forked from OSchip/llvm-project
604 lines
17 KiB
C++
604 lines
17 KiB
C++
//===- ELF.cpp - ELF object file implementation ---------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
|
|
using namespace llvm;
|
|
using namespace object;
|
|
|
|
#define STRINGIFY_ENUM_CASE(ns, name) \
|
|
case ns::name: \
|
|
return #name;
|
|
|
|
#define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
|
|
|
|
StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
|
|
uint32_t Type) {
|
|
switch (Machine) {
|
|
case ELF::EM_X86_64:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_386:
|
|
case ELF::EM_IAMCU:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/i386.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_MIPS:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/Mips.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_AARCH64:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_ARM:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/ARM.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_ARC_COMPACT:
|
|
case ELF::EM_ARC_COMPACT2:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/ARC.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_AVR:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/AVR.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_HEXAGON:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_LANAI:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_PPC:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_PPC64:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_RISCV:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_S390:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_SPARC:
|
|
case ELF::EM_SPARC32PLUS:
|
|
case ELF::EM_SPARCV9:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_AMDGPU:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_BPF:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/BPF.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_MSP430:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ELF::EM_VE:
|
|
switch (Type) {
|
|
#include "llvm/BinaryFormat/ELFRelocs/VE.def"
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return "Unknown";
|
|
}
|
|
|
|
#undef ELF_RELOC
|
|
|
|
uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
|
|
switch (Machine) {
|
|
case ELF::EM_X86_64:
|
|
return ELF::R_X86_64_RELATIVE;
|
|
case ELF::EM_386:
|
|
case ELF::EM_IAMCU:
|
|
return ELF::R_386_RELATIVE;
|
|
case ELF::EM_MIPS:
|
|
break;
|
|
case ELF::EM_AARCH64:
|
|
return ELF::R_AARCH64_RELATIVE;
|
|
case ELF::EM_ARM:
|
|
return ELF::R_ARM_RELATIVE;
|
|
case ELF::EM_ARC_COMPACT:
|
|
case ELF::EM_ARC_COMPACT2:
|
|
return ELF::R_ARC_RELATIVE;
|
|
case ELF::EM_AVR:
|
|
break;
|
|
case ELF::EM_HEXAGON:
|
|
return ELF::R_HEX_RELATIVE;
|
|
case ELF::EM_LANAI:
|
|
break;
|
|
case ELF::EM_PPC:
|
|
break;
|
|
case ELF::EM_PPC64:
|
|
return ELF::R_PPC64_RELATIVE;
|
|
case ELF::EM_RISCV:
|
|
return ELF::R_RISCV_RELATIVE;
|
|
case ELF::EM_S390:
|
|
return ELF::R_390_RELATIVE;
|
|
case ELF::EM_SPARC:
|
|
case ELF::EM_SPARC32PLUS:
|
|
case ELF::EM_SPARCV9:
|
|
return ELF::R_SPARC_RELATIVE;
|
|
case ELF::EM_AMDGPU:
|
|
break;
|
|
case ELF::EM_BPF:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
|
|
switch (Machine) {
|
|
case ELF::EM_ARM:
|
|
switch (Type) {
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
|
|
}
|
|
break;
|
|
case ELF::EM_HEXAGON:
|
|
switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
|
|
break;
|
|
case ELF::EM_X86_64:
|
|
switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
|
|
break;
|
|
case ELF::EM_MIPS:
|
|
case ELF::EM_MIPS_RS3_LE:
|
|
switch (Type) {
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
|
|
}
|
|
break;
|
|
case ELF::EM_RISCV:
|
|
switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (Type) {
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_REL);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
|
|
STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
Expected<std::vector<typename ELFT::Rela>>
|
|
ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
|
|
// This function decodes the contents of an SHT_RELR packed relocation
|
|
// section.
|
|
//
|
|
// Proposal for adding SHT_RELR sections to generic-abi is here:
|
|
// https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
|
|
//
|
|
// The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
|
|
// like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
|
|
//
|
|
// i.e. start with an address, followed by any number of bitmaps. The address
|
|
// entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
|
|
// relocations each, at subsequent offsets following the last address entry.
|
|
//
|
|
// The bitmap entries must have 1 in the least significant bit. The assumption
|
|
// here is that an address cannot have 1 in lsb. Odd addresses are not
|
|
// supported.
|
|
//
|
|
// Excluding the least significant bit in the bitmap, each non-zero bit in
|
|
// the bitmap represents a relocation to be applied to a corresponding machine
|
|
// word that follows the base address word. The second least significant bit
|
|
// represents the machine word immediately following the initial address, and
|
|
// each bit that follows represents the next word, in linear order. As such,
|
|
// a single bitmap can encode up to 31 relocations in a 32-bit object, and
|
|
// 63 relocations in a 64-bit object.
|
|
//
|
|
// This encoding has a couple of interesting properties:
|
|
// 1. Looking at any entry, it is clear whether it's an address or a bitmap:
|
|
// even means address, odd means bitmap.
|
|
// 2. Just a simple list of addresses is a valid encoding.
|
|
|
|
Elf_Rela Rela;
|
|
Rela.r_info = 0;
|
|
Rela.r_addend = 0;
|
|
Rela.setType(getRelativeRelocationType(), false);
|
|
std::vector<Elf_Rela> Relocs;
|
|
|
|
// Word type: uint32_t for Elf32, and uint64_t for Elf64.
|
|
typedef typename ELFT::uint Word;
|
|
|
|
// Word size in number of bytes.
|
|
const size_t WordSize = sizeof(Word);
|
|
|
|
// Number of bits used for the relocation offsets bitmap.
|
|
// These many relative relocations can be encoded in a single entry.
|
|
const size_t NBits = 8*WordSize - 1;
|
|
|
|
Word Base = 0;
|
|
for (const Elf_Relr &R : relrs) {
|
|
Word Entry = R;
|
|
if ((Entry&1) == 0) {
|
|
// Even entry: encodes the offset for next relocation.
|
|
Rela.r_offset = Entry;
|
|
Relocs.push_back(Rela);
|
|
// Set base offset for subsequent bitmap entries.
|
|
Base = Entry + WordSize;
|
|
continue;
|
|
}
|
|
|
|
// Odd entry: encodes bitmap for relocations starting at base.
|
|
Word Offset = Base;
|
|
while (Entry != 0) {
|
|
Entry >>= 1;
|
|
if ((Entry&1) != 0) {
|
|
Rela.r_offset = Offset;
|
|
Relocs.push_back(Rela);
|
|
}
|
|
Offset += WordSize;
|
|
}
|
|
|
|
// Advance base offset by NBits words.
|
|
Base += NBits * WordSize;
|
|
}
|
|
|
|
return Relocs;
|
|
}
|
|
|
|
template <class ELFT>
|
|
Expected<std::vector<typename ELFT::Rela>>
|
|
ELFFile<ELFT>::android_relas(const Elf_Shdr *Sec) const {
|
|
// This function reads relocations in Android's packed relocation format,
|
|
// which is based on SLEB128 and delta encoding.
|
|
Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
|
|
if (!ContentsOrErr)
|
|
return ContentsOrErr.takeError();
|
|
const uint8_t *Cur = ContentsOrErr->begin();
|
|
const uint8_t *End = ContentsOrErr->end();
|
|
if (ContentsOrErr->size() < 4 || Cur[0] != 'A' || Cur[1] != 'P' ||
|
|
Cur[2] != 'S' || Cur[3] != '2')
|
|
return createError("invalid packed relocation header");
|
|
Cur += 4;
|
|
|
|
const char *ErrStr = nullptr;
|
|
auto ReadSLEB = [&]() -> int64_t {
|
|
if (ErrStr)
|
|
return 0;
|
|
unsigned Len;
|
|
int64_t Result = decodeSLEB128(Cur, &Len, End, &ErrStr);
|
|
Cur += Len;
|
|
return Result;
|
|
};
|
|
|
|
uint64_t NumRelocs = ReadSLEB();
|
|
uint64_t Offset = ReadSLEB();
|
|
uint64_t Addend = 0;
|
|
|
|
if (ErrStr)
|
|
return createError(ErrStr);
|
|
|
|
std::vector<Elf_Rela> Relocs;
|
|
Relocs.reserve(NumRelocs);
|
|
while (NumRelocs) {
|
|
uint64_t NumRelocsInGroup = ReadSLEB();
|
|
if (NumRelocsInGroup > NumRelocs)
|
|
return createError("relocation group unexpectedly large");
|
|
NumRelocs -= NumRelocsInGroup;
|
|
|
|
uint64_t GroupFlags = ReadSLEB();
|
|
bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
|
|
bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
|
|
bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
|
|
bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
|
|
|
|
uint64_t GroupOffsetDelta;
|
|
if (GroupedByOffsetDelta)
|
|
GroupOffsetDelta = ReadSLEB();
|
|
|
|
uint64_t GroupRInfo;
|
|
if (GroupedByInfo)
|
|
GroupRInfo = ReadSLEB();
|
|
|
|
if (GroupedByAddend && GroupHasAddend)
|
|
Addend += ReadSLEB();
|
|
|
|
if (!GroupHasAddend)
|
|
Addend = 0;
|
|
|
|
for (uint64_t I = 0; I != NumRelocsInGroup; ++I) {
|
|
Elf_Rela R;
|
|
Offset += GroupedByOffsetDelta ? GroupOffsetDelta : ReadSLEB();
|
|
R.r_offset = Offset;
|
|
R.r_info = GroupedByInfo ? GroupRInfo : ReadSLEB();
|
|
if (GroupHasAddend && !GroupedByAddend)
|
|
Addend += ReadSLEB();
|
|
R.r_addend = Addend;
|
|
Relocs.push_back(R);
|
|
|
|
if (ErrStr)
|
|
return createError(ErrStr);
|
|
}
|
|
|
|
if (ErrStr)
|
|
return createError(ErrStr);
|
|
}
|
|
|
|
return Relocs;
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
|
|
uint64_t Type) const {
|
|
#define DYNAMIC_STRINGIFY_ENUM(tag, value) \
|
|
case value: \
|
|
return #tag;
|
|
|
|
#define DYNAMIC_TAG(n, v)
|
|
switch (Arch) {
|
|
case ELF::EM_AARCH64:
|
|
switch (Type) {
|
|
#define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
|
|
#include "llvm/BinaryFormat/DynamicTags.def"
|
|
#undef AARCH64_DYNAMIC_TAG
|
|
}
|
|
break;
|
|
|
|
case ELF::EM_HEXAGON:
|
|
switch (Type) {
|
|
#define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
|
|
#include "llvm/BinaryFormat/DynamicTags.def"
|
|
#undef HEXAGON_DYNAMIC_TAG
|
|
}
|
|
break;
|
|
|
|
case ELF::EM_MIPS:
|
|
switch (Type) {
|
|
#define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
|
|
#include "llvm/BinaryFormat/DynamicTags.def"
|
|
#undef MIPS_DYNAMIC_TAG
|
|
}
|
|
break;
|
|
|
|
case ELF::EM_PPC64:
|
|
switch (Type) {
|
|
#define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
|
|
#include "llvm/BinaryFormat/DynamicTags.def"
|
|
#undef PPC64_DYNAMIC_TAG
|
|
}
|
|
break;
|
|
}
|
|
#undef DYNAMIC_TAG
|
|
switch (Type) {
|
|
// Now handle all dynamic tags except the architecture specific ones
|
|
#define AARCH64_DYNAMIC_TAG(name, value)
|
|
#define MIPS_DYNAMIC_TAG(name, value)
|
|
#define HEXAGON_DYNAMIC_TAG(name, value)
|
|
#define PPC64_DYNAMIC_TAG(name, value)
|
|
// Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
|
|
#define DYNAMIC_TAG_MARKER(name, value)
|
|
#define DYNAMIC_TAG(name, value) case value: return #name;
|
|
#include "llvm/BinaryFormat/DynamicTags.def"
|
|
#undef DYNAMIC_TAG
|
|
#undef AARCH64_DYNAMIC_TAG
|
|
#undef MIPS_DYNAMIC_TAG
|
|
#undef HEXAGON_DYNAMIC_TAG
|
|
#undef PPC64_DYNAMIC_TAG
|
|
#undef DYNAMIC_TAG_MARKER
|
|
#undef DYNAMIC_STRINGIFY_ENUM
|
|
default:
|
|
return "<unknown:>0x" + utohexstr(Type, true);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
|
|
return getDynamicTagAsString(getHeader()->e_machine, Type);
|
|
}
|
|
|
|
template <class ELFT>
|
|
Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
|
|
ArrayRef<Elf_Dyn> Dyn;
|
|
|
|
auto ProgramHeadersOrError = program_headers();
|
|
if (!ProgramHeadersOrError)
|
|
return ProgramHeadersOrError.takeError();
|
|
|
|
for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
|
|
if (Phdr.p_type == ELF::PT_DYNAMIC) {
|
|
Dyn = makeArrayRef(
|
|
reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
|
|
Phdr.p_filesz / sizeof(Elf_Dyn));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we can't find the dynamic section in the program headers, we just fall
|
|
// back on the sections.
|
|
if (Dyn.empty()) {
|
|
auto SectionsOrError = sections();
|
|
if (!SectionsOrError)
|
|
return SectionsOrError.takeError();
|
|
|
|
for (const Elf_Shdr &Sec : *SectionsOrError) {
|
|
if (Sec.sh_type == ELF::SHT_DYNAMIC) {
|
|
Expected<ArrayRef<Elf_Dyn>> DynOrError =
|
|
getSectionContentsAsArray<Elf_Dyn>(&Sec);
|
|
if (!DynOrError)
|
|
return DynOrError.takeError();
|
|
Dyn = *DynOrError;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Dyn.data())
|
|
return ArrayRef<Elf_Dyn>();
|
|
}
|
|
|
|
if (Dyn.empty())
|
|
// TODO: this error is untested.
|
|
return createError("invalid empty dynamic section");
|
|
|
|
if (Dyn.back().d_tag != ELF::DT_NULL)
|
|
// TODO: this error is untested.
|
|
return createError("dynamic sections must be DT_NULL terminated");
|
|
|
|
return Dyn;
|
|
}
|
|
|
|
template <class ELFT>
|
|
Expected<const uint8_t *> ELFFile<ELFT>::toMappedAddr(uint64_t VAddr) const {
|
|
auto ProgramHeadersOrError = program_headers();
|
|
if (!ProgramHeadersOrError)
|
|
return ProgramHeadersOrError.takeError();
|
|
|
|
llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
|
|
|
|
for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
|
|
if (Phdr.p_type == ELF::PT_LOAD)
|
|
LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
|
|
|
|
const Elf_Phdr *const *I =
|
|
std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr,
|
|
[](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
|
|
return VAddr < Phdr->p_vaddr;
|
|
});
|
|
|
|
if (I == LoadSegments.begin())
|
|
return createError("virtual address is not in any segment: 0x" +
|
|
Twine::utohexstr(VAddr));
|
|
--I;
|
|
const Elf_Phdr &Phdr = **I;
|
|
uint64_t Delta = VAddr - Phdr.p_vaddr;
|
|
if (Delta >= Phdr.p_filesz)
|
|
return createError("virtual address is not in any segment: 0x" +
|
|
Twine::utohexstr(VAddr));
|
|
|
|
uint64_t Offset = Phdr.p_offset + Delta;
|
|
if (Offset >= getBufSize())
|
|
return createError("can't map virtual address 0x" +
|
|
Twine::utohexstr(VAddr) + " to the segment with index " +
|
|
Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
|
|
": the segment ends at 0x" +
|
|
Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
|
|
", which is greater than the file size (0x" +
|
|
Twine::utohexstr(getBufSize()) + ")");
|
|
|
|
return base() + Offset;
|
|
}
|
|
|
|
template class llvm::object::ELFFile<ELF32LE>;
|
|
template class llvm::object::ELFFile<ELF32BE>;
|
|
template class llvm::object::ELFFile<ELF64LE>;
|
|
template class llvm::object::ELFFile<ELF64BE>;
|