llvm-project/llvm/lib/IR/LLVMContextImpl.cpp

247 lines
7.9 KiB
C++

//===- LLVMContextImpl.cpp - Implement LLVMContextImpl --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the opaque LLVMContextImpl.
//
//===----------------------------------------------------------------------===//
#include "LLVMContextImpl.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OptBisect.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/ManagedStatic.h"
#include <cassert>
#include <utility>
using namespace llvm;
LLVMContextImpl::LLVMContextImpl(LLVMContext &C)
: DiagHandler(std::make_unique<DiagnosticHandler>()),
VoidTy(C, Type::VoidTyID),
LabelTy(C, Type::LabelTyID),
HalfTy(C, Type::HalfTyID),
BFloatTy(C, Type::BFloatTyID),
FloatTy(C, Type::FloatTyID),
DoubleTy(C, Type::DoubleTyID),
MetadataTy(C, Type::MetadataTyID),
TokenTy(C, Type::TokenTyID),
X86_FP80Ty(C, Type::X86_FP80TyID),
FP128Ty(C, Type::FP128TyID),
PPC_FP128Ty(C, Type::PPC_FP128TyID),
X86_MMXTy(C, Type::X86_MMXTyID),
Int1Ty(C, 1),
Int8Ty(C, 8),
Int16Ty(C, 16),
Int32Ty(C, 32),
Int64Ty(C, 64),
Int128Ty(C, 128) {}
LLVMContextImpl::~LLVMContextImpl() {
// NOTE: We need to delete the contents of OwnedModules, but Module's dtor
// will call LLVMContextImpl::removeModule, thus invalidating iterators into
// the container. Avoid iterators during this operation:
while (!OwnedModules.empty())
delete *OwnedModules.begin();
#ifndef NDEBUG
// Check for metadata references from leaked Instructions.
for (auto &Pair : InstructionMetadata)
Pair.first->dump();
assert(InstructionMetadata.empty() &&
"Instructions with metadata have been leaked");
#endif
// Drop references for MDNodes. Do this before Values get deleted to avoid
// unnecessary RAUW when nodes are still unresolved.
for (auto *I : DistinctMDNodes)
I->dropAllReferences();
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
for (auto *I : CLASS##s) \
I->dropAllReferences();
#include "llvm/IR/Metadata.def"
// Also drop references that come from the Value bridges.
for (auto &Pair : ValuesAsMetadata)
Pair.second->dropUsers();
for (auto &Pair : MetadataAsValues)
Pair.second->dropUse();
// Destroy MDNodes.
for (MDNode *I : DistinctMDNodes)
I->deleteAsSubclass();
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
for (CLASS * I : CLASS##s) \
delete I;
#include "llvm/IR/Metadata.def"
// Free the constants.
for (auto *I : ExprConstants)
I->dropAllReferences();
for (auto *I : ArrayConstants)
I->dropAllReferences();
for (auto *I : StructConstants)
I->dropAllReferences();
for (auto *I : VectorConstants)
I->dropAllReferences();
ExprConstants.freeConstants();
ArrayConstants.freeConstants();
StructConstants.freeConstants();
VectorConstants.freeConstants();
InlineAsms.freeConstants();
CAZConstants.clear();
CPNConstants.clear();
UVConstants.clear();
IntConstants.clear();
FPConstants.clear();
for (auto &CDSConstant : CDSConstants)
delete CDSConstant.second;
CDSConstants.clear();
// Destroy attribute node lists.
for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(),
E = AttrsSetNodes.end(); I != E; ) {
FoldingSetIterator<AttributeSetNode> Elem = I++;
delete &*Elem;
}
// Destroy MetadataAsValues.
{
SmallVector<MetadataAsValue *, 8> MDVs;
MDVs.reserve(MetadataAsValues.size());
for (auto &Pair : MetadataAsValues)
MDVs.push_back(Pair.second);
MetadataAsValues.clear();
for (auto *V : MDVs)
delete V;
}
// Destroy ValuesAsMetadata.
for (auto &Pair : ValuesAsMetadata)
delete Pair.second;
}
void LLVMContextImpl::dropTriviallyDeadConstantArrays() {
SmallSetVector<ConstantArray *, 4> WorkList;
// When ArrayConstants are of substantial size and only a few in them are
// dead, starting WorkList with all elements of ArrayConstants can be
// wasteful. Instead, starting WorkList with only elements that have empty
// uses.
for (ConstantArray *C : ArrayConstants)
if (C->use_empty())
WorkList.insert(C);
while (!WorkList.empty()) {
ConstantArray *C = WorkList.pop_back_val();
if (C->use_empty()) {
for (const Use &Op : C->operands()) {
if (auto *COp = dyn_cast<ConstantArray>(Op))
WorkList.insert(COp);
}
C->destroyConstant();
}
}
}
void Module::dropTriviallyDeadConstantArrays() {
Context.pImpl->dropTriviallyDeadConstantArrays();
}
namespace llvm {
/// Make MDOperand transparent for hashing.
///
/// This overload of an implementation detail of the hashing library makes
/// MDOperand hash to the same value as a \a Metadata pointer.
///
/// Note that overloading \a hash_value() as follows:
///
/// \code
/// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); }
/// \endcode
///
/// does not cause MDOperand to be transparent. In particular, a bare pointer
/// doesn't get hashed before it's combined, whereas \a MDOperand would.
static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); }
} // end namespace llvm
unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) {
unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end());
#ifndef NDEBUG
{
SmallVector<Metadata *, 8> MDs(N->op_begin() + Offset, N->op_end());
unsigned RawHash = calculateHash(MDs);
assert(Hash == RawHash &&
"Expected hash of MDOperand to equal hash of Metadata*");
}
#endif
return Hash;
}
unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) {
return hash_combine_range(Ops.begin(), Ops.end());
}
StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) {
uint32_t NewIdx = BundleTagCache.size();
return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first);
}
void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const {
Tags.resize(BundleTagCache.size());
for (const auto &T : BundleTagCache)
Tags[T.second] = T.first();
}
uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const {
auto I = BundleTagCache.find(Tag);
assert(I != BundleTagCache.end() && "Unknown tag!");
return I->second;
}
SyncScope::ID LLVMContextImpl::getOrInsertSyncScopeID(StringRef SSN) {
auto NewSSID = SSC.size();
assert(NewSSID < std::numeric_limits<SyncScope::ID>::max() &&
"Hit the maximum number of synchronization scopes allowed!");
return SSC.insert(std::make_pair(SSN, SyncScope::ID(NewSSID))).first->second;
}
void LLVMContextImpl::getSyncScopeNames(
SmallVectorImpl<StringRef> &SSNs) const {
SSNs.resize(SSC.size());
for (const auto &SSE : SSC)
SSNs[SSE.second] = SSE.first();
}
/// Singleton instance of the OptBisect class.
///
/// This singleton is accessed via the LLVMContext::getOptPassGate() function.
/// It provides a mechanism to disable passes and individual optimizations at
/// compile time based on a command line option (-opt-bisect-limit) in order to
/// perform a bisecting search for optimization-related problems.
///
/// Even if multiple LLVMContext objects are created, they will all return the
/// same instance of OptBisect in order to provide a single bisect count. Any
/// code that uses the OptBisect object should be serialized when bisection is
/// enabled in order to enable a consistent bisect count.
static ManagedStatic<OptBisect> OptBisector;
OptPassGate &LLVMContextImpl::getOptPassGate() const {
if (!OPG)
OPG = &(*OptBisector);
return *OPG;
}
void LLVMContextImpl::setOptPassGate(OptPassGate& OPG) {
this->OPG = &OPG;
}