31)
return false;
Reg = QuadFPRegs[regIdx / 2];
break;
}
Op.Reg.RegNum = Reg;
Op.Reg.Kind = rk_QuadReg;
return true;
}
static bool MorphToCoprocPairReg(SparcOperand &Op) {
unsigned Reg = Op.getReg();
assert(Op.Reg.Kind == rk_CoprocReg);
unsigned regIdx = 32;
if (Reg >= Sparc::C0 && Reg <= Sparc::C31)
regIdx = Reg - Sparc::C0;
if (regIdx % 2 || regIdx > 31)
return false;
Op.Reg.RegNum = CoprocPairRegs[regIdx / 2];
Op.Reg.Kind = rk_CoprocPairReg;
return true;
}
static std::unique_ptr<SparcOperand>
MorphToMEMrr(unsigned Base, std::unique_ptr<SparcOperand> Op) {
unsigned offsetReg = Op->getReg();
Op->Kind = k_MemoryReg;
Op->Mem.Base = Base;
Op->Mem.OffsetReg = offsetReg;
Op->Mem.Off = nullptr;
return Op;
}
static std::unique_ptr<SparcOperand>
CreateMEMr(unsigned Base, SMLoc S, SMLoc E) {
auto Op = make_unique<SparcOperand>(k_MemoryReg);
Op->Mem.Base = Base;
Op->Mem.OffsetReg = Sparc::G0; // always 0
Op->Mem.Off = nullptr;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<SparcOperand>
MorphToMEMri(unsigned Base, std::unique_ptr<SparcOperand> Op) {
const MCExpr *Imm = Op->getImm();
Op->Kind = k_MemoryImm;
Op->Mem.Base = Base;
Op->Mem.OffsetReg = 0;
Op->Mem.Off = Imm;
return Op;
}
};
} // end anonymous namespace
bool SparcAsmParser::expandSET(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCOperand MCRegOp = Inst.getOperand(0);
MCOperand MCValOp = Inst.getOperand(1);
assert(MCRegOp.isReg());
assert(MCValOp.isImm() || MCValOp.isExpr());
// the imm operand can be either an expression or an immediate.
bool IsImm = Inst.getOperand(1).isImm();
int64_t RawImmValue = IsImm ? MCValOp.getImm() : 0;
// Allow either a signed or unsigned 32-bit immediate.
if (RawImmValue < -2147483648LL || RawImmValue > 4294967295LL) {
return Error(IDLoc,
"set: argument must be between -2147483648 and 4294967295");
}
// If the value was expressed as a large unsigned number, that's ok.
// We want to see if it "looks like" a small signed number.
int32_t ImmValue = RawImmValue;
// For 'set' you can't use 'or' with a negative operand on V9 because
// that would splat the sign bit across the upper half of the destination
// register, whereas 'set' is defined to zero the high 32 bits.
bool IsEffectivelyImm13 =
IsImm && ((is64Bit() ? 0 : -4096) <= ImmValue && ImmValue < 4096);
const MCExpr *ValExpr;
if (IsImm)
ValExpr = MCConstantExpr::create(ImmValue, getContext());
else
ValExpr = MCValOp.getExpr();
MCOperand PrevReg = MCOperand::createReg(Sparc::G0);
// If not just a signed imm13 value, then either we use a 'sethi' with a
// following 'or', or a 'sethi' by itself if there are no more 1 bits.
// In either case, start with the 'sethi'.
if (!IsEffectivelyImm13) {
MCInst TmpInst;
const MCExpr *Expr = adjustPICRelocation(SparcMCExpr::VK_Sparc_HI, ValExpr);
TmpInst.setLoc(IDLoc);
TmpInst.setOpcode(SP::SETHIi);
TmpInst.addOperand(MCRegOp);
TmpInst.addOperand(MCOperand::createExpr(Expr));
Instructions.push_back(TmpInst);
PrevReg = MCRegOp;
}
// The low bits require touching in 3 cases:
// * A non-immediate value will always require both instructions.
// * An effectively imm13 value needs only an 'or' instruction.
// * Otherwise, an immediate that is not effectively imm13 requires the
// 'or' only if bits remain after clearing the 22 bits that 'sethi' set.
// If the low bits are known zeros, there's nothing to do.
// In the second case, and only in that case, must we NOT clear
// bits of the immediate value via the %lo() assembler function.
// Note also, the 'or' instruction doesn't mind a large value in the case
// where the operand to 'set' was 0xFFFFFzzz - it does exactly what you mean.
if (!IsImm || IsEffectivelyImm13 || (ImmValue & 0x3ff)) {
MCInst TmpInst;
const MCExpr *Expr;
if (IsEffectivelyImm13)
Expr = ValExpr;
else
Expr = adjustPICRelocation(SparcMCExpr::VK_Sparc_LO, ValExpr);
TmpInst.setLoc(IDLoc);
TmpInst.setOpcode(SP::ORri);
TmpInst.addOperand(MCRegOp);
TmpInst.addOperand(PrevReg);
TmpInst.addOperand(MCOperand::createExpr(Expr));
Instructions.push_back(TmpInst);
}
return false;
}
bool SparcAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
SmallVector<MCInst, 8> Instructions;
unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm);
switch (MatchResult) {
case Match_Success: {
switch (Inst.getOpcode()) {
default:
Inst.setLoc(IDLoc);
Instructions.push_back(Inst);
break;
case SP::SET:
if (expandSET(Inst, IDLoc, Instructions))
return true;
break;
}
for (const MCInst &I : Instructions) {
Out.EmitInstruction(I, getSTI());
}
return false;
}
case Match_MissingFeature:
return Error(IDLoc,
"instruction requires a CPU feature not currently enabled");
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((SparcOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction mnemonic");
}
llvm_unreachable("Implement any new match types added!");
}
bool SparcAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = Parser.getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
RegNo = 0;
if (getLexer().getKind() != AsmToken::Percent)
return false;
Parser.Lex();
unsigned regKind = SparcOperand::rk_None;
if (matchRegisterName(Tok, RegNo, regKind)) {
Parser.Lex();
return false;
}
return Error(StartLoc, "invalid register name");
}
static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
unsigned VariantID);
bool SparcAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
// First operand in MCInst is instruction mnemonic.
Operands.push_back(SparcOperand::CreateToken(Name, NameLoc));
// apply mnemonic aliases, if any, so that we can parse operands correctly.
applyMnemonicAliases(Name, getAvailableFeatures(), 0);
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (getLexer().is(AsmToken::Comma)) {
if (parseBranchModifiers(Operands) != MatchOperand_Success) {
SMLoc Loc = getLexer().getLoc();
return Error(Loc, "unexpected token");
}
}
if (parseOperand(Operands, Name) != MatchOperand_Success) {
SMLoc Loc = getLexer().getLoc();
return Error(Loc, "unexpected token");
}
while (getLexer().is(AsmToken::Comma) || getLexer().is(AsmToken::Plus)) {
if (getLexer().is(AsmToken::Plus)) {
// Plus tokens are significant in software_traps (p83, sparcv8.pdf). We must capture them.
Operands.push_back(SparcOperand::CreateToken("+", Parser.getTok().getLoc()));
}
Parser.Lex(); // Eat the comma or plus.
// Parse and remember the operand.
if (parseOperand(Operands, Name) != MatchOperand_Success) {
SMLoc Loc = getLexer().getLoc();
return Error(Loc, "unexpected token");
}
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
return Error(Loc, "unexpected token");
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool SparcAsmParser::
ParseDirective(AsmToken DirectiveID)
{
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".register") {
// For now, ignore .register directive.
Parser.eatToEndOfStatement();
return false;
}
if (IDVal == ".proc") {
// For compatibility, ignore this directive.
// (It's supposed to be an "optimization" in the Sun assembler)
Parser.eatToEndOfStatement();
return false;
}
// Let the MC layer to handle other directives.
return true;
}
OperandMatchResultTy
SparcAsmParser::parseMEMOperand(OperandVector &Operands) {
SMLoc S, E;
unsigned BaseReg = 0;
if (ParseRegister(BaseReg, S, E)) {
return MatchOperand_NoMatch;
}
switch (getLexer().getKind()) {
default: return MatchOperand_NoMatch;
case AsmToken::Comma:
case AsmToken::RBrac:
case AsmToken::EndOfStatement:
Operands.push_back(SparcOperand::CreateMEMr(BaseReg, S, E));
return MatchOperand_Success;
case AsmToken:: Plus:
Parser.Lex(); // Eat the '+'
break;
case AsmToken::Minus:
break;
}
std::unique_ptr<SparcOperand> Offset;
OperandMatchResultTy ResTy = parseSparcAsmOperand(Offset);
if (ResTy != MatchOperand_Success || !Offset)
return MatchOperand_NoMatch;
Operands.push_back(
Offset->isImm() ? SparcOperand::MorphToMEMri(BaseReg, std::move(Offset))
: SparcOperand::MorphToMEMrr(BaseReg, std::move(Offset)));
return MatchOperand_Success;
}
OperandMatchResultTy
SparcAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_Success || ResTy == MatchOperand_ParseFail)
return ResTy;
if (getLexer().is(AsmToken::LBrac)) {
// Memory operand
Operands.push_back(SparcOperand::CreateToken("[",
Parser.getTok().getLoc()));
Parser.Lex(); // Eat the [
if (Mnemonic == "cas" || Mnemonic == "casx" || Mnemonic == "casa") {
SMLoc S = Parser.getTok().getLoc();
if (getLexer().getKind() != AsmToken::Percent)
return MatchOperand_NoMatch;
Parser.Lex(); // eat %
unsigned RegNo, RegKind;
if (!matchRegisterName(Parser.getTok(), RegNo, RegKind))
return MatchOperand_NoMatch;
Parser.Lex(); // Eat the identifier token.
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer()-1);
Operands.push_back(SparcOperand::CreateReg(RegNo, RegKind, S, E));
ResTy = MatchOperand_Success;
} else {
ResTy = parseMEMOperand(Operands);
}
if (ResTy != MatchOperand_Success)
return ResTy;
if (!getLexer().is(AsmToken::RBrac))
return MatchOperand_ParseFail;
Operands.push_back(SparcOperand::CreateToken("]",
Parser.getTok().getLoc()));
Parser.Lex(); // Eat the ]
// Parse an optional address-space identifier after the address.
if (getLexer().is(AsmToken::Integer)) {
std::unique_ptr<SparcOperand> Op;
ResTy = parseSparcAsmOperand(Op, false);
if (ResTy != MatchOperand_Success || !Op)
return MatchOperand_ParseFail;
Operands.push_back(std::move(Op));
}
return MatchOperand_Success;
}
std::unique_ptr<SparcOperand> Op;
ResTy = parseSparcAsmOperand(Op, (Mnemonic == "call"));
if (ResTy != MatchOperand_Success || !Op)
return MatchOperand_ParseFail;
// Push the parsed operand into the list of operands
Operands.push_back(std::move(Op));
return MatchOperand_Success;
}
OperandMatchResultTy
SparcAsmParser::parseSparcAsmOperand(std::unique_ptr<SparcOperand> &Op,
bool isCall) {
SMLoc S = Parser.getTok().getLoc();
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
const MCExpr *EVal;
Op = nullptr;
switch (getLexer().getKind()) {
default: break;
case AsmToken::Percent:
Parser.Lex(); // Eat the '%'.
unsigned RegNo;
unsigned RegKind;
if (matchRegisterName(Parser.getTok(), RegNo, RegKind)) {
StringRef name = Parser.getTok().getString();
Parser.Lex(); // Eat the identifier token.
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
switch (RegNo) {
default:
Op = SparcOperand::CreateReg(RegNo, RegKind, S, E);
break;
case Sparc::PSR:
Op = SparcOperand::CreateToken("%psr", S);
break;
case Sparc::FSR:
Op = SparcOperand::CreateToken("%fsr", S);
break;
case Sparc::FQ:
Op = SparcOperand::CreateToken("%fq", S);
break;
case Sparc::CPSR:
Op = SparcOperand::CreateToken("%csr", S);
break;
case Sparc::CPQ:
Op = SparcOperand::CreateToken("%cq", S);
break;
case Sparc::WIM:
Op = SparcOperand::CreateToken("%wim", S);
break;
case Sparc::TBR:
Op = SparcOperand::CreateToken("%tbr", S);
break;
case Sparc::ICC:
if (name == "xcc")
Op = SparcOperand::CreateToken("%xcc", S);
else
Op = SparcOperand::CreateToken("%icc", S);
break;
}
break;
}
if (matchSparcAsmModifiers(EVal, E)) {
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Op = SparcOperand::CreateImm(EVal, S, E);
}
break;
case AsmToken::Minus:
case AsmToken::Integer:
case AsmToken::LParen:
case AsmToken::Dot:
if (!getParser().parseExpression(EVal, E))
Op = SparcOperand::CreateImm(EVal, S, E);
break;
case AsmToken::Identifier: {
StringRef Identifier;
if (!getParser().parseIdentifier(Identifier)) {
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
const MCExpr *Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
getContext());
if (isCall && getContext().getObjectFileInfo()->isPositionIndependent())
Res = SparcMCExpr::create(SparcMCExpr::VK_Sparc_WPLT30, Res,
getContext());
Op = SparcOperand::CreateImm(Res, S, E);
}
break;
}
}
return (Op) ? MatchOperand_Success : MatchOperand_ParseFail;
}
OperandMatchResultTy
SparcAsmParser::parseBranchModifiers(OperandVector &Operands) {
// parse (,a|,pn|,pt)+
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma
if (!getLexer().is(AsmToken::Identifier))
return MatchOperand_ParseFail;
StringRef modName = Parser.getTok().getString();
if (modName == "a" || modName == "pn" || modName == "pt") {
Operands.push_back(SparcOperand::CreateToken(modName,
Parser.getTok().getLoc()));
Parser.Lex(); // eat the identifier.
}
}
return MatchOperand_Success;
}
bool SparcAsmParser::matchRegisterName(const AsmToken &Tok, unsigned &RegNo,
unsigned &RegKind) {
int64_t intVal = 0;
RegNo = 0;
RegKind = SparcOperand::rk_None;
if (Tok.is(AsmToken::Identifier)) {
StringRef name = Tok.getString();
// %fp
if (name.equals("fp")) {
RegNo = Sparc::I6;
RegKind = SparcOperand::rk_IntReg;
return true;
}
// %sp
if (name.equals("sp")) {
RegNo = Sparc::O6;
RegKind = SparcOperand::rk_IntReg;
return true;
}
if (name.equals("y")) {
RegNo = Sparc::Y;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.substr(0, 3).equals_lower("asr")
&& !name.substr(3).getAsInteger(10, intVal)
&& intVal > 0 && intVal < 32) {
RegNo = ASRRegs[intVal];
RegKind = SparcOperand::rk_Special;
return true;
}
// %fprs is an alias of %asr6.
if (name.equals("fprs")) {
RegNo = ASRRegs[6];
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("icc")) {
RegNo = Sparc::ICC;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("psr")) {
RegNo = Sparc::PSR;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("fsr")) {
RegNo = Sparc::FSR;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("fq")) {
RegNo = Sparc::FQ;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("csr")) {
RegNo = Sparc::CPSR;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("cq")) {
RegNo = Sparc::CPQ;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("wim")) {
RegNo = Sparc::WIM;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("tbr")) {
RegNo = Sparc::TBR;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("xcc")) {
// FIXME:: check 64bit.
RegNo = Sparc::ICC;
RegKind = SparcOperand::rk_Special;
return true;
}
// %fcc0 - %fcc3
if (name.substr(0, 3).equals_lower("fcc")
&& !name.substr(3).getAsInteger(10, intVal)
&& intVal < 4) {
// FIXME: check 64bit and handle %fcc1 - %fcc3
RegNo = Sparc::FCC0 + intVal;
RegKind = SparcOperand::rk_Special;
return true;
}
// %g0 - %g7
if (name.substr(0, 1).equals_lower("g")
&& !name.substr(1).getAsInteger(10, intVal)
&& intVal < 8) {
RegNo = IntRegs[intVal];
RegKind = SparcOperand::rk_IntReg;
return true;
}
// %o0 - %o7
if (name.substr(0, 1).equals_lower("o")
&& !name.substr(1).getAsInteger(10, intVal)
&& intVal < 8) {
RegNo = IntRegs[8 + intVal];
RegKind = SparcOperand::rk_IntReg;
return true;
}
if (name.substr(0, 1).equals_lower("l")
&& !name.substr(1).getAsInteger(10, intVal)
&& intVal < 8) {
RegNo = IntRegs[16 + intVal];
RegKind = SparcOperand::rk_IntReg;
return true;
}
if (name.substr(0, 1).equals_lower("i")
&& !name.substr(1).getAsInteger(10, intVal)
&& intVal < 8) {
RegNo = IntRegs[24 + intVal];
RegKind = SparcOperand::rk_IntReg;
return true;
}
// %f0 - %f31
if (name.substr(0, 1).equals_lower("f")
&& !name.substr(1, 2).getAsInteger(10, intVal) && intVal < 32) {
RegNo = FloatRegs[intVal];
RegKind = SparcOperand::rk_FloatReg;
return true;
}
// %f32 - %f62
if (name.substr(0, 1).equals_lower("f")
&& !name.substr(1, 2).getAsInteger(10, intVal)
&& intVal >= 32 && intVal <= 62 && (intVal % 2 == 0)) {
// FIXME: Check V9
RegNo = DoubleRegs[intVal/2];
RegKind = SparcOperand::rk_DoubleReg;
return true;
}
// %r0 - %r31
if (name.substr(0, 1).equals_lower("r")
&& !name.substr(1, 2).getAsInteger(10, intVal) && intVal < 31) {
RegNo = IntRegs[intVal];
RegKind = SparcOperand::rk_IntReg;
return true;
}
// %c0 - %c31
if (name.substr(0, 1).equals_lower("c")
&& !name.substr(1).getAsInteger(10, intVal)
&& intVal < 32) {
RegNo = CoprocRegs[intVal];
RegKind = SparcOperand::rk_CoprocReg;
return true;
}
if (name.equals("tpc")) {
RegNo = Sparc::TPC;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("tnpc")) {
RegNo = Sparc::TNPC;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("tstate")) {
RegNo = Sparc::TSTATE;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("tt")) {
RegNo = Sparc::TT;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("tick")) {
RegNo = Sparc::TICK;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("tba")) {
RegNo = Sparc::TBA;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("pstate")) {
RegNo = Sparc::PSTATE;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("tl")) {
RegNo = Sparc::TL;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("pil")) {
RegNo = Sparc::PIL;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("cwp")) {
RegNo = Sparc::CWP;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("cansave")) {
RegNo = Sparc::CANSAVE;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("canrestore")) {
RegNo = Sparc::CANRESTORE;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("cleanwin")) {
RegNo = Sparc::CLEANWIN;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("otherwin")) {
RegNo = Sparc::OTHERWIN;
RegKind = SparcOperand::rk_Special;
return true;
}
if (name.equals("wstate")) {
RegNo = Sparc::WSTATE;
RegKind = SparcOperand::rk_Special;
return true;
}
}
return false;
}
// Determine if an expression contains a reference to the symbol
// "_GLOBAL_OFFSET_TABLE_".
static bool hasGOTReference(const MCExpr *Expr) {
switch (Expr->getKind()) {
case MCExpr::Target:
if (const SparcMCExpr *SE = dyn_cast<SparcMCExpr>(Expr))
return hasGOTReference(SE->getSubExpr());
break;
case MCExpr::Constant:
break;
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(Expr);
return hasGOTReference(BE->getLHS()) || hasGOTReference(BE->getRHS());
}
case MCExpr::SymbolRef: {
const MCSymbolRefExpr &SymRef = *cast<MCSymbolRefExpr>(Expr);
return (SymRef.getSymbol().getName() == "_GLOBAL_OFFSET_TABLE_");
}
case MCExpr::Unary:
return hasGOTReference(cast<MCUnaryExpr>(Expr)->getSubExpr());
}
return false;
}
const SparcMCExpr *
SparcAsmParser::adjustPICRelocation(SparcMCExpr::VariantKind VK,
const MCExpr *subExpr) {
// When in PIC mode, "%lo(...)" and "%hi(...)" behave differently.
// If the expression refers contains _GLOBAL_OFFSETE_TABLE, it is
// actually a %pc10 or %pc22 relocation. Otherwise, they are interpreted
// as %got10 or %got22 relocation.
if (getContext().getObjectFileInfo()->isPositionIndependent()) {
switch(VK) {
default: break;
case SparcMCExpr::VK_Sparc_LO:
VK = (hasGOTReference(subExpr) ? SparcMCExpr::VK_Sparc_PC10
: SparcMCExpr::VK_Sparc_GOT10);
break;
case SparcMCExpr::VK_Sparc_HI:
VK = (hasGOTReference(subExpr) ? SparcMCExpr::VK_Sparc_PC22
: SparcMCExpr::VK_Sparc_GOT22);
break;
}
}
return SparcMCExpr::create(VK, subExpr, getContext());
}
bool SparcAsmParser::matchSparcAsmModifiers(const MCExpr *&EVal,
SMLoc &EndLoc) {
AsmToken Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
return false;
StringRef name = Tok.getString();
SparcMCExpr::VariantKind VK = SparcMCExpr::parseVariantKind(name);
if (VK == SparcMCExpr::VK_Sparc_None)
return false;
Parser.Lex(); // Eat the identifier.
if (Parser.getTok().getKind() != AsmToken::LParen)
return false;
Parser.Lex(); // Eat the LParen token.
const MCExpr *subExpr;
if (Parser.parseParenExpression(subExpr, EndLoc))
return false;
EVal = adjustPICRelocation(VK, subExpr);
return true;
}
extern "C" void LLVMInitializeSparcAsmParser() {
RegisterMCAsmParser<SparcAsmParser> A(getTheSparcTarget());
RegisterMCAsmParser<SparcAsmParser> B(getTheSparcV9Target());
RegisterMCAsmParser<SparcAsmParser> C(getTheSparcelTarget());
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "SparcGenAsmMatcher.inc"
unsigned SparcAsmParser::validateTargetOperandClass(MCParsedAsmOperand &GOp,
unsigned Kind) {
SparcOperand &Op = (SparcOperand &)GOp;
if (Op.isFloatOrDoubleReg()) {
switch (Kind) {
default: break;
case MCK_DFPRegs:
if (!Op.isFloatReg() || SparcOperand::MorphToDoubleReg(Op))
return MCTargetAsmParser::Match_Success;
break;
case MCK_QFPRegs:
if (SparcOperand::MorphToQuadReg(Op))
return MCTargetAsmParser::Match_Success;
break;
}
}
if (Op.isIntReg() && Kind == MCK_IntPair) {
if (SparcOperand::MorphToIntPairReg(Op))
return MCTargetAsmParser::Match_Success;
}
if (Op.isCoprocReg() && Kind == MCK_CoprocPair) {
if (SparcOperand::MorphToCoprocPairReg(Op))
return MCTargetAsmParser::Match_Success;
}
return Match_InvalidOperand;
}