forked from OSchip/llvm-project
1123 lines
30 KiB
C++
1123 lines
30 KiB
C++
//===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/YAMLTraits.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Errc.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/LineIterator.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Unicode.h"
|
|
#include "llvm/Support/YAMLParser.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace yaml;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IO
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IO::IO(void *Context) : Ctxt(Context) {}
|
|
|
|
IO::~IO() = default;
|
|
|
|
void *IO::getContext() const {
|
|
return Ctxt;
|
|
}
|
|
|
|
void IO::setContext(void *Context) {
|
|
Ctxt = Context;
|
|
}
|
|
|
|
void IO::setAllowUnknownKeys(bool Allow) {
|
|
llvm_unreachable("Only supported for Input");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Input
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Input::Input(StringRef InputContent, void *Ctxt,
|
|
SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
|
|
: IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
|
|
if (DiagHandler)
|
|
SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
|
|
DocIterator = Strm->begin();
|
|
}
|
|
|
|
Input::Input(MemoryBufferRef Input, void *Ctxt,
|
|
SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
|
|
: IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
|
|
if (DiagHandler)
|
|
SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
|
|
DocIterator = Strm->begin();
|
|
}
|
|
|
|
Input::~Input() = default;
|
|
|
|
std::error_code Input::error() { return EC; }
|
|
|
|
// Pin the vtables to this file.
|
|
void Input::HNode::anchor() {}
|
|
void Input::EmptyHNode::anchor() {}
|
|
void Input::ScalarHNode::anchor() {}
|
|
void Input::MapHNode::anchor() {}
|
|
void Input::SequenceHNode::anchor() {}
|
|
|
|
bool Input::outputting() const {
|
|
return false;
|
|
}
|
|
|
|
bool Input::setCurrentDocument() {
|
|
if (DocIterator != Strm->end()) {
|
|
Node *N = DocIterator->getRoot();
|
|
if (!N) {
|
|
EC = make_error_code(errc::invalid_argument);
|
|
return false;
|
|
}
|
|
|
|
if (isa<NullNode>(N)) {
|
|
// Empty files are allowed and ignored
|
|
++DocIterator;
|
|
return setCurrentDocument();
|
|
}
|
|
TopNode = createHNodes(N);
|
|
CurrentNode = TopNode.get();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Input::nextDocument() {
|
|
return ++DocIterator != Strm->end();
|
|
}
|
|
|
|
const Node *Input::getCurrentNode() const {
|
|
return CurrentNode ? CurrentNode->_node : nullptr;
|
|
}
|
|
|
|
bool Input::mapTag(StringRef Tag, bool Default) {
|
|
// CurrentNode can be null if setCurrentDocument() was unable to
|
|
// parse the document because it was invalid or empty.
|
|
if (!CurrentNode)
|
|
return false;
|
|
|
|
std::string foundTag = CurrentNode->_node->getVerbatimTag();
|
|
if (foundTag.empty()) {
|
|
// If no tag found and 'Tag' is the default, say it was found.
|
|
return Default;
|
|
}
|
|
// Return true iff found tag matches supplied tag.
|
|
return Tag.equals(foundTag);
|
|
}
|
|
|
|
void Input::beginMapping() {
|
|
if (EC)
|
|
return;
|
|
// CurrentNode can be null if the document is empty.
|
|
MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
|
|
if (MN) {
|
|
MN->ValidKeys.clear();
|
|
}
|
|
}
|
|
|
|
std::vector<StringRef> Input::keys() {
|
|
MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
|
|
std::vector<StringRef> Ret;
|
|
if (!MN) {
|
|
setError(CurrentNode, "not a mapping");
|
|
return Ret;
|
|
}
|
|
for (auto &P : MN->Mapping)
|
|
Ret.push_back(P.first());
|
|
return Ret;
|
|
}
|
|
|
|
bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
|
|
void *&SaveInfo) {
|
|
UseDefault = false;
|
|
if (EC)
|
|
return false;
|
|
|
|
// CurrentNode is null for empty documents, which is an error in case required
|
|
// nodes are present.
|
|
if (!CurrentNode) {
|
|
if (Required)
|
|
EC = make_error_code(errc::invalid_argument);
|
|
return false;
|
|
}
|
|
|
|
MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
|
|
if (!MN) {
|
|
if (Required || !isa<EmptyHNode>(CurrentNode))
|
|
setError(CurrentNode, "not a mapping");
|
|
else
|
|
UseDefault = true;
|
|
return false;
|
|
}
|
|
MN->ValidKeys.push_back(Key);
|
|
HNode *Value = MN->Mapping[Key].first.get();
|
|
if (!Value) {
|
|
if (Required)
|
|
setError(CurrentNode, Twine("missing required key '") + Key + "'");
|
|
else
|
|
UseDefault = true;
|
|
return false;
|
|
}
|
|
SaveInfo = CurrentNode;
|
|
CurrentNode = Value;
|
|
return true;
|
|
}
|
|
|
|
void Input::postflightKey(void *saveInfo) {
|
|
CurrentNode = reinterpret_cast<HNode *>(saveInfo);
|
|
}
|
|
|
|
void Input::endMapping() {
|
|
if (EC)
|
|
return;
|
|
// CurrentNode can be null if the document is empty.
|
|
MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
|
|
if (!MN)
|
|
return;
|
|
for (const auto &NN : MN->Mapping) {
|
|
if (!is_contained(MN->ValidKeys, NN.first())) {
|
|
const SMRange &ReportLoc = NN.second.second;
|
|
if (!AllowUnknownKeys) {
|
|
setError(ReportLoc, Twine("unknown key '") + NN.first() + "'");
|
|
break;
|
|
} else
|
|
reportWarning(ReportLoc, Twine("unknown key '") + NN.first() + "'");
|
|
}
|
|
}
|
|
}
|
|
|
|
void Input::beginFlowMapping() { beginMapping(); }
|
|
|
|
void Input::endFlowMapping() { endMapping(); }
|
|
|
|
unsigned Input::beginSequence() {
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
|
|
return SQ->Entries.size();
|
|
if (isa<EmptyHNode>(CurrentNode))
|
|
return 0;
|
|
// Treat case where there's a scalar "null" value as an empty sequence.
|
|
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
|
|
if (isNull(SN->value()))
|
|
return 0;
|
|
}
|
|
// Any other type of HNode is an error.
|
|
setError(CurrentNode, "not a sequence");
|
|
return 0;
|
|
}
|
|
|
|
void Input::endSequence() {
|
|
}
|
|
|
|
bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
|
|
if (EC)
|
|
return false;
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
|
|
SaveInfo = CurrentNode;
|
|
CurrentNode = SQ->Entries[Index].get();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Input::postflightElement(void *SaveInfo) {
|
|
CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
|
|
}
|
|
|
|
unsigned Input::beginFlowSequence() { return beginSequence(); }
|
|
|
|
bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
|
|
if (EC)
|
|
return false;
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
|
|
SaveInfo = CurrentNode;
|
|
CurrentNode = SQ->Entries[index].get();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Input::postflightFlowElement(void *SaveInfo) {
|
|
CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
|
|
}
|
|
|
|
void Input::endFlowSequence() {
|
|
}
|
|
|
|
void Input::beginEnumScalar() {
|
|
ScalarMatchFound = false;
|
|
}
|
|
|
|
bool Input::matchEnumScalar(const char *Str, bool) {
|
|
if (ScalarMatchFound)
|
|
return false;
|
|
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
|
|
if (SN->value().equals(Str)) {
|
|
ScalarMatchFound = true;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Input::matchEnumFallback() {
|
|
if (ScalarMatchFound)
|
|
return false;
|
|
ScalarMatchFound = true;
|
|
return true;
|
|
}
|
|
|
|
void Input::endEnumScalar() {
|
|
if (!ScalarMatchFound) {
|
|
setError(CurrentNode, "unknown enumerated scalar");
|
|
}
|
|
}
|
|
|
|
bool Input::beginBitSetScalar(bool &DoClear) {
|
|
BitValuesUsed.clear();
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
|
|
BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
|
|
} else {
|
|
setError(CurrentNode, "expected sequence of bit values");
|
|
}
|
|
DoClear = true;
|
|
return true;
|
|
}
|
|
|
|
bool Input::bitSetMatch(const char *Str, bool) {
|
|
if (EC)
|
|
return false;
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
|
|
unsigned Index = 0;
|
|
for (auto &N : SQ->Entries) {
|
|
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
|
|
if (SN->value().equals(Str)) {
|
|
BitValuesUsed[Index] = true;
|
|
return true;
|
|
}
|
|
} else {
|
|
setError(CurrentNode, "unexpected scalar in sequence of bit values");
|
|
}
|
|
++Index;
|
|
}
|
|
} else {
|
|
setError(CurrentNode, "expected sequence of bit values");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Input::endBitSetScalar() {
|
|
if (EC)
|
|
return;
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
|
|
assert(BitValuesUsed.size() == SQ->Entries.size());
|
|
for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
|
|
if (!BitValuesUsed[i]) {
|
|
setError(SQ->Entries[i].get(), "unknown bit value");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Input::scalarString(StringRef &S, QuotingType) {
|
|
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
|
|
S = SN->value();
|
|
} else {
|
|
setError(CurrentNode, "unexpected scalar");
|
|
}
|
|
}
|
|
|
|
void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
|
|
|
|
void Input::scalarTag(std::string &Tag) {
|
|
Tag = CurrentNode->_node->getVerbatimTag();
|
|
}
|
|
|
|
void Input::setError(HNode *hnode, const Twine &message) {
|
|
assert(hnode && "HNode must not be NULL");
|
|
setError(hnode->_node, message);
|
|
}
|
|
|
|
NodeKind Input::getNodeKind() {
|
|
if (isa<ScalarHNode>(CurrentNode))
|
|
return NodeKind::Scalar;
|
|
else if (isa<MapHNode>(CurrentNode))
|
|
return NodeKind::Map;
|
|
else if (isa<SequenceHNode>(CurrentNode))
|
|
return NodeKind::Sequence;
|
|
llvm_unreachable("Unsupported node kind");
|
|
}
|
|
|
|
void Input::setError(Node *node, const Twine &message) {
|
|
Strm->printError(node, message);
|
|
EC = make_error_code(errc::invalid_argument);
|
|
}
|
|
|
|
void Input::setError(const SMRange &range, const Twine &message) {
|
|
Strm->printError(range, message);
|
|
EC = make_error_code(errc::invalid_argument);
|
|
}
|
|
|
|
void Input::reportWarning(HNode *hnode, const Twine &message) {
|
|
assert(hnode && "HNode must not be NULL");
|
|
Strm->printError(hnode->_node, message, SourceMgr::DK_Warning);
|
|
}
|
|
|
|
void Input::reportWarning(Node *node, const Twine &message) {
|
|
Strm->printError(node, message, SourceMgr::DK_Warning);
|
|
}
|
|
|
|
void Input::reportWarning(const SMRange &range, const Twine &message) {
|
|
Strm->printError(range, message, SourceMgr::DK_Warning);
|
|
}
|
|
|
|
std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
|
|
SmallString<128> StringStorage;
|
|
if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
|
|
StringRef KeyStr = SN->getValue(StringStorage);
|
|
if (!StringStorage.empty()) {
|
|
// Copy string to permanent storage
|
|
KeyStr = StringStorage.str().copy(StringAllocator);
|
|
}
|
|
return std::make_unique<ScalarHNode>(N, KeyStr);
|
|
} else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
|
|
StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
|
|
return std::make_unique<ScalarHNode>(N, ValueCopy);
|
|
} else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
|
|
auto SQHNode = std::make_unique<SequenceHNode>(N);
|
|
for (Node &SN : *SQ) {
|
|
auto Entry = createHNodes(&SN);
|
|
if (EC)
|
|
break;
|
|
SQHNode->Entries.push_back(std::move(Entry));
|
|
}
|
|
return std::move(SQHNode);
|
|
} else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
|
|
auto mapHNode = std::make_unique<MapHNode>(N);
|
|
for (KeyValueNode &KVN : *Map) {
|
|
Node *KeyNode = KVN.getKey();
|
|
ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode);
|
|
Node *Value = KVN.getValue();
|
|
if (!Key || !Value) {
|
|
if (!Key)
|
|
setError(KeyNode, "Map key must be a scalar");
|
|
if (!Value)
|
|
setError(KeyNode, "Map value must not be empty");
|
|
break;
|
|
}
|
|
StringStorage.clear();
|
|
StringRef KeyStr = Key->getValue(StringStorage);
|
|
if (!StringStorage.empty()) {
|
|
// Copy string to permanent storage
|
|
KeyStr = StringStorage.str().copy(StringAllocator);
|
|
}
|
|
auto ValueHNode = createHNodes(Value);
|
|
if (EC)
|
|
break;
|
|
mapHNode->Mapping[KeyStr] =
|
|
std::make_pair(std::move(ValueHNode), KeyNode->getSourceRange());
|
|
}
|
|
return std::move(mapHNode);
|
|
} else if (isa<NullNode>(N)) {
|
|
return std::make_unique<EmptyHNode>(N);
|
|
} else {
|
|
setError(N, "unknown node kind");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
void Input::setError(const Twine &Message) {
|
|
setError(CurrentNode, Message);
|
|
}
|
|
|
|
void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; }
|
|
|
|
bool Input::canElideEmptySequence() {
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Output
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Output::Output(raw_ostream &yout, void *context, int WrapColumn)
|
|
: IO(context), Out(yout), WrapColumn(WrapColumn) {}
|
|
|
|
Output::~Output() = default;
|
|
|
|
bool Output::outputting() const {
|
|
return true;
|
|
}
|
|
|
|
void Output::beginMapping() {
|
|
StateStack.push_back(inMapFirstKey);
|
|
PaddingBeforeContainer = Padding;
|
|
Padding = "\n";
|
|
}
|
|
|
|
bool Output::mapTag(StringRef Tag, bool Use) {
|
|
if (Use) {
|
|
// If this tag is being written inside a sequence we should write the start
|
|
// of the sequence before writing the tag, otherwise the tag won't be
|
|
// attached to the element in the sequence, but rather the sequence itself.
|
|
bool SequenceElement = false;
|
|
if (StateStack.size() > 1) {
|
|
auto &E = StateStack[StateStack.size() - 2];
|
|
SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
|
|
}
|
|
if (SequenceElement && StateStack.back() == inMapFirstKey) {
|
|
newLineCheck();
|
|
} else {
|
|
output(" ");
|
|
}
|
|
output(Tag);
|
|
if (SequenceElement) {
|
|
// If we're writing the tag during the first element of a map, the tag
|
|
// takes the place of the first element in the sequence.
|
|
if (StateStack.back() == inMapFirstKey) {
|
|
StateStack.pop_back();
|
|
StateStack.push_back(inMapOtherKey);
|
|
}
|
|
// Tags inside maps in sequences should act as keys in the map from a
|
|
// formatting perspective, so we always want a newline in a sequence.
|
|
Padding = "\n";
|
|
}
|
|
}
|
|
return Use;
|
|
}
|
|
|
|
void Output::endMapping() {
|
|
// If we did not map anything, we should explicitly emit an empty map
|
|
if (StateStack.back() == inMapFirstKey) {
|
|
Padding = PaddingBeforeContainer;
|
|
newLineCheck();
|
|
output("{}");
|
|
Padding = "\n";
|
|
}
|
|
StateStack.pop_back();
|
|
}
|
|
|
|
std::vector<StringRef> Output::keys() {
|
|
report_fatal_error("invalid call");
|
|
}
|
|
|
|
bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
|
|
bool &UseDefault, void *&) {
|
|
UseDefault = false;
|
|
if (Required || !SameAsDefault || WriteDefaultValues) {
|
|
auto State = StateStack.back();
|
|
if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
|
|
flowKey(Key);
|
|
} else {
|
|
newLineCheck();
|
|
paddedKey(Key);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Output::postflightKey(void *) {
|
|
if (StateStack.back() == inMapFirstKey) {
|
|
StateStack.pop_back();
|
|
StateStack.push_back(inMapOtherKey);
|
|
} else if (StateStack.back() == inFlowMapFirstKey) {
|
|
StateStack.pop_back();
|
|
StateStack.push_back(inFlowMapOtherKey);
|
|
}
|
|
}
|
|
|
|
void Output::beginFlowMapping() {
|
|
StateStack.push_back(inFlowMapFirstKey);
|
|
newLineCheck();
|
|
ColumnAtMapFlowStart = Column;
|
|
output("{ ");
|
|
}
|
|
|
|
void Output::endFlowMapping() {
|
|
StateStack.pop_back();
|
|
outputUpToEndOfLine(" }");
|
|
}
|
|
|
|
void Output::beginDocuments() {
|
|
outputUpToEndOfLine("---");
|
|
}
|
|
|
|
bool Output::preflightDocument(unsigned index) {
|
|
if (index > 0)
|
|
outputUpToEndOfLine("\n---");
|
|
return true;
|
|
}
|
|
|
|
void Output::postflightDocument() {
|
|
}
|
|
|
|
void Output::endDocuments() {
|
|
output("\n...\n");
|
|
}
|
|
|
|
unsigned Output::beginSequence() {
|
|
StateStack.push_back(inSeqFirstElement);
|
|
PaddingBeforeContainer = Padding;
|
|
Padding = "\n";
|
|
return 0;
|
|
}
|
|
|
|
void Output::endSequence() {
|
|
// If we did not emit anything, we should explicitly emit an empty sequence
|
|
if (StateStack.back() == inSeqFirstElement) {
|
|
Padding = PaddingBeforeContainer;
|
|
newLineCheck(/*EmptySequence=*/true);
|
|
output("[]");
|
|
Padding = "\n";
|
|
}
|
|
StateStack.pop_back();
|
|
}
|
|
|
|
bool Output::preflightElement(unsigned, void *&) {
|
|
return true;
|
|
}
|
|
|
|
void Output::postflightElement(void *) {
|
|
if (StateStack.back() == inSeqFirstElement) {
|
|
StateStack.pop_back();
|
|
StateStack.push_back(inSeqOtherElement);
|
|
} else if (StateStack.back() == inFlowSeqFirstElement) {
|
|
StateStack.pop_back();
|
|
StateStack.push_back(inFlowSeqOtherElement);
|
|
}
|
|
}
|
|
|
|
unsigned Output::beginFlowSequence() {
|
|
StateStack.push_back(inFlowSeqFirstElement);
|
|
newLineCheck();
|
|
ColumnAtFlowStart = Column;
|
|
output("[ ");
|
|
NeedFlowSequenceComma = false;
|
|
return 0;
|
|
}
|
|
|
|
void Output::endFlowSequence() {
|
|
StateStack.pop_back();
|
|
outputUpToEndOfLine(" ]");
|
|
}
|
|
|
|
bool Output::preflightFlowElement(unsigned, void *&) {
|
|
if (NeedFlowSequenceComma)
|
|
output(", ");
|
|
if (WrapColumn && Column > WrapColumn) {
|
|
output("\n");
|
|
for (int i = 0; i < ColumnAtFlowStart; ++i)
|
|
output(" ");
|
|
Column = ColumnAtFlowStart;
|
|
output(" ");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Output::postflightFlowElement(void *) {
|
|
NeedFlowSequenceComma = true;
|
|
}
|
|
|
|
void Output::beginEnumScalar() {
|
|
EnumerationMatchFound = false;
|
|
}
|
|
|
|
bool Output::matchEnumScalar(const char *Str, bool Match) {
|
|
if (Match && !EnumerationMatchFound) {
|
|
newLineCheck();
|
|
outputUpToEndOfLine(Str);
|
|
EnumerationMatchFound = true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Output::matchEnumFallback() {
|
|
if (EnumerationMatchFound)
|
|
return false;
|
|
EnumerationMatchFound = true;
|
|
return true;
|
|
}
|
|
|
|
void Output::endEnumScalar() {
|
|
if (!EnumerationMatchFound)
|
|
llvm_unreachable("bad runtime enum value");
|
|
}
|
|
|
|
bool Output::beginBitSetScalar(bool &DoClear) {
|
|
newLineCheck();
|
|
output("[ ");
|
|
NeedBitValueComma = false;
|
|
DoClear = false;
|
|
return true;
|
|
}
|
|
|
|
bool Output::bitSetMatch(const char *Str, bool Matches) {
|
|
if (Matches) {
|
|
if (NeedBitValueComma)
|
|
output(", ");
|
|
output(Str);
|
|
NeedBitValueComma = true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Output::endBitSetScalar() {
|
|
outputUpToEndOfLine(" ]");
|
|
}
|
|
|
|
void Output::scalarString(StringRef &S, QuotingType MustQuote) {
|
|
newLineCheck();
|
|
if (S.empty()) {
|
|
// Print '' for the empty string because leaving the field empty is not
|
|
// allowed.
|
|
outputUpToEndOfLine("''");
|
|
return;
|
|
}
|
|
if (MustQuote == QuotingType::None) {
|
|
// Only quote if we must.
|
|
outputUpToEndOfLine(S);
|
|
return;
|
|
}
|
|
|
|
const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
|
|
output(Quote); // Starting quote.
|
|
|
|
// When using double-quoted strings (and only in that case), non-printable characters may be
|
|
// present, and will be escaped using a variety of unicode-scalar and special short-form
|
|
// escapes. This is handled in yaml::escape.
|
|
if (MustQuote == QuotingType::Double) {
|
|
output(yaml::escape(S, /* EscapePrintable= */ false));
|
|
outputUpToEndOfLine(Quote);
|
|
return;
|
|
}
|
|
|
|
unsigned i = 0;
|
|
unsigned j = 0;
|
|
unsigned End = S.size();
|
|
const char *Base = S.data();
|
|
|
|
// When using single-quoted strings, any single quote ' must be doubled to be escaped.
|
|
while (j < End) {
|
|
if (S[j] == '\'') { // Escape quotes.
|
|
output(StringRef(&Base[i], j - i)); // "flush".
|
|
output(StringLiteral("''")); // Print it as ''
|
|
i = j + 1;
|
|
}
|
|
++j;
|
|
}
|
|
output(StringRef(&Base[i], j - i));
|
|
outputUpToEndOfLine(Quote); // Ending quote.
|
|
}
|
|
|
|
void Output::blockScalarString(StringRef &S) {
|
|
if (!StateStack.empty())
|
|
newLineCheck();
|
|
output(" |");
|
|
outputNewLine();
|
|
|
|
unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
|
|
|
|
auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
|
|
for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
|
|
for (unsigned I = 0; I < Indent; ++I) {
|
|
output(" ");
|
|
}
|
|
output(*Lines);
|
|
outputNewLine();
|
|
}
|
|
}
|
|
|
|
void Output::scalarTag(std::string &Tag) {
|
|
if (Tag.empty())
|
|
return;
|
|
newLineCheck();
|
|
output(Tag);
|
|
output(" ");
|
|
}
|
|
|
|
void Output::setError(const Twine &message) {
|
|
}
|
|
|
|
bool Output::canElideEmptySequence() {
|
|
// Normally, with an optional key/value where the value is an empty sequence,
|
|
// the whole key/value can be not written. But, that produces wrong yaml
|
|
// if the key/value is the only thing in the map and the map is used in
|
|
// a sequence. This detects if the this sequence is the first key/value
|
|
// in map that itself is embedded in a sequence.
|
|
if (StateStack.size() < 2)
|
|
return true;
|
|
if (StateStack.back() != inMapFirstKey)
|
|
return true;
|
|
return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
|
|
}
|
|
|
|
void Output::output(StringRef s) {
|
|
Column += s.size();
|
|
Out << s;
|
|
}
|
|
|
|
void Output::outputUpToEndOfLine(StringRef s) {
|
|
output(s);
|
|
if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
|
|
!inFlowMapAnyKey(StateStack.back())))
|
|
Padding = "\n";
|
|
}
|
|
|
|
void Output::outputNewLine() {
|
|
Out << "\n";
|
|
Column = 0;
|
|
}
|
|
|
|
// if seq at top, indent as if map, then add "- "
|
|
// if seq in middle, use "- " if firstKey, else use " "
|
|
//
|
|
|
|
void Output::newLineCheck(bool EmptySequence) {
|
|
if (Padding != "\n") {
|
|
output(Padding);
|
|
Padding = {};
|
|
return;
|
|
}
|
|
outputNewLine();
|
|
Padding = {};
|
|
|
|
if (StateStack.size() == 0 || EmptySequence)
|
|
return;
|
|
|
|
unsigned Indent = StateStack.size() - 1;
|
|
bool OutputDash = false;
|
|
|
|
if (StateStack.back() == inSeqFirstElement ||
|
|
StateStack.back() == inSeqOtherElement) {
|
|
OutputDash = true;
|
|
} else if ((StateStack.size() > 1) &&
|
|
((StateStack.back() == inMapFirstKey) ||
|
|
inFlowSeqAnyElement(StateStack.back()) ||
|
|
(StateStack.back() == inFlowMapFirstKey)) &&
|
|
inSeqAnyElement(StateStack[StateStack.size() - 2])) {
|
|
--Indent;
|
|
OutputDash = true;
|
|
}
|
|
|
|
for (unsigned i = 0; i < Indent; ++i) {
|
|
output(" ");
|
|
}
|
|
if (OutputDash) {
|
|
output("- ");
|
|
}
|
|
}
|
|
|
|
void Output::paddedKey(StringRef key) {
|
|
output(key);
|
|
output(":");
|
|
const char *spaces = " ";
|
|
if (key.size() < strlen(spaces))
|
|
Padding = &spaces[key.size()];
|
|
else
|
|
Padding = " ";
|
|
}
|
|
|
|
void Output::flowKey(StringRef Key) {
|
|
if (StateStack.back() == inFlowMapOtherKey)
|
|
output(", ");
|
|
if (WrapColumn && Column > WrapColumn) {
|
|
output("\n");
|
|
for (int I = 0; I < ColumnAtMapFlowStart; ++I)
|
|
output(" ");
|
|
Column = ColumnAtMapFlowStart;
|
|
output(" ");
|
|
}
|
|
output(Key);
|
|
output(": ");
|
|
}
|
|
|
|
NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
|
|
|
|
bool Output::inSeqAnyElement(InState State) {
|
|
return State == inSeqFirstElement || State == inSeqOtherElement;
|
|
}
|
|
|
|
bool Output::inFlowSeqAnyElement(InState State) {
|
|
return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
|
|
}
|
|
|
|
bool Output::inMapAnyKey(InState State) {
|
|
return State == inMapFirstKey || State == inMapOtherKey;
|
|
}
|
|
|
|
bool Output::inFlowMapAnyKey(InState State) {
|
|
return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// traits for built-in types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
|
|
Out << (Val ? "true" : "false");
|
|
}
|
|
|
|
StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
|
|
if (llvm::Optional<bool> Parsed = parseBool(Scalar)) {
|
|
Val = *Parsed;
|
|
return StringRef();
|
|
}
|
|
return "invalid boolean";
|
|
}
|
|
|
|
void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
|
|
StringRef &Val) {
|
|
Val = Scalar;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<std::string>::output(const std::string &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
|
|
std::string &Val) {
|
|
Val = Scalar.str();
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
// use temp uin32_t because ostream thinks uint8_t is a character
|
|
uint32_t Num = Val;
|
|
Out << Num;
|
|
}
|
|
|
|
StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid number";
|
|
if (n > 0xFF)
|
|
return "out of range number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
|
|
uint16_t &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid number";
|
|
if (n > 0xFFFF)
|
|
return "out of range number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
|
|
uint32_t &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid number";
|
|
if (n > 0xFFFFFFFFUL)
|
|
return "out of range number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
|
|
uint64_t &Val) {
|
|
unsigned long long N;
|
|
if (getAsUnsignedInteger(Scalar, 0, N))
|
|
return "invalid number";
|
|
Val = N;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
|
|
// use temp in32_t because ostream thinks int8_t is a character
|
|
int32_t Num = Val;
|
|
Out << Num;
|
|
}
|
|
|
|
StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
|
|
long long N;
|
|
if (getAsSignedInteger(Scalar, 0, N))
|
|
return "invalid number";
|
|
if ((N > 127) || (N < -128))
|
|
return "out of range number";
|
|
Val = N;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
|
|
long long N;
|
|
if (getAsSignedInteger(Scalar, 0, N))
|
|
return "invalid number";
|
|
if ((N > INT16_MAX) || (N < INT16_MIN))
|
|
return "out of range number";
|
|
Val = N;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
|
|
long long N;
|
|
if (getAsSignedInteger(Scalar, 0, N))
|
|
return "invalid number";
|
|
if ((N > INT32_MAX) || (N < INT32_MIN))
|
|
return "out of range number";
|
|
Val = N;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
|
|
long long N;
|
|
if (getAsSignedInteger(Scalar, 0, N))
|
|
return "invalid number";
|
|
Val = N;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
|
|
Out << format("%g", Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
|
|
if (to_float(Scalar, Val))
|
|
return StringRef();
|
|
return "invalid floating point number";
|
|
}
|
|
|
|
void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
|
|
Out << format("%g", Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
|
|
if (to_float(Scalar, Val))
|
|
return StringRef();
|
|
return "invalid floating point number";
|
|
}
|
|
|
|
void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
|
|
Out << format("0x%" PRIX8, (uint8_t)Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid hex8 number";
|
|
if (n > 0xFF)
|
|
return "out of range hex8 number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
|
|
Out << format("0x%" PRIX16, (uint16_t)Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid hex16 number";
|
|
if (n > 0xFFFF)
|
|
return "out of range hex16 number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
|
|
Out << format("0x%" PRIX32, (uint32_t)Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid hex32 number";
|
|
if (n > 0xFFFFFFFFUL)
|
|
return "out of range hex32 number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
|
|
Out << format("0x%" PRIX64, (uint64_t)Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
|
|
unsigned long long Num;
|
|
if (getAsUnsignedInteger(Scalar, 0, Num))
|
|
return "invalid hex64 number";
|
|
Val = Num;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<VersionTuple>::output(const VersionTuple &Val, void *,
|
|
llvm::raw_ostream &Out) {
|
|
Out << Val.getAsString();
|
|
}
|
|
|
|
StringRef ScalarTraits<VersionTuple>::input(StringRef Scalar, void *,
|
|
VersionTuple &Val) {
|
|
if (Val.tryParse(Scalar))
|
|
return "invalid version format";
|
|
return StringRef();
|
|
}
|