llvm-project/llvm/lib/Support/YAMLTraits.cpp

1123 lines
30 KiB
C++

//===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/YAMLTraits.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Unicode.h"
#include "llvm/Support/YAMLParser.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>
using namespace llvm;
using namespace yaml;
//===----------------------------------------------------------------------===//
// IO
//===----------------------------------------------------------------------===//
IO::IO(void *Context) : Ctxt(Context) {}
IO::~IO() = default;
void *IO::getContext() const {
return Ctxt;
}
void IO::setContext(void *Context) {
Ctxt = Context;
}
void IO::setAllowUnknownKeys(bool Allow) {
llvm_unreachable("Only supported for Input");
}
//===----------------------------------------------------------------------===//
// Input
//===----------------------------------------------------------------------===//
Input::Input(StringRef InputContent, void *Ctxt,
SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
: IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
if (DiagHandler)
SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
DocIterator = Strm->begin();
}
Input::Input(MemoryBufferRef Input, void *Ctxt,
SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
: IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
if (DiagHandler)
SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
DocIterator = Strm->begin();
}
Input::~Input() = default;
std::error_code Input::error() { return EC; }
// Pin the vtables to this file.
void Input::HNode::anchor() {}
void Input::EmptyHNode::anchor() {}
void Input::ScalarHNode::anchor() {}
void Input::MapHNode::anchor() {}
void Input::SequenceHNode::anchor() {}
bool Input::outputting() const {
return false;
}
bool Input::setCurrentDocument() {
if (DocIterator != Strm->end()) {
Node *N = DocIterator->getRoot();
if (!N) {
EC = make_error_code(errc::invalid_argument);
return false;
}
if (isa<NullNode>(N)) {
// Empty files are allowed and ignored
++DocIterator;
return setCurrentDocument();
}
TopNode = createHNodes(N);
CurrentNode = TopNode.get();
return true;
}
return false;
}
bool Input::nextDocument() {
return ++DocIterator != Strm->end();
}
const Node *Input::getCurrentNode() const {
return CurrentNode ? CurrentNode->_node : nullptr;
}
bool Input::mapTag(StringRef Tag, bool Default) {
// CurrentNode can be null if setCurrentDocument() was unable to
// parse the document because it was invalid or empty.
if (!CurrentNode)
return false;
std::string foundTag = CurrentNode->_node->getVerbatimTag();
if (foundTag.empty()) {
// If no tag found and 'Tag' is the default, say it was found.
return Default;
}
// Return true iff found tag matches supplied tag.
return Tag.equals(foundTag);
}
void Input::beginMapping() {
if (EC)
return;
// CurrentNode can be null if the document is empty.
MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
if (MN) {
MN->ValidKeys.clear();
}
}
std::vector<StringRef> Input::keys() {
MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
std::vector<StringRef> Ret;
if (!MN) {
setError(CurrentNode, "not a mapping");
return Ret;
}
for (auto &P : MN->Mapping)
Ret.push_back(P.first());
return Ret;
}
bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
void *&SaveInfo) {
UseDefault = false;
if (EC)
return false;
// CurrentNode is null for empty documents, which is an error in case required
// nodes are present.
if (!CurrentNode) {
if (Required)
EC = make_error_code(errc::invalid_argument);
return false;
}
MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
if (!MN) {
if (Required || !isa<EmptyHNode>(CurrentNode))
setError(CurrentNode, "not a mapping");
else
UseDefault = true;
return false;
}
MN->ValidKeys.push_back(Key);
HNode *Value = MN->Mapping[Key].first.get();
if (!Value) {
if (Required)
setError(CurrentNode, Twine("missing required key '") + Key + "'");
else
UseDefault = true;
return false;
}
SaveInfo = CurrentNode;
CurrentNode = Value;
return true;
}
void Input::postflightKey(void *saveInfo) {
CurrentNode = reinterpret_cast<HNode *>(saveInfo);
}
void Input::endMapping() {
if (EC)
return;
// CurrentNode can be null if the document is empty.
MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
if (!MN)
return;
for (const auto &NN : MN->Mapping) {
if (!is_contained(MN->ValidKeys, NN.first())) {
const SMRange &ReportLoc = NN.second.second;
if (!AllowUnknownKeys) {
setError(ReportLoc, Twine("unknown key '") + NN.first() + "'");
break;
} else
reportWarning(ReportLoc, Twine("unknown key '") + NN.first() + "'");
}
}
}
void Input::beginFlowMapping() { beginMapping(); }
void Input::endFlowMapping() { endMapping(); }
unsigned Input::beginSequence() {
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
return SQ->Entries.size();
if (isa<EmptyHNode>(CurrentNode))
return 0;
// Treat case where there's a scalar "null" value as an empty sequence.
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
if (isNull(SN->value()))
return 0;
}
// Any other type of HNode is an error.
setError(CurrentNode, "not a sequence");
return 0;
}
void Input::endSequence() {
}
bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
if (EC)
return false;
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
SaveInfo = CurrentNode;
CurrentNode = SQ->Entries[Index].get();
return true;
}
return false;
}
void Input::postflightElement(void *SaveInfo) {
CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
}
unsigned Input::beginFlowSequence() { return beginSequence(); }
bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
if (EC)
return false;
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
SaveInfo = CurrentNode;
CurrentNode = SQ->Entries[index].get();
return true;
}
return false;
}
void Input::postflightFlowElement(void *SaveInfo) {
CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
}
void Input::endFlowSequence() {
}
void Input::beginEnumScalar() {
ScalarMatchFound = false;
}
bool Input::matchEnumScalar(const char *Str, bool) {
if (ScalarMatchFound)
return false;
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
if (SN->value().equals(Str)) {
ScalarMatchFound = true;
return true;
}
}
return false;
}
bool Input::matchEnumFallback() {
if (ScalarMatchFound)
return false;
ScalarMatchFound = true;
return true;
}
void Input::endEnumScalar() {
if (!ScalarMatchFound) {
setError(CurrentNode, "unknown enumerated scalar");
}
}
bool Input::beginBitSetScalar(bool &DoClear) {
BitValuesUsed.clear();
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
} else {
setError(CurrentNode, "expected sequence of bit values");
}
DoClear = true;
return true;
}
bool Input::bitSetMatch(const char *Str, bool) {
if (EC)
return false;
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
unsigned Index = 0;
for (auto &N : SQ->Entries) {
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
if (SN->value().equals(Str)) {
BitValuesUsed[Index] = true;
return true;
}
} else {
setError(CurrentNode, "unexpected scalar in sequence of bit values");
}
++Index;
}
} else {
setError(CurrentNode, "expected sequence of bit values");
}
return false;
}
void Input::endBitSetScalar() {
if (EC)
return;
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
assert(BitValuesUsed.size() == SQ->Entries.size());
for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
if (!BitValuesUsed[i]) {
setError(SQ->Entries[i].get(), "unknown bit value");
return;
}
}
}
}
void Input::scalarString(StringRef &S, QuotingType) {
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
S = SN->value();
} else {
setError(CurrentNode, "unexpected scalar");
}
}
void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
void Input::scalarTag(std::string &Tag) {
Tag = CurrentNode->_node->getVerbatimTag();
}
void Input::setError(HNode *hnode, const Twine &message) {
assert(hnode && "HNode must not be NULL");
setError(hnode->_node, message);
}
NodeKind Input::getNodeKind() {
if (isa<ScalarHNode>(CurrentNode))
return NodeKind::Scalar;
else if (isa<MapHNode>(CurrentNode))
return NodeKind::Map;
else if (isa<SequenceHNode>(CurrentNode))
return NodeKind::Sequence;
llvm_unreachable("Unsupported node kind");
}
void Input::setError(Node *node, const Twine &message) {
Strm->printError(node, message);
EC = make_error_code(errc::invalid_argument);
}
void Input::setError(const SMRange &range, const Twine &message) {
Strm->printError(range, message);
EC = make_error_code(errc::invalid_argument);
}
void Input::reportWarning(HNode *hnode, const Twine &message) {
assert(hnode && "HNode must not be NULL");
Strm->printError(hnode->_node, message, SourceMgr::DK_Warning);
}
void Input::reportWarning(Node *node, const Twine &message) {
Strm->printError(node, message, SourceMgr::DK_Warning);
}
void Input::reportWarning(const SMRange &range, const Twine &message) {
Strm->printError(range, message, SourceMgr::DK_Warning);
}
std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
SmallString<128> StringStorage;
if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
StringRef KeyStr = SN->getValue(StringStorage);
if (!StringStorage.empty()) {
// Copy string to permanent storage
KeyStr = StringStorage.str().copy(StringAllocator);
}
return std::make_unique<ScalarHNode>(N, KeyStr);
} else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
return std::make_unique<ScalarHNode>(N, ValueCopy);
} else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
auto SQHNode = std::make_unique<SequenceHNode>(N);
for (Node &SN : *SQ) {
auto Entry = createHNodes(&SN);
if (EC)
break;
SQHNode->Entries.push_back(std::move(Entry));
}
return std::move(SQHNode);
} else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
auto mapHNode = std::make_unique<MapHNode>(N);
for (KeyValueNode &KVN : *Map) {
Node *KeyNode = KVN.getKey();
ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode);
Node *Value = KVN.getValue();
if (!Key || !Value) {
if (!Key)
setError(KeyNode, "Map key must be a scalar");
if (!Value)
setError(KeyNode, "Map value must not be empty");
break;
}
StringStorage.clear();
StringRef KeyStr = Key->getValue(StringStorage);
if (!StringStorage.empty()) {
// Copy string to permanent storage
KeyStr = StringStorage.str().copy(StringAllocator);
}
auto ValueHNode = createHNodes(Value);
if (EC)
break;
mapHNode->Mapping[KeyStr] =
std::make_pair(std::move(ValueHNode), KeyNode->getSourceRange());
}
return std::move(mapHNode);
} else if (isa<NullNode>(N)) {
return std::make_unique<EmptyHNode>(N);
} else {
setError(N, "unknown node kind");
return nullptr;
}
}
void Input::setError(const Twine &Message) {
setError(CurrentNode, Message);
}
void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; }
bool Input::canElideEmptySequence() {
return false;
}
//===----------------------------------------------------------------------===//
// Output
//===----------------------------------------------------------------------===//
Output::Output(raw_ostream &yout, void *context, int WrapColumn)
: IO(context), Out(yout), WrapColumn(WrapColumn) {}
Output::~Output() = default;
bool Output::outputting() const {
return true;
}
void Output::beginMapping() {
StateStack.push_back(inMapFirstKey);
PaddingBeforeContainer = Padding;
Padding = "\n";
}
bool Output::mapTag(StringRef Tag, bool Use) {
if (Use) {
// If this tag is being written inside a sequence we should write the start
// of the sequence before writing the tag, otherwise the tag won't be
// attached to the element in the sequence, but rather the sequence itself.
bool SequenceElement = false;
if (StateStack.size() > 1) {
auto &E = StateStack[StateStack.size() - 2];
SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
}
if (SequenceElement && StateStack.back() == inMapFirstKey) {
newLineCheck();
} else {
output(" ");
}
output(Tag);
if (SequenceElement) {
// If we're writing the tag during the first element of a map, the tag
// takes the place of the first element in the sequence.
if (StateStack.back() == inMapFirstKey) {
StateStack.pop_back();
StateStack.push_back(inMapOtherKey);
}
// Tags inside maps in sequences should act as keys in the map from a
// formatting perspective, so we always want a newline in a sequence.
Padding = "\n";
}
}
return Use;
}
void Output::endMapping() {
// If we did not map anything, we should explicitly emit an empty map
if (StateStack.back() == inMapFirstKey) {
Padding = PaddingBeforeContainer;
newLineCheck();
output("{}");
Padding = "\n";
}
StateStack.pop_back();
}
std::vector<StringRef> Output::keys() {
report_fatal_error("invalid call");
}
bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
bool &UseDefault, void *&) {
UseDefault = false;
if (Required || !SameAsDefault || WriteDefaultValues) {
auto State = StateStack.back();
if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
flowKey(Key);
} else {
newLineCheck();
paddedKey(Key);
}
return true;
}
return false;
}
void Output::postflightKey(void *) {
if (StateStack.back() == inMapFirstKey) {
StateStack.pop_back();
StateStack.push_back(inMapOtherKey);
} else if (StateStack.back() == inFlowMapFirstKey) {
StateStack.pop_back();
StateStack.push_back(inFlowMapOtherKey);
}
}
void Output::beginFlowMapping() {
StateStack.push_back(inFlowMapFirstKey);
newLineCheck();
ColumnAtMapFlowStart = Column;
output("{ ");
}
void Output::endFlowMapping() {
StateStack.pop_back();
outputUpToEndOfLine(" }");
}
void Output::beginDocuments() {
outputUpToEndOfLine("---");
}
bool Output::preflightDocument(unsigned index) {
if (index > 0)
outputUpToEndOfLine("\n---");
return true;
}
void Output::postflightDocument() {
}
void Output::endDocuments() {
output("\n...\n");
}
unsigned Output::beginSequence() {
StateStack.push_back(inSeqFirstElement);
PaddingBeforeContainer = Padding;
Padding = "\n";
return 0;
}
void Output::endSequence() {
// If we did not emit anything, we should explicitly emit an empty sequence
if (StateStack.back() == inSeqFirstElement) {
Padding = PaddingBeforeContainer;
newLineCheck(/*EmptySequence=*/true);
output("[]");
Padding = "\n";
}
StateStack.pop_back();
}
bool Output::preflightElement(unsigned, void *&) {
return true;
}
void Output::postflightElement(void *) {
if (StateStack.back() == inSeqFirstElement) {
StateStack.pop_back();
StateStack.push_back(inSeqOtherElement);
} else if (StateStack.back() == inFlowSeqFirstElement) {
StateStack.pop_back();
StateStack.push_back(inFlowSeqOtherElement);
}
}
unsigned Output::beginFlowSequence() {
StateStack.push_back(inFlowSeqFirstElement);
newLineCheck();
ColumnAtFlowStart = Column;
output("[ ");
NeedFlowSequenceComma = false;
return 0;
}
void Output::endFlowSequence() {
StateStack.pop_back();
outputUpToEndOfLine(" ]");
}
bool Output::preflightFlowElement(unsigned, void *&) {
if (NeedFlowSequenceComma)
output(", ");
if (WrapColumn && Column > WrapColumn) {
output("\n");
for (int i = 0; i < ColumnAtFlowStart; ++i)
output(" ");
Column = ColumnAtFlowStart;
output(" ");
}
return true;
}
void Output::postflightFlowElement(void *) {
NeedFlowSequenceComma = true;
}
void Output::beginEnumScalar() {
EnumerationMatchFound = false;
}
bool Output::matchEnumScalar(const char *Str, bool Match) {
if (Match && !EnumerationMatchFound) {
newLineCheck();
outputUpToEndOfLine(Str);
EnumerationMatchFound = true;
}
return false;
}
bool Output::matchEnumFallback() {
if (EnumerationMatchFound)
return false;
EnumerationMatchFound = true;
return true;
}
void Output::endEnumScalar() {
if (!EnumerationMatchFound)
llvm_unreachable("bad runtime enum value");
}
bool Output::beginBitSetScalar(bool &DoClear) {
newLineCheck();
output("[ ");
NeedBitValueComma = false;
DoClear = false;
return true;
}
bool Output::bitSetMatch(const char *Str, bool Matches) {
if (Matches) {
if (NeedBitValueComma)
output(", ");
output(Str);
NeedBitValueComma = true;
}
return false;
}
void Output::endBitSetScalar() {
outputUpToEndOfLine(" ]");
}
void Output::scalarString(StringRef &S, QuotingType MustQuote) {
newLineCheck();
if (S.empty()) {
// Print '' for the empty string because leaving the field empty is not
// allowed.
outputUpToEndOfLine("''");
return;
}
if (MustQuote == QuotingType::None) {
// Only quote if we must.
outputUpToEndOfLine(S);
return;
}
const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
output(Quote); // Starting quote.
// When using double-quoted strings (and only in that case), non-printable characters may be
// present, and will be escaped using a variety of unicode-scalar and special short-form
// escapes. This is handled in yaml::escape.
if (MustQuote == QuotingType::Double) {
output(yaml::escape(S, /* EscapePrintable= */ false));
outputUpToEndOfLine(Quote);
return;
}
unsigned i = 0;
unsigned j = 0;
unsigned End = S.size();
const char *Base = S.data();
// When using single-quoted strings, any single quote ' must be doubled to be escaped.
while (j < End) {
if (S[j] == '\'') { // Escape quotes.
output(StringRef(&Base[i], j - i)); // "flush".
output(StringLiteral("''")); // Print it as ''
i = j + 1;
}
++j;
}
output(StringRef(&Base[i], j - i));
outputUpToEndOfLine(Quote); // Ending quote.
}
void Output::blockScalarString(StringRef &S) {
if (!StateStack.empty())
newLineCheck();
output(" |");
outputNewLine();
unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
for (unsigned I = 0; I < Indent; ++I) {
output(" ");
}
output(*Lines);
outputNewLine();
}
}
void Output::scalarTag(std::string &Tag) {
if (Tag.empty())
return;
newLineCheck();
output(Tag);
output(" ");
}
void Output::setError(const Twine &message) {
}
bool Output::canElideEmptySequence() {
// Normally, with an optional key/value where the value is an empty sequence,
// the whole key/value can be not written. But, that produces wrong yaml
// if the key/value is the only thing in the map and the map is used in
// a sequence. This detects if the this sequence is the first key/value
// in map that itself is embedded in a sequence.
if (StateStack.size() < 2)
return true;
if (StateStack.back() != inMapFirstKey)
return true;
return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
}
void Output::output(StringRef s) {
Column += s.size();
Out << s;
}
void Output::outputUpToEndOfLine(StringRef s) {
output(s);
if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
!inFlowMapAnyKey(StateStack.back())))
Padding = "\n";
}
void Output::outputNewLine() {
Out << "\n";
Column = 0;
}
// if seq at top, indent as if map, then add "- "
// if seq in middle, use "- " if firstKey, else use " "
//
void Output::newLineCheck(bool EmptySequence) {
if (Padding != "\n") {
output(Padding);
Padding = {};
return;
}
outputNewLine();
Padding = {};
if (StateStack.size() == 0 || EmptySequence)
return;
unsigned Indent = StateStack.size() - 1;
bool OutputDash = false;
if (StateStack.back() == inSeqFirstElement ||
StateStack.back() == inSeqOtherElement) {
OutputDash = true;
} else if ((StateStack.size() > 1) &&
((StateStack.back() == inMapFirstKey) ||
inFlowSeqAnyElement(StateStack.back()) ||
(StateStack.back() == inFlowMapFirstKey)) &&
inSeqAnyElement(StateStack[StateStack.size() - 2])) {
--Indent;
OutputDash = true;
}
for (unsigned i = 0; i < Indent; ++i) {
output(" ");
}
if (OutputDash) {
output("- ");
}
}
void Output::paddedKey(StringRef key) {
output(key);
output(":");
const char *spaces = " ";
if (key.size() < strlen(spaces))
Padding = &spaces[key.size()];
else
Padding = " ";
}
void Output::flowKey(StringRef Key) {
if (StateStack.back() == inFlowMapOtherKey)
output(", ");
if (WrapColumn && Column > WrapColumn) {
output("\n");
for (int I = 0; I < ColumnAtMapFlowStart; ++I)
output(" ");
Column = ColumnAtMapFlowStart;
output(" ");
}
output(Key);
output(": ");
}
NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
bool Output::inSeqAnyElement(InState State) {
return State == inSeqFirstElement || State == inSeqOtherElement;
}
bool Output::inFlowSeqAnyElement(InState State) {
return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
}
bool Output::inMapAnyKey(InState State) {
return State == inMapFirstKey || State == inMapOtherKey;
}
bool Output::inFlowMapAnyKey(InState State) {
return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
}
//===----------------------------------------------------------------------===//
// traits for built-in types
//===----------------------------------------------------------------------===//
void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
Out << (Val ? "true" : "false");
}
StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
if (llvm::Optional<bool> Parsed = parseBool(Scalar)) {
Val = *Parsed;
return StringRef();
}
return "invalid boolean";
}
void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
StringRef &Val) {
Val = Scalar;
return StringRef();
}
void ScalarTraits<std::string>::output(const std::string &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
std::string &Val) {
Val = Scalar.str();
return StringRef();
}
void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
raw_ostream &Out) {
// use temp uin32_t because ostream thinks uint8_t is a character
uint32_t Num = Val;
Out << Num;
}
StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid number";
if (n > 0xFF)
return "out of range number";
Val = n;
return StringRef();
}
void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
uint16_t &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid number";
if (n > 0xFFFF)
return "out of range number";
Val = n;
return StringRef();
}
void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
uint32_t &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid number";
if (n > 0xFFFFFFFFUL)
return "out of range number";
Val = n;
return StringRef();
}
void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
uint64_t &Val) {
unsigned long long N;
if (getAsUnsignedInteger(Scalar, 0, N))
return "invalid number";
Val = N;
return StringRef();
}
void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
// use temp in32_t because ostream thinks int8_t is a character
int32_t Num = Val;
Out << Num;
}
StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
long long N;
if (getAsSignedInteger(Scalar, 0, N))
return "invalid number";
if ((N > 127) || (N < -128))
return "out of range number";
Val = N;
return StringRef();
}
void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
long long N;
if (getAsSignedInteger(Scalar, 0, N))
return "invalid number";
if ((N > INT16_MAX) || (N < INT16_MIN))
return "out of range number";
Val = N;
return StringRef();
}
void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
long long N;
if (getAsSignedInteger(Scalar, 0, N))
return "invalid number";
if ((N > INT32_MAX) || (N < INT32_MIN))
return "out of range number";
Val = N;
return StringRef();
}
void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
long long N;
if (getAsSignedInteger(Scalar, 0, N))
return "invalid number";
Val = N;
return StringRef();
}
void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
Out << format("%g", Val);
}
StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
if (to_float(Scalar, Val))
return StringRef();
return "invalid floating point number";
}
void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
Out << format("%g", Val);
}
StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
if (to_float(Scalar, Val))
return StringRef();
return "invalid floating point number";
}
void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
Out << format("0x%" PRIX8, (uint8_t)Val);
}
StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid hex8 number";
if (n > 0xFF)
return "out of range hex8 number";
Val = n;
return StringRef();
}
void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
Out << format("0x%" PRIX16, (uint16_t)Val);
}
StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid hex16 number";
if (n > 0xFFFF)
return "out of range hex16 number";
Val = n;
return StringRef();
}
void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
Out << format("0x%" PRIX32, (uint32_t)Val);
}
StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid hex32 number";
if (n > 0xFFFFFFFFUL)
return "out of range hex32 number";
Val = n;
return StringRef();
}
void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
Out << format("0x%" PRIX64, (uint64_t)Val);
}
StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
unsigned long long Num;
if (getAsUnsignedInteger(Scalar, 0, Num))
return "invalid hex64 number";
Val = Num;
return StringRef();
}
void ScalarTraits<VersionTuple>::output(const VersionTuple &Val, void *,
llvm::raw_ostream &Out) {
Out << Val.getAsString();
}
StringRef ScalarTraits<VersionTuple>::input(StringRef Scalar, void *,
VersionTuple &Val) {
if (Val.tryParse(Scalar))
return "invalid version format";
return StringRef();
}