llvm-project/llvm/tools/llvm-rtdyld/llvm-rtdyld.cpp

998 lines
35 KiB
C++

//===-- llvm-rtdyld.cpp - MCJIT Testing Tool ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a testing tool for use with the MC-JIT LLVM components.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringMap.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Object/SymbolSize.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/MSVCErrorWorkarounds.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <future>
#include <list>
using namespace llvm;
using namespace llvm::object;
static cl::list<std::string>
InputFileList(cl::Positional, cl::ZeroOrMore,
cl::desc("<input files>"));
enum ActionType {
AC_Execute,
AC_PrintObjectLineInfo,
AC_PrintLineInfo,
AC_PrintDebugLineInfo,
AC_Verify
};
static cl::opt<ActionType>
Action(cl::desc("Action to perform:"),
cl::init(AC_Execute),
cl::values(clEnumValN(AC_Execute, "execute",
"Load, link, and execute the inputs."),
clEnumValN(AC_PrintLineInfo, "printline",
"Load, link, and print line information for each function."),
clEnumValN(AC_PrintDebugLineInfo, "printdebugline",
"Load, link, and print line information for each function using the debug object"),
clEnumValN(AC_PrintObjectLineInfo, "printobjline",
"Like -printlineinfo but does not load the object first"),
clEnumValN(AC_Verify, "verify",
"Load, link and verify the resulting memory image.")));
static cl::opt<std::string>
EntryPoint("entry",
cl::desc("Function to call as entry point."),
cl::init("_main"));
static cl::list<std::string>
Dylibs("dylib",
cl::desc("Add library."),
cl::ZeroOrMore);
static cl::list<std::string> InputArgv("args", cl::Positional,
cl::desc("<program arguments>..."),
cl::ZeroOrMore, cl::PositionalEatsArgs);
static cl::opt<std::string>
TripleName("triple", cl::desc("Target triple for disassembler"));
static cl::opt<std::string>
MCPU("mcpu",
cl::desc("Target a specific cpu type (-mcpu=help for details)"),
cl::value_desc("cpu-name"),
cl::init(""));
static cl::list<std::string>
CheckFiles("check",
cl::desc("File containing RuntimeDyld verifier checks."),
cl::ZeroOrMore);
static cl::opt<uint64_t>
PreallocMemory("preallocate",
cl::desc("Allocate memory upfront rather than on-demand"),
cl::init(0));
static cl::opt<uint64_t> TargetAddrStart(
"target-addr-start",
cl::desc("For -verify only: start of phony target address "
"range."),
cl::init(4096), // Start at "page 1" - no allocating at "null".
cl::Hidden);
static cl::opt<uint64_t> TargetAddrEnd(
"target-addr-end",
cl::desc("For -verify only: end of phony target address range."),
cl::init(~0ULL), cl::Hidden);
static cl::opt<uint64_t> TargetSectionSep(
"target-section-sep",
cl::desc("For -verify only: Separation between sections in "
"phony target address space."),
cl::init(0), cl::Hidden);
static cl::list<std::string>
SpecificSectionMappings("map-section",
cl::desc("For -verify only: Map a section to a "
"specific address."),
cl::ZeroOrMore,
cl::Hidden);
static cl::list<std::string>
DummySymbolMappings("dummy-extern",
cl::desc("For -verify only: Inject a symbol into the extern "
"symbol table."),
cl::ZeroOrMore,
cl::Hidden);
static cl::opt<bool>
PrintAllocationRequests("print-alloc-requests",
cl::desc("Print allocation requests made to the memory "
"manager by RuntimeDyld"),
cl::Hidden);
static cl::opt<bool> ShowTimes("show-times",
cl::desc("Show times for llvm-rtdyld phases"),
cl::init(false));
ExitOnError ExitOnErr;
struct RTDyldTimers {
TimerGroup RTDyldTG{"llvm-rtdyld timers", "timers for llvm-rtdyld phases"};
Timer LoadObjectsTimer{"load", "time to load/add object files", RTDyldTG};
Timer LinkTimer{"link", "time to link object files", RTDyldTG};
Timer RunTimer{"run", "time to execute jitlink'd code", RTDyldTG};
};
std::unique_ptr<RTDyldTimers> Timers;
/* *** */
using SectionIDMap = StringMap<unsigned>;
using FileToSectionIDMap = StringMap<SectionIDMap>;
void dumpFileToSectionIDMap(const FileToSectionIDMap &FileToSecIDMap) {
for (const auto &KV : FileToSecIDMap) {
llvm::dbgs() << "In " << KV.first() << "\n";
for (auto &KV2 : KV.second)
llvm::dbgs() << " \"" << KV2.first() << "\" -> " << KV2.second << "\n";
}
}
Expected<unsigned> getSectionId(const FileToSectionIDMap &FileToSecIDMap,
StringRef FileName, StringRef SectionName) {
auto I = FileToSecIDMap.find(FileName);
if (I == FileToSecIDMap.end())
return make_error<StringError>("No file named " + FileName,
inconvertibleErrorCode());
auto &SectionIDs = I->second;
auto J = SectionIDs.find(SectionName);
if (J == SectionIDs.end())
return make_error<StringError>("No section named \"" + SectionName +
"\" in file " + FileName,
inconvertibleErrorCode());
return J->second;
}
// A trivial memory manager that doesn't do anything fancy, just uses the
// support library allocation routines directly.
class TrivialMemoryManager : public RTDyldMemoryManager {
public:
struct SectionInfo {
SectionInfo(StringRef Name, sys::MemoryBlock MB, unsigned SectionID)
: Name(std::string(Name)), MB(std::move(MB)), SectionID(SectionID) {}
std::string Name;
sys::MemoryBlock MB;
unsigned SectionID = ~0U;
};
SmallVector<SectionInfo, 16> FunctionMemory;
SmallVector<SectionInfo, 16> DataMemory;
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) override;
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) override;
/// If non null, records subsequent Name -> SectionID mappings.
void setSectionIDsMap(SectionIDMap *SecIDMap) {
this->SecIDMap = SecIDMap;
}
void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true) override {
return nullptr;
}
bool finalizeMemory(std::string *ErrMsg) override { return false; }
void addDummySymbol(const std::string &Name, uint64_t Addr) {
DummyExterns[Name] = Addr;
}
JITSymbol findSymbol(const std::string &Name) override {
auto I = DummyExterns.find(Name);
if (I != DummyExterns.end())
return JITSymbol(I->second, JITSymbolFlags::Exported);
if (auto Sym = RTDyldMemoryManager::findSymbol(Name))
return Sym;
else if (auto Err = Sym.takeError())
ExitOnErr(std::move(Err));
else
ExitOnErr(make_error<StringError>("Could not find definition for \"" +
Name + "\"",
inconvertibleErrorCode()));
llvm_unreachable("Should have returned or exited by now");
}
void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) override {}
void deregisterEHFrames() override {}
void preallocateSlab(uint64_t Size) {
std::error_code EC;
sys::MemoryBlock MB =
sys::Memory::allocateMappedMemory(Size, nullptr,
sys::Memory::MF_READ |
sys::Memory::MF_WRITE,
EC);
if (!MB.base())
report_fatal_error("Can't allocate enough memory: " + EC.message());
PreallocSlab = MB;
UsePreallocation = true;
SlabSize = Size;
}
uint8_t *allocateFromSlab(uintptr_t Size, unsigned Alignment, bool isCode,
StringRef SectionName, unsigned SectionID) {
Size = alignTo(Size, Alignment);
if (CurrentSlabOffset + Size > SlabSize)
report_fatal_error("Can't allocate enough memory. Tune --preallocate");
uintptr_t OldSlabOffset = CurrentSlabOffset;
sys::MemoryBlock MB((void *)OldSlabOffset, Size);
if (isCode)
FunctionMemory.push_back(SectionInfo(SectionName, MB, SectionID));
else
DataMemory.push_back(SectionInfo(SectionName, MB, SectionID));
CurrentSlabOffset += Size;
return (uint8_t*)OldSlabOffset;
}
private:
std::map<std::string, uint64_t> DummyExterns;
sys::MemoryBlock PreallocSlab;
bool UsePreallocation = false;
uintptr_t SlabSize = 0;
uintptr_t CurrentSlabOffset = 0;
SectionIDMap *SecIDMap = nullptr;
};
uint8_t *TrivialMemoryManager::allocateCodeSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName) {
if (PrintAllocationRequests)
outs() << "allocateCodeSection(Size = " << Size << ", Alignment = "
<< Alignment << ", SectionName = " << SectionName << ")\n";
if (SecIDMap)
(*SecIDMap)[SectionName] = SectionID;
if (UsePreallocation)
return allocateFromSlab(Size, Alignment, true /* isCode */,
SectionName, SectionID);
std::error_code EC;
sys::MemoryBlock MB =
sys::Memory::allocateMappedMemory(Size, nullptr,
sys::Memory::MF_READ |
sys::Memory::MF_WRITE,
EC);
if (!MB.base())
report_fatal_error("MemoryManager allocation failed: " + EC.message());
FunctionMemory.push_back(SectionInfo(SectionName, MB, SectionID));
return (uint8_t*)MB.base();
}
uint8_t *TrivialMemoryManager::allocateDataSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName,
bool IsReadOnly) {
if (PrintAllocationRequests)
outs() << "allocateDataSection(Size = " << Size << ", Alignment = "
<< Alignment << ", SectionName = " << SectionName << ")\n";
if (SecIDMap)
(*SecIDMap)[SectionName] = SectionID;
if (UsePreallocation)
return allocateFromSlab(Size, Alignment, false /* isCode */, SectionName,
SectionID);
std::error_code EC;
sys::MemoryBlock MB =
sys::Memory::allocateMappedMemory(Size, nullptr,
sys::Memory::MF_READ |
sys::Memory::MF_WRITE,
EC);
if (!MB.base())
report_fatal_error("MemoryManager allocation failed: " + EC.message());
DataMemory.push_back(SectionInfo(SectionName, MB, SectionID));
return (uint8_t*)MB.base();
}
static const char *ProgramName;
static void ErrorAndExit(const Twine &Msg) {
errs() << ProgramName << ": error: " << Msg << "\n";
exit(1);
}
static void loadDylibs() {
for (const std::string &Dylib : Dylibs) {
if (!sys::fs::is_regular_file(Dylib))
report_fatal_error("Dylib not found: '" + Dylib + "'.");
std::string ErrMsg;
if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg))
report_fatal_error("Error loading '" + Dylib + "': " + ErrMsg);
}
}
/* *** */
static int printLineInfoForInput(bool LoadObjects, bool UseDebugObj) {
assert(LoadObjects || !UseDebugObj);
// Load any dylibs requested on the command line.
loadDylibs();
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for (auto &File : InputFileList) {
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
RuntimeDyld Dyld(MemMgr, MemMgr);
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(File);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS);
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
OwningBinary<ObjectFile> DebugObj;
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObjInfo = nullptr;
ObjectFile *SymbolObj = &Obj;
if (LoadObjects) {
// Load the object file
LoadedObjInfo =
Dyld.loadObject(Obj);
if (Dyld.hasError())
ErrorAndExit(Dyld.getErrorString());
// Resolve all the relocations we can.
Dyld.resolveRelocations();
if (UseDebugObj) {
DebugObj = LoadedObjInfo->getObjectForDebug(Obj);
SymbolObj = DebugObj.getBinary();
LoadedObjInfo.reset();
}
}
std::unique_ptr<DIContext> Context =
DWARFContext::create(*SymbolObj, LoadedObjInfo.get());
std::vector<std::pair<SymbolRef, uint64_t>> SymAddr =
object::computeSymbolSizes(*SymbolObj);
// Use symbol info to iterate functions in the object.
for (const auto &P : SymAddr) {
object::SymbolRef Sym = P.first;
Expected<SymbolRef::Type> TypeOrErr = Sym.getType();
if (!TypeOrErr) {
// TODO: Actually report errors helpfully.
consumeError(TypeOrErr.takeError());
continue;
}
SymbolRef::Type Type = *TypeOrErr;
if (Type == object::SymbolRef::ST_Function) {
Expected<StringRef> Name = Sym.getName();
if (!Name) {
// TODO: Actually report errors helpfully.
consumeError(Name.takeError());
continue;
}
Expected<uint64_t> AddrOrErr = Sym.getAddress();
if (!AddrOrErr) {
// TODO: Actually report errors helpfully.
consumeError(AddrOrErr.takeError());
continue;
}
uint64_t Addr = *AddrOrErr;
object::SectionedAddress Address;
uint64_t Size = P.second;
// If we're not using the debug object, compute the address of the
// symbol in memory (rather than that in the unrelocated object file)
// and use that to query the DWARFContext.
if (!UseDebugObj && LoadObjects) {
auto SecOrErr = Sym.getSection();
if (!SecOrErr) {
// TODO: Actually report errors helpfully.
consumeError(SecOrErr.takeError());
continue;
}
object::section_iterator Sec = *SecOrErr;
Address.SectionIndex = Sec->getIndex();
uint64_t SectionLoadAddress =
LoadedObjInfo->getSectionLoadAddress(*Sec);
if (SectionLoadAddress != 0)
Addr += SectionLoadAddress - Sec->getAddress();
} else if (auto SecOrErr = Sym.getSection())
Address.SectionIndex = SecOrErr.get()->getIndex();
outs() << "Function: " << *Name << ", Size = " << Size
<< ", Addr = " << Addr << "\n";
Address.Address = Addr;
DILineInfoTable Lines =
Context->getLineInfoForAddressRange(Address, Size);
for (auto &D : Lines) {
outs() << " Line info @ " << D.first - Addr << ": "
<< D.second.FileName << ", line:" << D.second.Line << "\n";
}
}
}
}
return 0;
}
static void doPreallocation(TrivialMemoryManager &MemMgr) {
// Allocate a slab of memory upfront, if required. This is used if
// we want to test small code models.
if (static_cast<intptr_t>(PreallocMemory) < 0)
report_fatal_error("Pre-allocated bytes of memory must be a positive integer.");
// FIXME: Limit the amount of memory that can be preallocated?
if (PreallocMemory != 0)
MemMgr.preallocateSlab(PreallocMemory);
}
static int executeInput() {
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
doPreallocation(MemMgr);
RuntimeDyld Dyld(MemMgr, MemMgr);
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
{
TimeRegion TR(Timers ? &Timers->LoadObjectsTimer : nullptr);
for (auto &File : InputFileList) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(File);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS);
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
// Load the object file
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
ErrorAndExit(Dyld.getErrorString());
}
}
}
{
TimeRegion TR(Timers ? &Timers->LinkTimer : nullptr);
// Resove all the relocations we can.
// FIXME: Error out if there are unresolved relocations.
Dyld.resolveRelocations();
}
// Get the address of the entry point (_main by default).
void *MainAddress = Dyld.getSymbolLocalAddress(EntryPoint);
if (!MainAddress)
ErrorAndExit("no definition for '" + EntryPoint + "'");
// Invalidate the instruction cache for each loaded function.
for (auto &FM : MemMgr.FunctionMemory) {
auto &FM_MB = FM.MB;
// Make sure the memory is executable.
// setExecutable will call InvalidateInstructionCache.
if (auto EC = sys::Memory::protectMappedMemory(FM_MB,
sys::Memory::MF_READ |
sys::Memory::MF_EXEC))
ErrorAndExit("unable to mark function executable: '" + EC.message() +
"'");
}
// Dispatch to _main().
errs() << "loaded '" << EntryPoint << "' at: " << (void*)MainAddress << "\n";
int (*Main)(int, const char**) =
(int(*)(int,const char**)) uintptr_t(MainAddress);
std::vector<const char *> Argv;
// Use the name of the first input object module as argv[0] for the target.
Argv.push_back(InputFileList[0].data());
for (auto &Arg : InputArgv)
Argv.push_back(Arg.data());
Argv.push_back(nullptr);
int Result = 0;
{
TimeRegion TR(Timers ? &Timers->RunTimer : nullptr);
Result = Main(Argv.size() - 1, Argv.data());
}
return Result;
}
static int checkAllExpressions(RuntimeDyldChecker &Checker) {
for (const auto& CheckerFileName : CheckFiles) {
ErrorOr<std::unique_ptr<MemoryBuffer>> CheckerFileBuf =
MemoryBuffer::getFileOrSTDIN(CheckerFileName);
if (std::error_code EC = CheckerFileBuf.getError())
ErrorAndExit("unable to read input '" + CheckerFileName + "': " +
EC.message());
if (!Checker.checkAllRulesInBuffer("# rtdyld-check:",
CheckerFileBuf.get().get()))
ErrorAndExit("some checks in '" + CheckerFileName + "' failed");
}
return 0;
}
void applySpecificSectionMappings(RuntimeDyld &Dyld,
const FileToSectionIDMap &FileToSecIDMap) {
for (StringRef Mapping : SpecificSectionMappings) {
size_t EqualsIdx = Mapping.find_first_of("=");
std::string SectionIDStr = std::string(Mapping.substr(0, EqualsIdx));
size_t ComaIdx = Mapping.find_first_of(",");
if (ComaIdx == StringRef::npos)
report_fatal_error("Invalid section specification '" + Mapping +
"'. Should be '<file name>,<section name>=<addr>'");
std::string FileName = SectionIDStr.substr(0, ComaIdx);
std::string SectionName = SectionIDStr.substr(ComaIdx + 1);
unsigned SectionID =
ExitOnErr(getSectionId(FileToSecIDMap, FileName, SectionName));
auto* OldAddr = Dyld.getSectionContent(SectionID).data();
std::string NewAddrStr = std::string(Mapping.substr(EqualsIdx + 1));
uint64_t NewAddr;
if (StringRef(NewAddrStr).getAsInteger(0, NewAddr))
report_fatal_error("Invalid section address in mapping '" + Mapping +
"'.");
Dyld.mapSectionAddress(OldAddr, NewAddr);
}
}
// Scatter sections in all directions!
// Remaps section addresses for -verify mode. The following command line options
// can be used to customize the layout of the memory within the phony target's
// address space:
// -target-addr-start <s> -- Specify where the phony target address range starts.
// -target-addr-end <e> -- Specify where the phony target address range ends.
// -target-section-sep <d> -- Specify how big a gap should be left between the
// end of one section and the start of the next.
// Defaults to zero. Set to something big
// (e.g. 1 << 32) to stress-test stubs, GOTs, etc.
//
static void remapSectionsAndSymbols(const llvm::Triple &TargetTriple,
RuntimeDyld &Dyld,
TrivialMemoryManager &MemMgr) {
// Set up a work list (section addr/size pairs).
typedef std::list<const TrivialMemoryManager::SectionInfo*> WorklistT;
WorklistT Worklist;
for (const auto& CodeSection : MemMgr.FunctionMemory)
Worklist.push_back(&CodeSection);
for (const auto& DataSection : MemMgr.DataMemory)
Worklist.push_back(&DataSection);
// Keep an "already allocated" mapping of section target addresses to sizes.
// Sections whose address mappings aren't specified on the command line will
// allocated around the explicitly mapped sections while maintaining the
// minimum separation.
std::map<uint64_t, uint64_t> AlreadyAllocated;
// Move the previously applied mappings (whether explicitly specified on the
// command line, or implicitly set by RuntimeDyld) into the already-allocated
// map.
for (WorklistT::iterator I = Worklist.begin(), E = Worklist.end();
I != E;) {
WorklistT::iterator Tmp = I;
++I;
auto LoadAddr = Dyld.getSectionLoadAddress((*Tmp)->SectionID);
if (LoadAddr != static_cast<uint64_t>(
reinterpret_cast<uintptr_t>((*Tmp)->MB.base()))) {
// A section will have a LoadAddr of 0 if it wasn't loaded for whatever
// reason (e.g. zero byte COFF sections). Don't include those sections in
// the allocation map.
if (LoadAddr != 0)
AlreadyAllocated[LoadAddr] = (*Tmp)->MB.allocatedSize();
Worklist.erase(Tmp);
}
}
// If the -target-addr-end option wasn't explicitly passed, then set it to a
// sensible default based on the target triple.
if (TargetAddrEnd.getNumOccurrences() == 0) {
if (TargetTriple.isArch16Bit())
TargetAddrEnd = (1ULL << 16) - 1;
else if (TargetTriple.isArch32Bit())
TargetAddrEnd = (1ULL << 32) - 1;
// TargetAddrEnd already has a sensible default for 64-bit systems, so
// there's nothing to do in the 64-bit case.
}
// Process any elements remaining in the worklist.
while (!Worklist.empty()) {
auto *CurEntry = Worklist.front();
Worklist.pop_front();
uint64_t NextSectionAddr = TargetAddrStart;
for (const auto &Alloc : AlreadyAllocated)
if (NextSectionAddr + CurEntry->MB.allocatedSize() + TargetSectionSep <=
Alloc.first)
break;
else
NextSectionAddr = Alloc.first + Alloc.second + TargetSectionSep;
Dyld.mapSectionAddress(CurEntry->MB.base(), NextSectionAddr);
AlreadyAllocated[NextSectionAddr] = CurEntry->MB.allocatedSize();
}
// Add dummy symbols to the memory manager.
for (const auto &Mapping : DummySymbolMappings) {
size_t EqualsIdx = Mapping.find_first_of('=');
if (EqualsIdx == StringRef::npos)
report_fatal_error("Invalid dummy symbol specification '" + Mapping +
"'. Should be '<symbol name>=<addr>'");
std::string Symbol = Mapping.substr(0, EqualsIdx);
std::string AddrStr = Mapping.substr(EqualsIdx + 1);
uint64_t Addr;
if (StringRef(AddrStr).getAsInteger(0, Addr))
report_fatal_error("Invalid symbol mapping '" + Mapping + "'.");
MemMgr.addDummySymbol(Symbol, Addr);
}
}
// Load and link the objects specified on the command line, but do not execute
// anything. Instead, attach a RuntimeDyldChecker instance and call it to
// verify the correctness of the linked memory.
static int linkAndVerify() {
// Check for missing triple.
if (TripleName == "")
ErrorAndExit("-triple required when running in -verify mode.");
// Look up the target and build the disassembler.
Triple TheTriple(Triple::normalize(TripleName));
std::string ErrorStr;
const Target *TheTarget =
TargetRegistry::lookupTarget("", TheTriple, ErrorStr);
if (!TheTarget)
ErrorAndExit("Error accessing target '" + TripleName + "': " + ErrorStr);
TripleName = TheTriple.getTriple();
std::unique_ptr<MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, ""));
if (!STI)
ErrorAndExit("Unable to create subtarget info!");
std::unique_ptr<MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
if (!MRI)
ErrorAndExit("Unable to create target register info!");
MCTargetOptions MCOptions;
std::unique_ptr<MCAsmInfo> MAI(
TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
if (!MAI)
ErrorAndExit("Unable to create target asm info!");
MCContext Ctx(Triple(TripleName), MAI.get(), MRI.get(), STI.get());
std::unique_ptr<MCDisassembler> Disassembler(
TheTarget->createMCDisassembler(*STI, Ctx));
if (!Disassembler)
ErrorAndExit("Unable to create disassembler!");
std::unique_ptr<MCInstrInfo> MII(TheTarget->createMCInstrInfo());
if (!MII)
ErrorAndExit("Unable to create target instruction info!");
std::unique_ptr<MCInstPrinter> InstPrinter(
TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI));
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
doPreallocation(MemMgr);
struct StubID {
unsigned SectionID;
uint32_t Offset;
};
using StubInfos = StringMap<StubID>;
using StubContainers = StringMap<StubInfos>;
StubContainers StubMap;
RuntimeDyld Dyld(MemMgr, MemMgr);
Dyld.setProcessAllSections(true);
Dyld.setNotifyStubEmitted([&StubMap](StringRef FilePath,
StringRef SectionName,
StringRef SymbolName, unsigned SectionID,
uint32_t StubOffset) {
std::string ContainerName =
(sys::path::filename(FilePath) + "/" + SectionName).str();
StubMap[ContainerName][SymbolName] = {SectionID, StubOffset};
});
auto GetSymbolInfo =
[&Dyld, &MemMgr](
StringRef Symbol) -> Expected<RuntimeDyldChecker::MemoryRegionInfo> {
RuntimeDyldChecker::MemoryRegionInfo SymInfo;
// First get the target address.
if (auto InternalSymbol = Dyld.getSymbol(Symbol))
SymInfo.setTargetAddress(InternalSymbol.getAddress());
else {
// Symbol not found in RuntimeDyld. Fall back to external lookup.
#ifdef _MSC_VER
using ExpectedLookupResult =
MSVCPExpected<JITSymbolResolver::LookupResult>;
#else
using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
#endif
auto ResultP = std::make_shared<std::promise<ExpectedLookupResult>>();
auto ResultF = ResultP->get_future();
MemMgr.lookup(JITSymbolResolver::LookupSet({Symbol}),
[=](Expected<JITSymbolResolver::LookupResult> Result) {
ResultP->set_value(std::move(Result));
});
auto Result = ResultF.get();
if (!Result)
return Result.takeError();
auto I = Result->find(Symbol);
assert(I != Result->end() &&
"Expected symbol address if no error occurred");
SymInfo.setTargetAddress(I->second.getAddress());
}
// Now find the symbol content if possible (otherwise leave content as a
// default-constructed StringRef).
if (auto *SymAddr = Dyld.getSymbolLocalAddress(Symbol)) {
unsigned SectionID = Dyld.getSymbolSectionID(Symbol);
if (SectionID != ~0U) {
char *CSymAddr = static_cast<char *>(SymAddr);
StringRef SecContent = Dyld.getSectionContent(SectionID);
uint64_t SymSize = SecContent.size() - (CSymAddr - SecContent.data());
SymInfo.setContent(ArrayRef<char>(CSymAddr, SymSize));
}
}
return SymInfo;
};
auto IsSymbolValid = [&Dyld, GetSymbolInfo](StringRef Symbol) {
if (Dyld.getSymbol(Symbol))
return true;
auto SymInfo = GetSymbolInfo(Symbol);
if (!SymInfo) {
logAllUnhandledErrors(SymInfo.takeError(), errs(), "RTDyldChecker: ");
return false;
}
return SymInfo->getTargetAddress() != 0;
};
FileToSectionIDMap FileToSecIDMap;
auto GetSectionInfo = [&Dyld, &FileToSecIDMap](StringRef FileName,
StringRef SectionName)
-> Expected<RuntimeDyldChecker::MemoryRegionInfo> {
auto SectionID = getSectionId(FileToSecIDMap, FileName, SectionName);
if (!SectionID)
return SectionID.takeError();
RuntimeDyldChecker::MemoryRegionInfo SecInfo;
SecInfo.setTargetAddress(Dyld.getSectionLoadAddress(*SectionID));
StringRef SecContent = Dyld.getSectionContent(*SectionID);
SecInfo.setContent(ArrayRef<char>(SecContent.data(), SecContent.size()));
return SecInfo;
};
auto GetStubInfo = [&Dyld, &StubMap](StringRef StubContainer,
StringRef SymbolName)
-> Expected<RuntimeDyldChecker::MemoryRegionInfo> {
if (!StubMap.count(StubContainer))
return make_error<StringError>("Stub container not found: " +
StubContainer,
inconvertibleErrorCode());
if (!StubMap[StubContainer].count(SymbolName))
return make_error<StringError>("Symbol name " + SymbolName +
" in stub container " + StubContainer,
inconvertibleErrorCode());
auto &SI = StubMap[StubContainer][SymbolName];
RuntimeDyldChecker::MemoryRegionInfo StubMemInfo;
StubMemInfo.setTargetAddress(Dyld.getSectionLoadAddress(SI.SectionID) +
SI.Offset);
StringRef SecContent =
Dyld.getSectionContent(SI.SectionID).substr(SI.Offset);
StubMemInfo.setContent(
ArrayRef<char>(SecContent.data(), SecContent.size()));
return StubMemInfo;
};
// We will initialize this below once we have the first object file and can
// know the endianness.
std::unique_ptr<RuntimeDyldChecker> Checker;
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for (auto &InputFile : InputFileList) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(InputFile);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS);
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
if (!Checker)
Checker = std::make_unique<RuntimeDyldChecker>(
IsSymbolValid, GetSymbolInfo, GetSectionInfo, GetStubInfo,
GetStubInfo, Obj.isLittleEndian() ? support::little : support::big,
Disassembler.get(), InstPrinter.get(), dbgs());
auto FileName = sys::path::filename(InputFile);
MemMgr.setSectionIDsMap(&FileToSecIDMap[FileName]);
// Load the object file
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
ErrorAndExit(Dyld.getErrorString());
}
}
// Re-map the section addresses into the phony target address space and add
// dummy symbols.
applySpecificSectionMappings(Dyld, FileToSecIDMap);
remapSectionsAndSymbols(TheTriple, Dyld, MemMgr);
// Resolve all the relocations we can.
Dyld.resolveRelocations();
// Register EH frames.
Dyld.registerEHFrames();
int ErrorCode = checkAllExpressions(*Checker);
if (Dyld.hasError())
ErrorAndExit("RTDyld reported an error applying relocations:\n " +
Dyld.getErrorString());
return ErrorCode;
}
int main(int argc, char **argv) {
InitLLVM X(argc, argv);
ProgramName = argv[0];
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllDisassemblers();
cl::ParseCommandLineOptions(argc, argv, "llvm MC-JIT tool\n");
ExitOnErr.setBanner(std::string(argv[0]) + ": ");
Timers = ShowTimes ? std::make_unique<RTDyldTimers>() : nullptr;
int Result;
switch (Action) {
case AC_Execute:
Result = executeInput();
break;
case AC_PrintDebugLineInfo:
Result =
printLineInfoForInput(/* LoadObjects */ true, /* UseDebugObj */ true);
break;
case AC_PrintLineInfo:
Result =
printLineInfoForInput(/* LoadObjects */ true, /* UseDebugObj */ false);
break;
case AC_PrintObjectLineInfo:
Result =
printLineInfoForInput(/* LoadObjects */ false, /* UseDebugObj */ false);
break;
case AC_Verify:
Result = linkAndVerify();
break;
}
return Result;
}