forked from OSchip/llvm-project
3252 lines
132 KiB
C++
3252 lines
132 KiB
C++
//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a basic-block vectorization pass. The algorithm was
|
|
// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
|
|
// et al. It works by looking for chains of pairable operations and then
|
|
// pairing them.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define BBV_NAME "bb-vectorize"
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AliasSetTracker.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE BBV_NAME
|
|
|
|
static cl::opt<bool>
|
|
IgnoreTargetInfo("bb-vectorize-ignore-target-info", cl::init(false),
|
|
cl::Hidden, cl::desc("Ignore target information"));
|
|
|
|
static cl::opt<unsigned>
|
|
ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
|
|
cl::desc("The required chain depth for vectorization"));
|
|
|
|
static cl::opt<bool>
|
|
UseChainDepthWithTI("bb-vectorize-use-chain-depth", cl::init(false),
|
|
cl::Hidden, cl::desc("Use the chain depth requirement with"
|
|
" target information"));
|
|
|
|
static cl::opt<unsigned>
|
|
SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
|
|
cl::desc("The maximum search distance for instruction pairs"));
|
|
|
|
static cl::opt<bool>
|
|
SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
|
|
cl::desc("Replicating one element to a pair breaks the chain"));
|
|
|
|
static cl::opt<unsigned>
|
|
VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
|
|
cl::desc("The size of the native vector registers"));
|
|
|
|
static cl::opt<unsigned>
|
|
MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
|
|
cl::desc("The maximum number of pairing iterations"));
|
|
|
|
static cl::opt<bool>
|
|
Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to form non-2^n-length vectors"));
|
|
|
|
static cl::opt<unsigned>
|
|
MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
|
|
cl::desc("The maximum number of pairable instructions per group"));
|
|
|
|
static cl::opt<unsigned>
|
|
MaxPairs("bb-vectorize-max-pairs-per-group", cl::init(3000), cl::Hidden,
|
|
cl::desc("The maximum number of candidate instruction pairs per group"));
|
|
|
|
static cl::opt<unsigned>
|
|
MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
|
|
cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
|
|
" a full cycle check"));
|
|
|
|
static cl::opt<bool>
|
|
NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to vectorize boolean (i1) values"));
|
|
|
|
static cl::opt<bool>
|
|
NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to vectorize integer values"));
|
|
|
|
static cl::opt<bool>
|
|
NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to vectorize floating-point values"));
|
|
|
|
// FIXME: This should default to false once pointer vector support works.
|
|
static cl::opt<bool>
|
|
NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
|
|
cl::desc("Don't try to vectorize pointer values"));
|
|
|
|
static cl::opt<bool>
|
|
NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to vectorize casting (conversion) operations"));
|
|
|
|
static cl::opt<bool>
|
|
NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to vectorize floating-point math intrinsics"));
|
|
|
|
static cl::opt<bool>
|
|
NoBitManipulation("bb-vectorize-no-bitmanip", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to vectorize BitManipulation intrinsics"));
|
|
|
|
static cl::opt<bool>
|
|
NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
|
|
|
|
static cl::opt<bool>
|
|
NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to vectorize select instructions"));
|
|
|
|
static cl::opt<bool>
|
|
NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to vectorize comparison instructions"));
|
|
|
|
static cl::opt<bool>
|
|
NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to vectorize getelementptr instructions"));
|
|
|
|
static cl::opt<bool>
|
|
NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
|
|
cl::desc("Don't try to vectorize loads and stores"));
|
|
|
|
static cl::opt<bool>
|
|
AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
|
|
cl::desc("Only generate aligned loads and stores"));
|
|
|
|
static cl::opt<bool>
|
|
NoMemOpBoost("bb-vectorize-no-mem-op-boost",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("Don't boost the chain-depth contribution of loads and stores"));
|
|
|
|
static cl::opt<bool>
|
|
FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
|
|
cl::desc("Use a fast instruction dependency analysis"));
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<bool>
|
|
DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("When debugging is enabled, output information on the"
|
|
" instruction-examination process"));
|
|
static cl::opt<bool>
|
|
DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("When debugging is enabled, output information on the"
|
|
" candidate-selection process"));
|
|
static cl::opt<bool>
|
|
DebugPairSelection("bb-vectorize-debug-pair-selection",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("When debugging is enabled, output information on the"
|
|
" pair-selection process"));
|
|
static cl::opt<bool>
|
|
DebugCycleCheck("bb-vectorize-debug-cycle-check",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("When debugging is enabled, output information on the"
|
|
" cycle-checking process"));
|
|
|
|
static cl::opt<bool>
|
|
PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("When debugging is enabled, dump the basic block after"
|
|
" every pair is fused"));
|
|
#endif
|
|
|
|
STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
|
|
|
|
namespace {
|
|
struct BBVectorize : public BasicBlockPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
const VectorizeConfig Config;
|
|
|
|
BBVectorize(const VectorizeConfig &C = VectorizeConfig())
|
|
: BasicBlockPass(ID), Config(C) {
|
|
initializeBBVectorizePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
BBVectorize(Pass *P, Function &F, const VectorizeConfig &C)
|
|
: BasicBlockPass(ID), Config(C) {
|
|
AA = &P->getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
DT = &P->getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
SE = &P->getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
TLI = &P->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
TTI = IgnoreTargetInfo
|
|
? nullptr
|
|
: &P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
}
|
|
|
|
typedef std::pair<Value *, Value *> ValuePair;
|
|
typedef std::pair<ValuePair, int> ValuePairWithCost;
|
|
typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
|
|
typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
|
|
typedef std::pair<VPPair, unsigned> VPPairWithType;
|
|
|
|
AliasAnalysis *AA;
|
|
DominatorTree *DT;
|
|
ScalarEvolution *SE;
|
|
const TargetLibraryInfo *TLI;
|
|
const TargetTransformInfo *TTI;
|
|
|
|
// FIXME: const correct?
|
|
|
|
bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
|
|
|
|
bool getCandidatePairs(BasicBlock &BB,
|
|
BasicBlock::iterator &Start,
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &FixedOrderPairs,
|
|
DenseMap<ValuePair, int> &CandidatePairCostSavings,
|
|
std::vector<Value *> &PairableInsts, bool NonPow2Len);
|
|
|
|
// FIXME: The current implementation does not account for pairs that
|
|
// are connected in multiple ways. For example:
|
|
// C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap)
|
|
enum PairConnectionType {
|
|
PairConnectionDirect,
|
|
PairConnectionSwap,
|
|
PairConnectionSplat
|
|
};
|
|
|
|
void computeConnectedPairs(
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &CandidatePairsSet,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseMap<VPPair, unsigned> &PairConnectionTypes);
|
|
|
|
void buildDepMap(BasicBlock &BB,
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseSet<ValuePair> &PairableInstUsers);
|
|
|
|
void choosePairs(DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &CandidatePairsSet,
|
|
DenseMap<ValuePair, int> &CandidatePairCostSavings,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseSet<ValuePair> &FixedOrderPairs,
|
|
DenseMap<VPPair, unsigned> &PairConnectionTypes,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
|
|
DenseSet<ValuePair> &PairableInstUsers,
|
|
DenseMap<Value *, Value *>& ChosenPairs);
|
|
|
|
void fuseChosenPairs(BasicBlock &BB,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<Value *, Value *>& ChosenPairs,
|
|
DenseSet<ValuePair> &FixedOrderPairs,
|
|
DenseMap<VPPair, unsigned> &PairConnectionTypes,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps);
|
|
|
|
|
|
bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
|
|
|
|
bool areInstsCompatible(Instruction *I, Instruction *J,
|
|
bool IsSimpleLoadStore, bool NonPow2Len,
|
|
int &CostSavings, int &FixedOrder);
|
|
|
|
bool trackUsesOfI(DenseSet<Value *> &Users,
|
|
AliasSetTracker &WriteSet, Instruction *I,
|
|
Instruction *J, bool UpdateUsers = true,
|
|
DenseSet<ValuePair> *LoadMoveSetPairs = nullptr);
|
|
|
|
void computePairsConnectedTo(
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &CandidatePairsSet,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseMap<VPPair, unsigned> &PairConnectionTypes,
|
|
ValuePair P);
|
|
|
|
bool pairsConflict(ValuePair P, ValuePair Q,
|
|
DenseSet<ValuePair> &PairableInstUsers,
|
|
DenseMap<ValuePair, std::vector<ValuePair> >
|
|
*PairableInstUserMap = nullptr,
|
|
DenseSet<VPPair> *PairableInstUserPairSet = nullptr);
|
|
|
|
bool pairWillFormCycle(ValuePair P,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers,
|
|
DenseSet<ValuePair> &CurrentPairs);
|
|
|
|
void pruneDAGFor(
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseSet<ValuePair> &PairableInstUsers,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
|
|
DenseSet<VPPair> &PairableInstUserPairSet,
|
|
DenseMap<Value *, Value *> &ChosenPairs,
|
|
DenseMap<ValuePair, size_t> &DAG,
|
|
DenseSet<ValuePair> &PrunedDAG, ValuePair J,
|
|
bool UseCycleCheck);
|
|
|
|
void buildInitialDAGFor(
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &CandidatePairsSet,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseSet<ValuePair> &PairableInstUsers,
|
|
DenseMap<Value *, Value *> &ChosenPairs,
|
|
DenseMap<ValuePair, size_t> &DAG, ValuePair J);
|
|
|
|
void findBestDAGFor(
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &CandidatePairsSet,
|
|
DenseMap<ValuePair, int> &CandidatePairCostSavings,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseSet<ValuePair> &FixedOrderPairs,
|
|
DenseMap<VPPair, unsigned> &PairConnectionTypes,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
|
|
DenseSet<ValuePair> &PairableInstUsers,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
|
|
DenseSet<VPPair> &PairableInstUserPairSet,
|
|
DenseMap<Value *, Value *> &ChosenPairs,
|
|
DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
|
|
int &BestEffSize, Value *II, std::vector<Value *>&JJ,
|
|
bool UseCycleCheck);
|
|
|
|
Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
|
|
Instruction *J, unsigned o);
|
|
|
|
void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
|
|
unsigned MaskOffset, unsigned NumInElem,
|
|
unsigned NumInElem1, unsigned IdxOffset,
|
|
std::vector<Constant*> &Mask);
|
|
|
|
Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
|
|
Instruction *J);
|
|
|
|
bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
|
|
unsigned o, Value *&LOp, unsigned numElemL,
|
|
Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ,
|
|
unsigned IdxOff = 0);
|
|
|
|
Value *getReplacementInput(LLVMContext& Context, Instruction *I,
|
|
Instruction *J, unsigned o, bool IBeforeJ);
|
|
|
|
void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
|
|
Instruction *J, SmallVectorImpl<Value *> &ReplacedOperands,
|
|
bool IBeforeJ);
|
|
|
|
void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
|
|
Instruction *J, Instruction *K,
|
|
Instruction *&InsertionPt, Instruction *&K1,
|
|
Instruction *&K2);
|
|
|
|
void collectPairLoadMoveSet(BasicBlock &BB,
|
|
DenseMap<Value *, Value *> &ChosenPairs,
|
|
DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
|
|
DenseSet<ValuePair> &LoadMoveSetPairs,
|
|
Instruction *I);
|
|
|
|
void collectLoadMoveSet(BasicBlock &BB,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<Value *, Value *> &ChosenPairs,
|
|
DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
|
|
DenseSet<ValuePair> &LoadMoveSetPairs);
|
|
|
|
bool canMoveUsesOfIAfterJ(BasicBlock &BB,
|
|
DenseSet<ValuePair> &LoadMoveSetPairs,
|
|
Instruction *I, Instruction *J);
|
|
|
|
void moveUsesOfIAfterJ(BasicBlock &BB,
|
|
DenseSet<ValuePair> &LoadMoveSetPairs,
|
|
Instruction *&InsertionPt,
|
|
Instruction *I, Instruction *J);
|
|
|
|
bool vectorizeBB(BasicBlock &BB) {
|
|
if (skipOptnoneFunction(BB))
|
|
return false;
|
|
if (!DT->isReachableFromEntry(&BB)) {
|
|
DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
|
|
" in " << BB.getParent()->getName() << "\n");
|
|
return false;
|
|
}
|
|
|
|
DEBUG(if (TTI) dbgs() << "BBV: using target information\n");
|
|
|
|
bool changed = false;
|
|
// Iterate a sufficient number of times to merge types of size 1 bit,
|
|
// then 2 bits, then 4, etc. up to half of the target vector width of the
|
|
// target vector register.
|
|
unsigned n = 1;
|
|
for (unsigned v = 2;
|
|
(TTI || v <= Config.VectorBits) &&
|
|
(!Config.MaxIter || n <= Config.MaxIter);
|
|
v *= 2, ++n) {
|
|
DEBUG(dbgs() << "BBV: fusing loop #" << n <<
|
|
" for " << BB.getName() << " in " <<
|
|
BB.getParent()->getName() << "...\n");
|
|
if (vectorizePairs(BB))
|
|
changed = true;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (changed && !Pow2LenOnly) {
|
|
++n;
|
|
for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
|
|
DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
|
|
n << " for " << BB.getName() << " in " <<
|
|
BB.getParent()->getName() << "...\n");
|
|
if (!vectorizePairs(BB, true)) break;
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "BBV: done!\n");
|
|
return changed;
|
|
}
|
|
|
|
bool runOnBasicBlock(BasicBlock &BB) override {
|
|
// OptimizeNone check deferred to vectorizeBB().
|
|
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
TTI = IgnoreTargetInfo
|
|
? nullptr
|
|
: &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
|
|
*BB.getParent());
|
|
|
|
return vectorizeBB(BB);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
BasicBlockPass::getAnalysisUsage(AU);
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<ScalarEvolutionWrapperPass>();
|
|
AU.addPreserved<SCEVAAWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
|
|
assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
|
|
"Cannot form vector from incompatible scalar types");
|
|
Type *STy = ElemTy->getScalarType();
|
|
|
|
unsigned numElem;
|
|
if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
|
|
numElem = VTy->getNumElements();
|
|
} else {
|
|
numElem = 1;
|
|
}
|
|
|
|
if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
|
|
numElem += VTy->getNumElements();
|
|
} else {
|
|
numElem += 1;
|
|
}
|
|
|
|
return VectorType::get(STy, numElem);
|
|
}
|
|
|
|
static inline void getInstructionTypes(Instruction *I,
|
|
Type *&T1, Type *&T2) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
// For stores, it is the value type, not the pointer type that matters
|
|
// because the value is what will come from a vector register.
|
|
|
|
Value *IVal = SI->getValueOperand();
|
|
T1 = IVal->getType();
|
|
} else {
|
|
T1 = I->getType();
|
|
}
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(I))
|
|
T2 = CI->getSrcTy();
|
|
else
|
|
T2 = T1;
|
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
|
|
T2 = SI->getCondition()->getType();
|
|
} else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
|
|
T2 = SI->getOperand(0)->getType();
|
|
} else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
|
|
T2 = CI->getOperand(0)->getType();
|
|
}
|
|
}
|
|
|
|
// Returns the weight associated with the provided value. A chain of
|
|
// candidate pairs has a length given by the sum of the weights of its
|
|
// members (one weight per pair; the weight of each member of the pair
|
|
// is assumed to be the same). This length is then compared to the
|
|
// chain-length threshold to determine if a given chain is significant
|
|
// enough to be vectorized. The length is also used in comparing
|
|
// candidate chains where longer chains are considered to be better.
|
|
// Note: when this function returns 0, the resulting instructions are
|
|
// not actually fused.
|
|
inline size_t getDepthFactor(Value *V) {
|
|
// InsertElement and ExtractElement have a depth factor of zero. This is
|
|
// for two reasons: First, they cannot be usefully fused. Second, because
|
|
// the pass generates a lot of these, they can confuse the simple metric
|
|
// used to compare the dags in the next iteration. Thus, giving them a
|
|
// weight of zero allows the pass to essentially ignore them in
|
|
// subsequent iterations when looking for vectorization opportunities
|
|
// while still tracking dependency chains that flow through those
|
|
// instructions.
|
|
if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
|
|
return 0;
|
|
|
|
// Give a load or store half of the required depth so that load/store
|
|
// pairs will vectorize.
|
|
if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
|
|
return Config.ReqChainDepth/2;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Returns the cost of the provided instruction using TTI.
|
|
// This does not handle loads and stores.
|
|
unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2,
|
|
TargetTransformInfo::OperandValueKind Op1VK =
|
|
TargetTransformInfo::OK_AnyValue,
|
|
TargetTransformInfo::OperandValueKind Op2VK =
|
|
TargetTransformInfo::OK_AnyValue) {
|
|
switch (Opcode) {
|
|
default: break;
|
|
case Instruction::GetElementPtr:
|
|
// We mark this instruction as zero-cost because scalar GEPs are usually
|
|
// lowered to the instruction addressing mode. At the moment we don't
|
|
// generate vector GEPs.
|
|
return 0;
|
|
case Instruction::Br:
|
|
return TTI->getCFInstrCost(Opcode);
|
|
case Instruction::PHI:
|
|
return 0;
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
return TTI->getArithmeticInstrCost(Opcode, T1, Op1VK, Op2VK);
|
|
case Instruction::Select:
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
return TTI->getCmpSelInstrCost(Opcode, T1, T2);
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast:
|
|
case Instruction::ShuffleVector:
|
|
return TTI->getCastInstrCost(Opcode, T1, T2);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
// This determines the relative offset of two loads or stores, returning
|
|
// true if the offset could be determined to be some constant value.
|
|
// For example, if OffsetInElmts == 1, then J accesses the memory directly
|
|
// after I; if OffsetInElmts == -1 then I accesses the memory
|
|
// directly after J.
|
|
bool getPairPtrInfo(Instruction *I, Instruction *J,
|
|
Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
|
|
unsigned &IAddressSpace, unsigned &JAddressSpace,
|
|
int64_t &OffsetInElmts, bool ComputeOffset = true) {
|
|
OffsetInElmts = 0;
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
LoadInst *LJ = cast<LoadInst>(J);
|
|
IPtr = LI->getPointerOperand();
|
|
JPtr = LJ->getPointerOperand();
|
|
IAlignment = LI->getAlignment();
|
|
JAlignment = LJ->getAlignment();
|
|
IAddressSpace = LI->getPointerAddressSpace();
|
|
JAddressSpace = LJ->getPointerAddressSpace();
|
|
} else {
|
|
StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
|
|
IPtr = SI->getPointerOperand();
|
|
JPtr = SJ->getPointerOperand();
|
|
IAlignment = SI->getAlignment();
|
|
JAlignment = SJ->getAlignment();
|
|
IAddressSpace = SI->getPointerAddressSpace();
|
|
JAddressSpace = SJ->getPointerAddressSpace();
|
|
}
|
|
|
|
if (!ComputeOffset)
|
|
return true;
|
|
|
|
const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
|
|
const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
|
|
|
|
// If this is a trivial offset, then we'll get something like
|
|
// 1*sizeof(type). With target data, which we need anyway, this will get
|
|
// constant folded into a number.
|
|
const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
|
|
if (const SCEVConstant *ConstOffSCEV =
|
|
dyn_cast<SCEVConstant>(OffsetSCEV)) {
|
|
ConstantInt *IntOff = ConstOffSCEV->getValue();
|
|
int64_t Offset = IntOff->getSExtValue();
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
Type *VTy = IPtr->getType()->getPointerElementType();
|
|
int64_t VTyTSS = (int64_t)DL.getTypeStoreSize(VTy);
|
|
|
|
Type *VTy2 = JPtr->getType()->getPointerElementType();
|
|
if (VTy != VTy2 && Offset < 0) {
|
|
int64_t VTy2TSS = (int64_t)DL.getTypeStoreSize(VTy2);
|
|
OffsetInElmts = Offset/VTy2TSS;
|
|
return (std::abs(Offset) % VTy2TSS) == 0;
|
|
}
|
|
|
|
OffsetInElmts = Offset/VTyTSS;
|
|
return (std::abs(Offset) % VTyTSS) == 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Returns true if the provided CallInst represents an intrinsic that can
|
|
// be vectorized.
|
|
bool isVectorizableIntrinsic(CallInst* I) {
|
|
Function *F = I->getCalledFunction();
|
|
if (!F) return false;
|
|
|
|
Intrinsic::ID IID = F->getIntrinsicID();
|
|
if (!IID) return false;
|
|
|
|
switch(IID) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::sqrt:
|
|
case Intrinsic::powi:
|
|
case Intrinsic::sin:
|
|
case Intrinsic::cos:
|
|
case Intrinsic::log:
|
|
case Intrinsic::log2:
|
|
case Intrinsic::log10:
|
|
case Intrinsic::exp:
|
|
case Intrinsic::exp2:
|
|
case Intrinsic::pow:
|
|
case Intrinsic::round:
|
|
case Intrinsic::copysign:
|
|
case Intrinsic::ceil:
|
|
case Intrinsic::nearbyint:
|
|
case Intrinsic::rint:
|
|
case Intrinsic::trunc:
|
|
case Intrinsic::floor:
|
|
case Intrinsic::fabs:
|
|
case Intrinsic::minnum:
|
|
case Intrinsic::maxnum:
|
|
return Config.VectorizeMath;
|
|
case Intrinsic::bswap:
|
|
case Intrinsic::ctpop:
|
|
case Intrinsic::ctlz:
|
|
case Intrinsic::cttz:
|
|
return Config.VectorizeBitManipulations;
|
|
case Intrinsic::fma:
|
|
case Intrinsic::fmuladd:
|
|
return Config.VectorizeFMA;
|
|
}
|
|
}
|
|
|
|
bool isPureIEChain(InsertElementInst *IE) {
|
|
InsertElementInst *IENext = IE;
|
|
do {
|
|
if (!isa<UndefValue>(IENext->getOperand(0)) &&
|
|
!isa<InsertElementInst>(IENext->getOperand(0))) {
|
|
return false;
|
|
}
|
|
} while ((IENext =
|
|
dyn_cast<InsertElementInst>(IENext->getOperand(0))));
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// This function implements one vectorization iteration on the provided
|
|
// basic block. It returns true if the block is changed.
|
|
bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
|
|
bool ShouldContinue;
|
|
BasicBlock::iterator Start = BB.getFirstInsertionPt();
|
|
|
|
std::vector<Value *> AllPairableInsts;
|
|
DenseMap<Value *, Value *> AllChosenPairs;
|
|
DenseSet<ValuePair> AllFixedOrderPairs;
|
|
DenseMap<VPPair, unsigned> AllPairConnectionTypes;
|
|
DenseMap<ValuePair, std::vector<ValuePair> > AllConnectedPairs,
|
|
AllConnectedPairDeps;
|
|
|
|
do {
|
|
std::vector<Value *> PairableInsts;
|
|
DenseMap<Value *, std::vector<Value *> > CandidatePairs;
|
|
DenseSet<ValuePair> FixedOrderPairs;
|
|
DenseMap<ValuePair, int> CandidatePairCostSavings;
|
|
ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
|
|
FixedOrderPairs,
|
|
CandidatePairCostSavings,
|
|
PairableInsts, NonPow2Len);
|
|
if (PairableInsts.empty()) continue;
|
|
|
|
// Build the candidate pair set for faster lookups.
|
|
DenseSet<ValuePair> CandidatePairsSet;
|
|
for (DenseMap<Value *, std::vector<Value *> >::iterator I =
|
|
CandidatePairs.begin(), E = CandidatePairs.end(); I != E; ++I)
|
|
for (std::vector<Value *>::iterator J = I->second.begin(),
|
|
JE = I->second.end(); J != JE; ++J)
|
|
CandidatePairsSet.insert(ValuePair(I->first, *J));
|
|
|
|
// Now we have a map of all of the pairable instructions and we need to
|
|
// select the best possible pairing. A good pairing is one such that the
|
|
// users of the pair are also paired. This defines a (directed) forest
|
|
// over the pairs such that two pairs are connected iff the second pair
|
|
// uses the first.
|
|
|
|
// Note that it only matters that both members of the second pair use some
|
|
// element of the first pair (to allow for splatting).
|
|
|
|
DenseMap<ValuePair, std::vector<ValuePair> > ConnectedPairs,
|
|
ConnectedPairDeps;
|
|
DenseMap<VPPair, unsigned> PairConnectionTypes;
|
|
computeConnectedPairs(CandidatePairs, CandidatePairsSet,
|
|
PairableInsts, ConnectedPairs, PairConnectionTypes);
|
|
if (ConnectedPairs.empty()) continue;
|
|
|
|
for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
|
|
I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
|
|
I != IE; ++I)
|
|
for (std::vector<ValuePair>::iterator J = I->second.begin(),
|
|
JE = I->second.end(); J != JE; ++J)
|
|
ConnectedPairDeps[*J].push_back(I->first);
|
|
|
|
// Build the pairable-instruction dependency map
|
|
DenseSet<ValuePair> PairableInstUsers;
|
|
buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
|
|
|
|
// There is now a graph of the connected pairs. For each variable, pick
|
|
// the pairing with the largest dag meeting the depth requirement on at
|
|
// least one branch. Then select all pairings that are part of that dag
|
|
// and remove them from the list of available pairings and pairable
|
|
// variables.
|
|
|
|
DenseMap<Value *, Value *> ChosenPairs;
|
|
choosePairs(CandidatePairs, CandidatePairsSet,
|
|
CandidatePairCostSavings,
|
|
PairableInsts, FixedOrderPairs, PairConnectionTypes,
|
|
ConnectedPairs, ConnectedPairDeps,
|
|
PairableInstUsers, ChosenPairs);
|
|
|
|
if (ChosenPairs.empty()) continue;
|
|
AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
|
|
PairableInsts.end());
|
|
AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
|
|
|
|
// Only for the chosen pairs, propagate information on fixed-order pairs,
|
|
// pair connections, and their types to the data structures used by the
|
|
// pair fusion procedures.
|
|
for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(),
|
|
IE = ChosenPairs.end(); I != IE; ++I) {
|
|
if (FixedOrderPairs.count(*I))
|
|
AllFixedOrderPairs.insert(*I);
|
|
else if (FixedOrderPairs.count(ValuePair(I->second, I->first)))
|
|
AllFixedOrderPairs.insert(ValuePair(I->second, I->first));
|
|
|
|
for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin();
|
|
J != IE; ++J) {
|
|
DenseMap<VPPair, unsigned>::iterator K =
|
|
PairConnectionTypes.find(VPPair(*I, *J));
|
|
if (K != PairConnectionTypes.end()) {
|
|
AllPairConnectionTypes.insert(*K);
|
|
} else {
|
|
K = PairConnectionTypes.find(VPPair(*J, *I));
|
|
if (K != PairConnectionTypes.end())
|
|
AllPairConnectionTypes.insert(*K);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
|
|
I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
|
|
I != IE; ++I)
|
|
for (std::vector<ValuePair>::iterator J = I->second.begin(),
|
|
JE = I->second.end(); J != JE; ++J)
|
|
if (AllPairConnectionTypes.count(VPPair(I->first, *J))) {
|
|
AllConnectedPairs[I->first].push_back(*J);
|
|
AllConnectedPairDeps[*J].push_back(I->first);
|
|
}
|
|
} while (ShouldContinue);
|
|
|
|
if (AllChosenPairs.empty()) return false;
|
|
NumFusedOps += AllChosenPairs.size();
|
|
|
|
// A set of pairs has now been selected. It is now necessary to replace the
|
|
// paired instructions with vector instructions. For this procedure each
|
|
// operand must be replaced with a vector operand. This vector is formed
|
|
// by using build_vector on the old operands. The replaced values are then
|
|
// replaced with a vector_extract on the result. Subsequent optimization
|
|
// passes should coalesce the build/extract combinations.
|
|
|
|
fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs,
|
|
AllPairConnectionTypes,
|
|
AllConnectedPairs, AllConnectedPairDeps);
|
|
|
|
// It is important to cleanup here so that future iterations of this
|
|
// function have less work to do.
|
|
(void)SimplifyInstructionsInBlock(&BB, TLI);
|
|
return true;
|
|
}
|
|
|
|
// This function returns true if the provided instruction is capable of being
|
|
// fused into a vector instruction. This determination is based only on the
|
|
// type and other attributes of the instruction.
|
|
bool BBVectorize::isInstVectorizable(Instruction *I,
|
|
bool &IsSimpleLoadStore) {
|
|
IsSimpleLoadStore = false;
|
|
|
|
if (CallInst *C = dyn_cast<CallInst>(I)) {
|
|
if (!isVectorizableIntrinsic(C))
|
|
return false;
|
|
} else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
|
|
// Vectorize simple loads if possbile:
|
|
IsSimpleLoadStore = L->isSimple();
|
|
if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
|
|
return false;
|
|
} else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
|
|
// Vectorize simple stores if possbile:
|
|
IsSimpleLoadStore = S->isSimple();
|
|
if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
|
|
return false;
|
|
} else if (CastInst *C = dyn_cast<CastInst>(I)) {
|
|
// We can vectorize casts, but not casts of pointer types, etc.
|
|
if (!Config.VectorizeCasts)
|
|
return false;
|
|
|
|
Type *SrcTy = C->getSrcTy();
|
|
if (!SrcTy->isSingleValueType())
|
|
return false;
|
|
|
|
Type *DestTy = C->getDestTy();
|
|
if (!DestTy->isSingleValueType())
|
|
return false;
|
|
} else if (isa<SelectInst>(I)) {
|
|
if (!Config.VectorizeSelect)
|
|
return false;
|
|
} else if (isa<CmpInst>(I)) {
|
|
if (!Config.VectorizeCmp)
|
|
return false;
|
|
} else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
|
|
if (!Config.VectorizeGEP)
|
|
return false;
|
|
|
|
// Currently, vector GEPs exist only with one index.
|
|
if (G->getNumIndices() != 1)
|
|
return false;
|
|
} else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
|
|
isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
|
|
return false;
|
|
}
|
|
|
|
Type *T1, *T2;
|
|
getInstructionTypes(I, T1, T2);
|
|
|
|
// Not every type can be vectorized...
|
|
if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
|
|
!(VectorType::isValidElementType(T2) || T2->isVectorTy()))
|
|
return false;
|
|
|
|
if (T1->getScalarSizeInBits() == 1) {
|
|
if (!Config.VectorizeBools)
|
|
return false;
|
|
} else {
|
|
if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
|
|
return false;
|
|
}
|
|
|
|
if (T2->getScalarSizeInBits() == 1) {
|
|
if (!Config.VectorizeBools)
|
|
return false;
|
|
} else {
|
|
if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
|
|
return false;
|
|
}
|
|
|
|
if (!Config.VectorizeFloats
|
|
&& (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
|
|
return false;
|
|
|
|
// Don't vectorize target-specific types.
|
|
if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
|
|
return false;
|
|
if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
|
|
return false;
|
|
|
|
if (!Config.VectorizePointers && (T1->getScalarType()->isPointerTy() ||
|
|
T2->getScalarType()->isPointerTy()))
|
|
return false;
|
|
|
|
if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
|
|
T2->getPrimitiveSizeInBits() >= Config.VectorBits))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// This function returns true if the two provided instructions are compatible
|
|
// (meaning that they can be fused into a vector instruction). This assumes
|
|
// that I has already been determined to be vectorizable and that J is not
|
|
// in the use dag of I.
|
|
bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
|
|
bool IsSimpleLoadStore, bool NonPow2Len,
|
|
int &CostSavings, int &FixedOrder) {
|
|
DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
|
|
" <-> " << *J << "\n");
|
|
|
|
CostSavings = 0;
|
|
FixedOrder = 0;
|
|
|
|
// Loads and stores can be merged if they have different alignments,
|
|
// but are otherwise the same.
|
|
if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
|
|
(NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
|
|
return false;
|
|
|
|
Type *IT1, *IT2, *JT1, *JT2;
|
|
getInstructionTypes(I, IT1, IT2);
|
|
getInstructionTypes(J, JT1, JT2);
|
|
unsigned MaxTypeBits = std::max(
|
|
IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
|
|
IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
|
|
if (!TTI && MaxTypeBits > Config.VectorBits)
|
|
return false;
|
|
|
|
// FIXME: handle addsub-type operations!
|
|
|
|
if (IsSimpleLoadStore) {
|
|
Value *IPtr, *JPtr;
|
|
unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
|
|
int64_t OffsetInElmts = 0;
|
|
if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
|
|
IAddressSpace, JAddressSpace, OffsetInElmts) &&
|
|
std::abs(OffsetInElmts) == 1) {
|
|
FixedOrder = (int) OffsetInElmts;
|
|
unsigned BottomAlignment = IAlignment;
|
|
if (OffsetInElmts < 0) BottomAlignment = JAlignment;
|
|
|
|
Type *aTypeI = isa<StoreInst>(I) ?
|
|
cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
|
|
Type *aTypeJ = isa<StoreInst>(J) ?
|
|
cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
|
|
Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
|
|
|
|
if (Config.AlignedOnly) {
|
|
// An aligned load or store is possible only if the instruction
|
|
// with the lower offset has an alignment suitable for the
|
|
// vector type.
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
unsigned VecAlignment = DL.getPrefTypeAlignment(VType);
|
|
if (BottomAlignment < VecAlignment)
|
|
return false;
|
|
}
|
|
|
|
if (TTI) {
|
|
unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI,
|
|
IAlignment, IAddressSpace);
|
|
unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ,
|
|
JAlignment, JAddressSpace);
|
|
unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType,
|
|
BottomAlignment,
|
|
IAddressSpace);
|
|
|
|
ICost += TTI->getAddressComputationCost(aTypeI);
|
|
JCost += TTI->getAddressComputationCost(aTypeJ);
|
|
VCost += TTI->getAddressComputationCost(VType);
|
|
|
|
if (VCost > ICost + JCost)
|
|
return false;
|
|
|
|
// We don't want to fuse to a type that will be split, even
|
|
// if the two input types will also be split and there is no other
|
|
// associated cost.
|
|
unsigned VParts = TTI->getNumberOfParts(VType);
|
|
if (VParts > 1)
|
|
return false;
|
|
else if (!VParts && VCost == ICost + JCost)
|
|
return false;
|
|
|
|
CostSavings = ICost + JCost - VCost;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
} else if (TTI) {
|
|
unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
|
|
unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
|
|
Type *VT1 = getVecTypeForPair(IT1, JT1),
|
|
*VT2 = getVecTypeForPair(IT2, JT2);
|
|
TargetTransformInfo::OperandValueKind Op1VK =
|
|
TargetTransformInfo::OK_AnyValue;
|
|
TargetTransformInfo::OperandValueKind Op2VK =
|
|
TargetTransformInfo::OK_AnyValue;
|
|
|
|
// On some targets (example X86) the cost of a vector shift may vary
|
|
// depending on whether the second operand is a Uniform or
|
|
// NonUniform Constant.
|
|
switch (I->getOpcode()) {
|
|
default : break;
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
|
|
// If both I and J are scalar shifts by constant, then the
|
|
// merged vector shift count would be either a constant splat value
|
|
// or a non-uniform vector of constants.
|
|
if (ConstantInt *CII = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
if (ConstantInt *CIJ = dyn_cast<ConstantInt>(J->getOperand(1)))
|
|
Op2VK = CII == CIJ ? TargetTransformInfo::OK_UniformConstantValue :
|
|
TargetTransformInfo::OK_NonUniformConstantValue;
|
|
} else {
|
|
// Check for a splat of a constant or for a non uniform vector
|
|
// of constants.
|
|
Value *IOp = I->getOperand(1);
|
|
Value *JOp = J->getOperand(1);
|
|
if ((isa<ConstantVector>(IOp) || isa<ConstantDataVector>(IOp)) &&
|
|
(isa<ConstantVector>(JOp) || isa<ConstantDataVector>(JOp))) {
|
|
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
|
|
Constant *SplatValue = cast<Constant>(IOp)->getSplatValue();
|
|
if (SplatValue != nullptr &&
|
|
SplatValue == cast<Constant>(JOp)->getSplatValue())
|
|
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note that this procedure is incorrect for insert and extract element
|
|
// instructions (because combining these often results in a shuffle),
|
|
// but this cost is ignored (because insert and extract element
|
|
// instructions are assigned a zero depth factor and are not really
|
|
// fused in general).
|
|
unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2, Op1VK, Op2VK);
|
|
|
|
if (VCost > ICost + JCost)
|
|
return false;
|
|
|
|
// We don't want to fuse to a type that will be split, even
|
|
// if the two input types will also be split and there is no other
|
|
// associated cost.
|
|
unsigned VParts1 = TTI->getNumberOfParts(VT1),
|
|
VParts2 = TTI->getNumberOfParts(VT2);
|
|
if (VParts1 > 1 || VParts2 > 1)
|
|
return false;
|
|
else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
|
|
return false;
|
|
|
|
CostSavings = ICost + JCost - VCost;
|
|
}
|
|
|
|
// The powi,ctlz,cttz intrinsics are special because only the first
|
|
// argument is vectorized, the second arguments must be equal.
|
|
CallInst *CI = dyn_cast<CallInst>(I);
|
|
Function *FI;
|
|
if (CI && (FI = CI->getCalledFunction())) {
|
|
Intrinsic::ID IID = FI->getIntrinsicID();
|
|
if (IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
|
|
IID == Intrinsic::cttz) {
|
|
Value *A1I = CI->getArgOperand(1),
|
|
*A1J = cast<CallInst>(J)->getArgOperand(1);
|
|
const SCEV *A1ISCEV = SE->getSCEV(A1I),
|
|
*A1JSCEV = SE->getSCEV(A1J);
|
|
return (A1ISCEV == A1JSCEV);
|
|
}
|
|
|
|
if (IID && TTI) {
|
|
SmallVector<Type*, 4> Tys;
|
|
for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
|
|
Tys.push_back(CI->getArgOperand(i)->getType());
|
|
unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys);
|
|
|
|
Tys.clear();
|
|
CallInst *CJ = cast<CallInst>(J);
|
|
for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i)
|
|
Tys.push_back(CJ->getArgOperand(i)->getType());
|
|
unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys);
|
|
|
|
Tys.clear();
|
|
assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
|
|
"Intrinsic argument counts differ");
|
|
for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
|
|
if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
|
|
IID == Intrinsic::cttz) && i == 1)
|
|
Tys.push_back(CI->getArgOperand(i)->getType());
|
|
else
|
|
Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
|
|
CJ->getArgOperand(i)->getType()));
|
|
}
|
|
|
|
Type *RetTy = getVecTypeForPair(IT1, JT1);
|
|
unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys);
|
|
|
|
if (VCost > ICost + JCost)
|
|
return false;
|
|
|
|
// We don't want to fuse to a type that will be split, even
|
|
// if the two input types will also be split and there is no other
|
|
// associated cost.
|
|
unsigned RetParts = TTI->getNumberOfParts(RetTy);
|
|
if (RetParts > 1)
|
|
return false;
|
|
else if (!RetParts && VCost == ICost + JCost)
|
|
return false;
|
|
|
|
for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
|
|
if (!Tys[i]->isVectorTy())
|
|
continue;
|
|
|
|
unsigned NumParts = TTI->getNumberOfParts(Tys[i]);
|
|
if (NumParts > 1)
|
|
return false;
|
|
else if (!NumParts && VCost == ICost + JCost)
|
|
return false;
|
|
}
|
|
|
|
CostSavings = ICost + JCost - VCost;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Figure out whether or not J uses I and update the users and write-set
|
|
// structures associated with I. Specifically, Users represents the set of
|
|
// instructions that depend on I. WriteSet represents the set
|
|
// of memory locations that are dependent on I. If UpdateUsers is true,
|
|
// and J uses I, then Users is updated to contain J and WriteSet is updated
|
|
// to contain any memory locations to which J writes. The function returns
|
|
// true if J uses I. By default, alias analysis is used to determine
|
|
// whether J reads from memory that overlaps with a location in WriteSet.
|
|
// If LoadMoveSet is not null, then it is a previously-computed map
|
|
// where the key is the memory-based user instruction and the value is
|
|
// the instruction to be compared with I. So, if LoadMoveSet is provided,
|
|
// then the alias analysis is not used. This is necessary because this
|
|
// function is called during the process of moving instructions during
|
|
// vectorization and the results of the alias analysis are not stable during
|
|
// that process.
|
|
bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
|
|
AliasSetTracker &WriteSet, Instruction *I,
|
|
Instruction *J, bool UpdateUsers,
|
|
DenseSet<ValuePair> *LoadMoveSetPairs) {
|
|
bool UsesI = false;
|
|
|
|
// This instruction may already be marked as a user due, for example, to
|
|
// being a member of a selected pair.
|
|
if (Users.count(J))
|
|
UsesI = true;
|
|
|
|
if (!UsesI)
|
|
for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
|
|
JU != JE; ++JU) {
|
|
Value *V = *JU;
|
|
if (I == V || Users.count(V)) {
|
|
UsesI = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!UsesI && J->mayReadFromMemory()) {
|
|
if (LoadMoveSetPairs) {
|
|
UsesI = LoadMoveSetPairs->count(ValuePair(J, I));
|
|
} else {
|
|
for (AliasSetTracker::iterator W = WriteSet.begin(),
|
|
WE = WriteSet.end(); W != WE; ++W) {
|
|
if (W->aliasesUnknownInst(J, *AA)) {
|
|
UsesI = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (UsesI && UpdateUsers) {
|
|
if (J->mayWriteToMemory()) WriteSet.add(J);
|
|
Users.insert(J);
|
|
}
|
|
|
|
return UsesI;
|
|
}
|
|
|
|
// This function iterates over all instruction pairs in the provided
|
|
// basic block and collects all candidate pairs for vectorization.
|
|
bool BBVectorize::getCandidatePairs(BasicBlock &BB,
|
|
BasicBlock::iterator &Start,
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &FixedOrderPairs,
|
|
DenseMap<ValuePair, int> &CandidatePairCostSavings,
|
|
std::vector<Value *> &PairableInsts, bool NonPow2Len) {
|
|
size_t TotalPairs = 0;
|
|
BasicBlock::iterator E = BB.end();
|
|
if (Start == E) return false;
|
|
|
|
bool ShouldContinue = false, IAfterStart = false;
|
|
for (BasicBlock::iterator I = Start++; I != E; ++I) {
|
|
if (I == Start) IAfterStart = true;
|
|
|
|
bool IsSimpleLoadStore;
|
|
if (!isInstVectorizable(&*I, IsSimpleLoadStore))
|
|
continue;
|
|
|
|
// Look for an instruction with which to pair instruction *I...
|
|
DenseSet<Value *> Users;
|
|
AliasSetTracker WriteSet(*AA);
|
|
if (I->mayWriteToMemory())
|
|
WriteSet.add(&*I);
|
|
|
|
bool JAfterStart = IAfterStart;
|
|
BasicBlock::iterator J = std::next(I);
|
|
for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
|
|
if (&*J == Start)
|
|
JAfterStart = true;
|
|
|
|
// Determine if J uses I, if so, exit the loop.
|
|
bool UsesI = trackUsesOfI(Users, WriteSet, &*I, &*J, !Config.FastDep);
|
|
if (Config.FastDep) {
|
|
// Note: For this heuristic to be effective, independent operations
|
|
// must tend to be intermixed. This is likely to be true from some
|
|
// kinds of grouped loop unrolling (but not the generic LLVM pass),
|
|
// but otherwise may require some kind of reordering pass.
|
|
|
|
// When using fast dependency analysis,
|
|
// stop searching after first use:
|
|
if (UsesI) break;
|
|
} else {
|
|
if (UsesI) continue;
|
|
}
|
|
|
|
// J does not use I, and comes before the first use of I, so it can be
|
|
// merged with I if the instructions are compatible.
|
|
int CostSavings, FixedOrder;
|
|
if (!areInstsCompatible(&*I, &*J, IsSimpleLoadStore, NonPow2Len,
|
|
CostSavings, FixedOrder))
|
|
continue;
|
|
|
|
// J is a candidate for merging with I.
|
|
if (PairableInsts.empty() ||
|
|
PairableInsts[PairableInsts.size() - 1] != &*I) {
|
|
PairableInsts.push_back(&*I);
|
|
}
|
|
|
|
CandidatePairs[&*I].push_back(&*J);
|
|
++TotalPairs;
|
|
if (TTI)
|
|
CandidatePairCostSavings.insert(
|
|
ValuePairWithCost(ValuePair(&*I, &*J), CostSavings));
|
|
|
|
if (FixedOrder == 1)
|
|
FixedOrderPairs.insert(ValuePair(&*I, &*J));
|
|
else if (FixedOrder == -1)
|
|
FixedOrderPairs.insert(ValuePair(&*J, &*I));
|
|
|
|
// The next call to this function must start after the last instruction
|
|
// selected during this invocation.
|
|
if (JAfterStart) {
|
|
Start = std::next(J);
|
|
IAfterStart = JAfterStart = false;
|
|
}
|
|
|
|
DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
|
|
<< *I << " <-> " << *J << " (cost savings: " <<
|
|
CostSavings << ")\n");
|
|
|
|
// If we have already found too many pairs, break here and this function
|
|
// will be called again starting after the last instruction selected
|
|
// during this invocation.
|
|
if (PairableInsts.size() >= Config.MaxInsts ||
|
|
TotalPairs >= Config.MaxPairs) {
|
|
ShouldContinue = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ShouldContinue)
|
|
break;
|
|
}
|
|
|
|
DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
|
|
<< " instructions with candidate pairs\n");
|
|
|
|
return ShouldContinue;
|
|
}
|
|
|
|
// Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
|
|
// it looks for pairs such that both members have an input which is an
|
|
// output of PI or PJ.
|
|
void BBVectorize::computePairsConnectedTo(
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &CandidatePairsSet,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseMap<VPPair, unsigned> &PairConnectionTypes,
|
|
ValuePair P) {
|
|
StoreInst *SI, *SJ;
|
|
|
|
// For each possible pairing for this variable, look at the uses of
|
|
// the first value...
|
|
for (Value::user_iterator I = P.first->user_begin(),
|
|
E = P.first->user_end();
|
|
I != E; ++I) {
|
|
User *UI = *I;
|
|
if (isa<LoadInst>(UI)) {
|
|
// A pair cannot be connected to a load because the load only takes one
|
|
// operand (the address) and it is a scalar even after vectorization.
|
|
continue;
|
|
} else if ((SI = dyn_cast<StoreInst>(UI)) &&
|
|
P.first == SI->getPointerOperand()) {
|
|
// Similarly, a pair cannot be connected to a store through its
|
|
// pointer operand.
|
|
continue;
|
|
}
|
|
|
|
// For each use of the first variable, look for uses of the second
|
|
// variable...
|
|
for (User *UJ : P.second->users()) {
|
|
if ((SJ = dyn_cast<StoreInst>(UJ)) &&
|
|
P.second == SJ->getPointerOperand())
|
|
continue;
|
|
|
|
// Look for <I, J>:
|
|
if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
|
|
VPPair VP(P, ValuePair(UI, UJ));
|
|
ConnectedPairs[VP.first].push_back(VP.second);
|
|
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
|
|
}
|
|
|
|
// Look for <J, I>:
|
|
if (CandidatePairsSet.count(ValuePair(UJ, UI))) {
|
|
VPPair VP(P, ValuePair(UJ, UI));
|
|
ConnectedPairs[VP.first].push_back(VP.second);
|
|
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
|
|
}
|
|
}
|
|
|
|
if (Config.SplatBreaksChain) continue;
|
|
// Look for cases where just the first value in the pair is used by
|
|
// both members of another pair (splatting).
|
|
for (Value::user_iterator J = P.first->user_begin(); J != E; ++J) {
|
|
User *UJ = *J;
|
|
if ((SJ = dyn_cast<StoreInst>(UJ)) &&
|
|
P.first == SJ->getPointerOperand())
|
|
continue;
|
|
|
|
if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
|
|
VPPair VP(P, ValuePair(UI, UJ));
|
|
ConnectedPairs[VP.first].push_back(VP.second);
|
|
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Config.SplatBreaksChain) return;
|
|
// Look for cases where just the second value in the pair is used by
|
|
// both members of another pair (splatting).
|
|
for (Value::user_iterator I = P.second->user_begin(),
|
|
E = P.second->user_end();
|
|
I != E; ++I) {
|
|
User *UI = *I;
|
|
if (isa<LoadInst>(UI))
|
|
continue;
|
|
else if ((SI = dyn_cast<StoreInst>(UI)) &&
|
|
P.second == SI->getPointerOperand())
|
|
continue;
|
|
|
|
for (Value::user_iterator J = P.second->user_begin(); J != E; ++J) {
|
|
User *UJ = *J;
|
|
if ((SJ = dyn_cast<StoreInst>(UJ)) &&
|
|
P.second == SJ->getPointerOperand())
|
|
continue;
|
|
|
|
if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
|
|
VPPair VP(P, ValuePair(UI, UJ));
|
|
ConnectedPairs[VP.first].push_back(VP.second);
|
|
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function figures out which pairs are connected. Two pairs are
|
|
// connected if some output of the first pair forms an input to both members
|
|
// of the second pair.
|
|
void BBVectorize::computeConnectedPairs(
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &CandidatePairsSet,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseMap<VPPair, unsigned> &PairConnectionTypes) {
|
|
for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
|
|
PE = PairableInsts.end(); PI != PE; ++PI) {
|
|
DenseMap<Value *, std::vector<Value *> >::iterator PP =
|
|
CandidatePairs.find(*PI);
|
|
if (PP == CandidatePairs.end())
|
|
continue;
|
|
|
|
for (std::vector<Value *>::iterator P = PP->second.begin(),
|
|
E = PP->second.end(); P != E; ++P)
|
|
computePairsConnectedTo(CandidatePairs, CandidatePairsSet,
|
|
PairableInsts, ConnectedPairs,
|
|
PairConnectionTypes, ValuePair(*PI, *P));
|
|
}
|
|
|
|
DEBUG(size_t TotalPairs = 0;
|
|
for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator I =
|
|
ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I)
|
|
TotalPairs += I->second.size();
|
|
dbgs() << "BBV: found " << TotalPairs
|
|
<< " pair connections.\n");
|
|
}
|
|
|
|
// This function builds a set of use tuples such that <A, B> is in the set
|
|
// if B is in the use dag of A. If B is in the use dag of A, then B
|
|
// depends on the output of A.
|
|
void BBVectorize::buildDepMap(
|
|
BasicBlock &BB,
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseSet<ValuePair> &PairableInstUsers) {
|
|
DenseSet<Value *> IsInPair;
|
|
for (DenseMap<Value *, std::vector<Value *> >::iterator C =
|
|
CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) {
|
|
IsInPair.insert(C->first);
|
|
IsInPair.insert(C->second.begin(), C->second.end());
|
|
}
|
|
|
|
// Iterate through the basic block, recording all users of each
|
|
// pairable instruction.
|
|
|
|
BasicBlock::iterator E = BB.end(), EL =
|
|
BasicBlock::iterator(cast<Instruction>(PairableInsts.back()));
|
|
for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
|
|
if (IsInPair.find(&*I) == IsInPair.end())
|
|
continue;
|
|
|
|
DenseSet<Value *> Users;
|
|
AliasSetTracker WriteSet(*AA);
|
|
if (I->mayWriteToMemory())
|
|
WriteSet.add(&*I);
|
|
|
|
for (BasicBlock::iterator J = std::next(I); J != E; ++J) {
|
|
(void)trackUsesOfI(Users, WriteSet, &*I, &*J);
|
|
|
|
if (J == EL)
|
|
break;
|
|
}
|
|
|
|
for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
|
|
U != E; ++U) {
|
|
if (IsInPair.find(*U) == IsInPair.end()) continue;
|
|
PairableInstUsers.insert(ValuePair(&*I, *U));
|
|
}
|
|
|
|
if (I == EL)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Returns true if an input to pair P is an output of pair Q and also an
|
|
// input of pair Q is an output of pair P. If this is the case, then these
|
|
// two pairs cannot be simultaneously fused.
|
|
bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
|
|
DenseSet<ValuePair> &PairableInstUsers,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > *PairableInstUserMap,
|
|
DenseSet<VPPair> *PairableInstUserPairSet) {
|
|
// Two pairs are in conflict if they are mutual Users of eachother.
|
|
bool QUsesP = PairableInstUsers.count(ValuePair(P.first, Q.first)) ||
|
|
PairableInstUsers.count(ValuePair(P.first, Q.second)) ||
|
|
PairableInstUsers.count(ValuePair(P.second, Q.first)) ||
|
|
PairableInstUsers.count(ValuePair(P.second, Q.second));
|
|
bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first, P.first)) ||
|
|
PairableInstUsers.count(ValuePair(Q.first, P.second)) ||
|
|
PairableInstUsers.count(ValuePair(Q.second, P.first)) ||
|
|
PairableInstUsers.count(ValuePair(Q.second, P.second));
|
|
if (PairableInstUserMap) {
|
|
// FIXME: The expensive part of the cycle check is not so much the cycle
|
|
// check itself but this edge insertion procedure. This needs some
|
|
// profiling and probably a different data structure.
|
|
if (PUsesQ) {
|
|
if (PairableInstUserPairSet->insert(VPPair(Q, P)).second)
|
|
(*PairableInstUserMap)[Q].push_back(P);
|
|
}
|
|
if (QUsesP) {
|
|
if (PairableInstUserPairSet->insert(VPPair(P, Q)).second)
|
|
(*PairableInstUserMap)[P].push_back(Q);
|
|
}
|
|
}
|
|
|
|
return (QUsesP && PUsesQ);
|
|
}
|
|
|
|
// This function walks the use graph of current pairs to see if, starting
|
|
// from P, the walk returns to P.
|
|
bool BBVectorize::pairWillFormCycle(ValuePair P,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
|
|
DenseSet<ValuePair> &CurrentPairs) {
|
|
DEBUG(if (DebugCycleCheck)
|
|
dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
|
|
<< *P.second << "\n");
|
|
// A lookup table of visisted pairs is kept because the PairableInstUserMap
|
|
// contains non-direct associations.
|
|
DenseSet<ValuePair> Visited;
|
|
SmallVector<ValuePair, 32> Q;
|
|
// General depth-first post-order traversal:
|
|
Q.push_back(P);
|
|
do {
|
|
ValuePair QTop = Q.pop_back_val();
|
|
Visited.insert(QTop);
|
|
|
|
DEBUG(if (DebugCycleCheck)
|
|
dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
|
|
<< *QTop.second << "\n");
|
|
DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
|
|
PairableInstUserMap.find(QTop);
|
|
if (QQ == PairableInstUserMap.end())
|
|
continue;
|
|
|
|
for (std::vector<ValuePair>::iterator C = QQ->second.begin(),
|
|
CE = QQ->second.end(); C != CE; ++C) {
|
|
if (*C == P) {
|
|
DEBUG(dbgs()
|
|
<< "BBV: rejected to prevent non-trivial cycle formation: "
|
|
<< QTop.first << " <-> " << C->second << "\n");
|
|
return true;
|
|
}
|
|
|
|
if (CurrentPairs.count(*C) && !Visited.count(*C))
|
|
Q.push_back(*C);
|
|
}
|
|
} while (!Q.empty());
|
|
|
|
return false;
|
|
}
|
|
|
|
// This function builds the initial dag of connected pairs with the
|
|
// pair J at the root.
|
|
void BBVectorize::buildInitialDAGFor(
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &CandidatePairsSet,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseSet<ValuePair> &PairableInstUsers,
|
|
DenseMap<Value *, Value *> &ChosenPairs,
|
|
DenseMap<ValuePair, size_t> &DAG, ValuePair J) {
|
|
// Each of these pairs is viewed as the root node of a DAG. The DAG
|
|
// is then walked (depth-first). As this happens, we keep track of
|
|
// the pairs that compose the DAG and the maximum depth of the DAG.
|
|
SmallVector<ValuePairWithDepth, 32> Q;
|
|
// General depth-first post-order traversal:
|
|
Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
|
|
do {
|
|
ValuePairWithDepth QTop = Q.back();
|
|
|
|
// Push each child onto the queue:
|
|
bool MoreChildren = false;
|
|
size_t MaxChildDepth = QTop.second;
|
|
DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
|
|
ConnectedPairs.find(QTop.first);
|
|
if (QQ != ConnectedPairs.end())
|
|
for (std::vector<ValuePair>::iterator k = QQ->second.begin(),
|
|
ke = QQ->second.end(); k != ke; ++k) {
|
|
// Make sure that this child pair is still a candidate:
|
|
if (CandidatePairsSet.count(*k)) {
|
|
DenseMap<ValuePair, size_t>::iterator C = DAG.find(*k);
|
|
if (C == DAG.end()) {
|
|
size_t d = getDepthFactor(k->first);
|
|
Q.push_back(ValuePairWithDepth(*k, QTop.second+d));
|
|
MoreChildren = true;
|
|
} else {
|
|
MaxChildDepth = std::max(MaxChildDepth, C->second);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MoreChildren) {
|
|
// Record the current pair as part of the DAG:
|
|
DAG.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
|
|
Q.pop_back();
|
|
}
|
|
} while (!Q.empty());
|
|
}
|
|
|
|
// Given some initial dag, prune it by removing conflicting pairs (pairs
|
|
// that cannot be simultaneously chosen for vectorization).
|
|
void BBVectorize::pruneDAGFor(
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseSet<ValuePair> &PairableInstUsers,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
|
|
DenseSet<VPPair> &PairableInstUserPairSet,
|
|
DenseMap<Value *, Value *> &ChosenPairs,
|
|
DenseMap<ValuePair, size_t> &DAG,
|
|
DenseSet<ValuePair> &PrunedDAG, ValuePair J,
|
|
bool UseCycleCheck) {
|
|
SmallVector<ValuePairWithDepth, 32> Q;
|
|
// General depth-first post-order traversal:
|
|
Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
|
|
do {
|
|
ValuePairWithDepth QTop = Q.pop_back_val();
|
|
PrunedDAG.insert(QTop.first);
|
|
|
|
// Visit each child, pruning as necessary...
|
|
SmallVector<ValuePairWithDepth, 8> BestChildren;
|
|
DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
|
|
ConnectedPairs.find(QTop.first);
|
|
if (QQ == ConnectedPairs.end())
|
|
continue;
|
|
|
|
for (std::vector<ValuePair>::iterator K = QQ->second.begin(),
|
|
KE = QQ->second.end(); K != KE; ++K) {
|
|
DenseMap<ValuePair, size_t>::iterator C = DAG.find(*K);
|
|
if (C == DAG.end()) continue;
|
|
|
|
// This child is in the DAG, now we need to make sure it is the
|
|
// best of any conflicting children. There could be multiple
|
|
// conflicting children, so first, determine if we're keeping
|
|
// this child, then delete conflicting children as necessary.
|
|
|
|
// It is also necessary to guard against pairing-induced
|
|
// dependencies. Consider instructions a .. x .. y .. b
|
|
// such that (a,b) are to be fused and (x,y) are to be fused
|
|
// but a is an input to x and b is an output from y. This
|
|
// means that y cannot be moved after b but x must be moved
|
|
// after b for (a,b) to be fused. In other words, after
|
|
// fusing (a,b) we have y .. a/b .. x where y is an input
|
|
// to a/b and x is an output to a/b: x and y can no longer
|
|
// be legally fused. To prevent this condition, we must
|
|
// make sure that a child pair added to the DAG is not
|
|
// both an input and output of an already-selected pair.
|
|
|
|
// Pairing-induced dependencies can also form from more complicated
|
|
// cycles. The pair vs. pair conflicts are easy to check, and so
|
|
// that is done explicitly for "fast rejection", and because for
|
|
// child vs. child conflicts, we may prefer to keep the current
|
|
// pair in preference to the already-selected child.
|
|
DenseSet<ValuePair> CurrentPairs;
|
|
|
|
bool CanAdd = true;
|
|
for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
|
|
= BestChildren.begin(), E2 = BestChildren.end();
|
|
C2 != E2; ++C2) {
|
|
if (C2->first.first == C->first.first ||
|
|
C2->first.first == C->first.second ||
|
|
C2->first.second == C->first.first ||
|
|
C2->first.second == C->first.second ||
|
|
pairsConflict(C2->first, C->first, PairableInstUsers,
|
|
UseCycleCheck ? &PairableInstUserMap : nullptr,
|
|
UseCycleCheck ? &PairableInstUserPairSet
|
|
: nullptr)) {
|
|
if (C2->second >= C->second) {
|
|
CanAdd = false;
|
|
break;
|
|
}
|
|
|
|
CurrentPairs.insert(C2->first);
|
|
}
|
|
}
|
|
if (!CanAdd) continue;
|
|
|
|
// Even worse, this child could conflict with another node already
|
|
// selected for the DAG. If that is the case, ignore this child.
|
|
for (DenseSet<ValuePair>::iterator T = PrunedDAG.begin(),
|
|
E2 = PrunedDAG.end(); T != E2; ++T) {
|
|
if (T->first == C->first.first ||
|
|
T->first == C->first.second ||
|
|
T->second == C->first.first ||
|
|
T->second == C->first.second ||
|
|
pairsConflict(*T, C->first, PairableInstUsers,
|
|
UseCycleCheck ? &PairableInstUserMap : nullptr,
|
|
UseCycleCheck ? &PairableInstUserPairSet
|
|
: nullptr)) {
|
|
CanAdd = false;
|
|
break;
|
|
}
|
|
|
|
CurrentPairs.insert(*T);
|
|
}
|
|
if (!CanAdd) continue;
|
|
|
|
// And check the queue too...
|
|
for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 = Q.begin(),
|
|
E2 = Q.end(); C2 != E2; ++C2) {
|
|
if (C2->first.first == C->first.first ||
|
|
C2->first.first == C->first.second ||
|
|
C2->first.second == C->first.first ||
|
|
C2->first.second == C->first.second ||
|
|
pairsConflict(C2->first, C->first, PairableInstUsers,
|
|
UseCycleCheck ? &PairableInstUserMap : nullptr,
|
|
UseCycleCheck ? &PairableInstUserPairSet
|
|
: nullptr)) {
|
|
CanAdd = false;
|
|
break;
|
|
}
|
|
|
|
CurrentPairs.insert(C2->first);
|
|
}
|
|
if (!CanAdd) continue;
|
|
|
|
// Last but not least, check for a conflict with any of the
|
|
// already-chosen pairs.
|
|
for (DenseMap<Value *, Value *>::iterator C2 =
|
|
ChosenPairs.begin(), E2 = ChosenPairs.end();
|
|
C2 != E2; ++C2) {
|
|
if (pairsConflict(*C2, C->first, PairableInstUsers,
|
|
UseCycleCheck ? &PairableInstUserMap : nullptr,
|
|
UseCycleCheck ? &PairableInstUserPairSet
|
|
: nullptr)) {
|
|
CanAdd = false;
|
|
break;
|
|
}
|
|
|
|
CurrentPairs.insert(*C2);
|
|
}
|
|
if (!CanAdd) continue;
|
|
|
|
// To check for non-trivial cycles formed by the addition of the
|
|
// current pair we've formed a list of all relevant pairs, now use a
|
|
// graph walk to check for a cycle. We start from the current pair and
|
|
// walk the use dag to see if we again reach the current pair. If we
|
|
// do, then the current pair is rejected.
|
|
|
|
// FIXME: It may be more efficient to use a topological-ordering
|
|
// algorithm to improve the cycle check. This should be investigated.
|
|
if (UseCycleCheck &&
|
|
pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
|
|
continue;
|
|
|
|
// This child can be added, but we may have chosen it in preference
|
|
// to an already-selected child. Check for this here, and if a
|
|
// conflict is found, then remove the previously-selected child
|
|
// before adding this one in its place.
|
|
for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
|
|
= BestChildren.begin(); C2 != BestChildren.end();) {
|
|
if (C2->first.first == C->first.first ||
|
|
C2->first.first == C->first.second ||
|
|
C2->first.second == C->first.first ||
|
|
C2->first.second == C->first.second ||
|
|
pairsConflict(C2->first, C->first, PairableInstUsers))
|
|
C2 = BestChildren.erase(C2);
|
|
else
|
|
++C2;
|
|
}
|
|
|
|
BestChildren.push_back(ValuePairWithDepth(C->first, C->second));
|
|
}
|
|
|
|
for (SmallVectorImpl<ValuePairWithDepth>::iterator C
|
|
= BestChildren.begin(), E2 = BestChildren.end();
|
|
C != E2; ++C) {
|
|
size_t DepthF = getDepthFactor(C->first.first);
|
|
Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
|
|
}
|
|
} while (!Q.empty());
|
|
}
|
|
|
|
// This function finds the best dag of mututally-compatible connected
|
|
// pairs, given the choice of root pairs as an iterator range.
|
|
void BBVectorize::findBestDAGFor(
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &CandidatePairsSet,
|
|
DenseMap<ValuePair, int> &CandidatePairCostSavings,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseSet<ValuePair> &FixedOrderPairs,
|
|
DenseMap<VPPair, unsigned> &PairConnectionTypes,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
|
|
DenseSet<ValuePair> &PairableInstUsers,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
|
|
DenseSet<VPPair> &PairableInstUserPairSet,
|
|
DenseMap<Value *, Value *> &ChosenPairs,
|
|
DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
|
|
int &BestEffSize, Value *II, std::vector<Value *>&JJ,
|
|
bool UseCycleCheck) {
|
|
for (std::vector<Value *>::iterator J = JJ.begin(), JE = JJ.end();
|
|
J != JE; ++J) {
|
|
ValuePair IJ(II, *J);
|
|
if (!CandidatePairsSet.count(IJ))
|
|
continue;
|
|
|
|
// Before going any further, make sure that this pair does not
|
|
// conflict with any already-selected pairs (see comment below
|
|
// near the DAG pruning for more details).
|
|
DenseSet<ValuePair> ChosenPairSet;
|
|
bool DoesConflict = false;
|
|
for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
|
|
E = ChosenPairs.end(); C != E; ++C) {
|
|
if (pairsConflict(*C, IJ, PairableInstUsers,
|
|
UseCycleCheck ? &PairableInstUserMap : nullptr,
|
|
UseCycleCheck ? &PairableInstUserPairSet : nullptr)) {
|
|
DoesConflict = true;
|
|
break;
|
|
}
|
|
|
|
ChosenPairSet.insert(*C);
|
|
}
|
|
if (DoesConflict) continue;
|
|
|
|
if (UseCycleCheck &&
|
|
pairWillFormCycle(IJ, PairableInstUserMap, ChosenPairSet))
|
|
continue;
|
|
|
|
DenseMap<ValuePair, size_t> DAG;
|
|
buildInitialDAGFor(CandidatePairs, CandidatePairsSet,
|
|
PairableInsts, ConnectedPairs,
|
|
PairableInstUsers, ChosenPairs, DAG, IJ);
|
|
|
|
// Because we'll keep the child with the largest depth, the largest
|
|
// depth is still the same in the unpruned DAG.
|
|
size_t MaxDepth = DAG.lookup(IJ);
|
|
|
|
DEBUG(if (DebugPairSelection) dbgs() << "BBV: found DAG for pair {"
|
|
<< *IJ.first << " <-> " << *IJ.second << "} of depth " <<
|
|
MaxDepth << " and size " << DAG.size() << "\n");
|
|
|
|
// At this point the DAG has been constructed, but, may contain
|
|
// contradictory children (meaning that different children of
|
|
// some dag node may be attempting to fuse the same instruction).
|
|
// So now we walk the dag again, in the case of a conflict,
|
|
// keep only the child with the largest depth. To break a tie,
|
|
// favor the first child.
|
|
|
|
DenseSet<ValuePair> PrunedDAG;
|
|
pruneDAGFor(CandidatePairs, PairableInsts, ConnectedPairs,
|
|
PairableInstUsers, PairableInstUserMap,
|
|
PairableInstUserPairSet,
|
|
ChosenPairs, DAG, PrunedDAG, IJ, UseCycleCheck);
|
|
|
|
int EffSize = 0;
|
|
if (TTI) {
|
|
DenseSet<Value *> PrunedDAGInstrs;
|
|
for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
|
|
E = PrunedDAG.end(); S != E; ++S) {
|
|
PrunedDAGInstrs.insert(S->first);
|
|
PrunedDAGInstrs.insert(S->second);
|
|
}
|
|
|
|
// The set of pairs that have already contributed to the total cost.
|
|
DenseSet<ValuePair> IncomingPairs;
|
|
|
|
// If the cost model were perfect, this might not be necessary; but we
|
|
// need to make sure that we don't get stuck vectorizing our own
|
|
// shuffle chains.
|
|
bool HasNontrivialInsts = false;
|
|
|
|
// The node weights represent the cost savings associated with
|
|
// fusing the pair of instructions.
|
|
for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
|
|
E = PrunedDAG.end(); S != E; ++S) {
|
|
if (!isa<ShuffleVectorInst>(S->first) &&
|
|
!isa<InsertElementInst>(S->first) &&
|
|
!isa<ExtractElementInst>(S->first))
|
|
HasNontrivialInsts = true;
|
|
|
|
bool FlipOrder = false;
|
|
|
|
if (getDepthFactor(S->first)) {
|
|
int ESContrib = CandidatePairCostSavings.find(*S)->second;
|
|
DEBUG(if (DebugPairSelection) dbgs() << "\tweight {"
|
|
<< *S->first << " <-> " << *S->second << "} = " <<
|
|
ESContrib << "\n");
|
|
EffSize += ESContrib;
|
|
}
|
|
|
|
// The edge weights contribute in a negative sense: they represent
|
|
// the cost of shuffles.
|
|
DenseMap<ValuePair, std::vector<ValuePair> >::iterator SS =
|
|
ConnectedPairDeps.find(*S);
|
|
if (SS != ConnectedPairDeps.end()) {
|
|
unsigned NumDepsDirect = 0, NumDepsSwap = 0;
|
|
for (std::vector<ValuePair>::iterator T = SS->second.begin(),
|
|
TE = SS->second.end(); T != TE; ++T) {
|
|
VPPair Q(*S, *T);
|
|
if (!PrunedDAG.count(Q.second))
|
|
continue;
|
|
DenseMap<VPPair, unsigned>::iterator R =
|
|
PairConnectionTypes.find(VPPair(Q.second, Q.first));
|
|
assert(R != PairConnectionTypes.end() &&
|
|
"Cannot find pair connection type");
|
|
if (R->second == PairConnectionDirect)
|
|
++NumDepsDirect;
|
|
else if (R->second == PairConnectionSwap)
|
|
++NumDepsSwap;
|
|
}
|
|
|
|
// If there are more swaps than direct connections, then
|
|
// the pair order will be flipped during fusion. So the real
|
|
// number of swaps is the minimum number.
|
|
FlipOrder = !FixedOrderPairs.count(*S) &&
|
|
((NumDepsSwap > NumDepsDirect) ||
|
|
FixedOrderPairs.count(ValuePair(S->second, S->first)));
|
|
|
|
for (std::vector<ValuePair>::iterator T = SS->second.begin(),
|
|
TE = SS->second.end(); T != TE; ++T) {
|
|
VPPair Q(*S, *T);
|
|
if (!PrunedDAG.count(Q.second))
|
|
continue;
|
|
DenseMap<VPPair, unsigned>::iterator R =
|
|
PairConnectionTypes.find(VPPair(Q.second, Q.first));
|
|
assert(R != PairConnectionTypes.end() &&
|
|
"Cannot find pair connection type");
|
|
Type *Ty1 = Q.second.first->getType(),
|
|
*Ty2 = Q.second.second->getType();
|
|
Type *VTy = getVecTypeForPair(Ty1, Ty2);
|
|
if ((R->second == PairConnectionDirect && FlipOrder) ||
|
|
(R->second == PairConnectionSwap && !FlipOrder) ||
|
|
R->second == PairConnectionSplat) {
|
|
int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
|
|
VTy, VTy);
|
|
|
|
if (VTy->getVectorNumElements() == 2) {
|
|
if (R->second == PairConnectionSplat)
|
|
ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
|
|
TargetTransformInfo::SK_Broadcast, VTy));
|
|
else
|
|
ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
|
|
TargetTransformInfo::SK_Reverse, VTy));
|
|
}
|
|
|
|
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
|
|
*Q.second.first << " <-> " << *Q.second.second <<
|
|
"} -> {" <<
|
|
*S->first << " <-> " << *S->second << "} = " <<
|
|
ESContrib << "\n");
|
|
EffSize -= ESContrib;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute the cost of outgoing edges. We assume that edges outgoing
|
|
// to shuffles, inserts or extracts can be merged, and so contribute
|
|
// no additional cost.
|
|
if (!S->first->getType()->isVoidTy()) {
|
|
Type *Ty1 = S->first->getType(),
|
|
*Ty2 = S->second->getType();
|
|
Type *VTy = getVecTypeForPair(Ty1, Ty2);
|
|
|
|
bool NeedsExtraction = false;
|
|
for (User *U : S->first->users()) {
|
|
if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) {
|
|
// Shuffle can be folded if it has no other input
|
|
if (isa<UndefValue>(SI->getOperand(1)))
|
|
continue;
|
|
}
|
|
if (isa<ExtractElementInst>(U))
|
|
continue;
|
|
if (PrunedDAGInstrs.count(U))
|
|
continue;
|
|
NeedsExtraction = true;
|
|
break;
|
|
}
|
|
|
|
if (NeedsExtraction) {
|
|
int ESContrib;
|
|
if (Ty1->isVectorTy()) {
|
|
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
|
|
Ty1, VTy);
|
|
ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
|
|
TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1));
|
|
} else
|
|
ESContrib = (int) TTI->getVectorInstrCost(
|
|
Instruction::ExtractElement, VTy, 0);
|
|
|
|
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
|
|
*S->first << "} = " << ESContrib << "\n");
|
|
EffSize -= ESContrib;
|
|
}
|
|
|
|
NeedsExtraction = false;
|
|
for (User *U : S->second->users()) {
|
|
if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) {
|
|
// Shuffle can be folded if it has no other input
|
|
if (isa<UndefValue>(SI->getOperand(1)))
|
|
continue;
|
|
}
|
|
if (isa<ExtractElementInst>(U))
|
|
continue;
|
|
if (PrunedDAGInstrs.count(U))
|
|
continue;
|
|
NeedsExtraction = true;
|
|
break;
|
|
}
|
|
|
|
if (NeedsExtraction) {
|
|
int ESContrib;
|
|
if (Ty2->isVectorTy()) {
|
|
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
|
|
Ty2, VTy);
|
|
ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
|
|
TargetTransformInfo::SK_ExtractSubvector, VTy,
|
|
Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2));
|
|
} else
|
|
ESContrib = (int) TTI->getVectorInstrCost(
|
|
Instruction::ExtractElement, VTy, 1);
|
|
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
|
|
*S->second << "} = " << ESContrib << "\n");
|
|
EffSize -= ESContrib;
|
|
}
|
|
}
|
|
|
|
// Compute the cost of incoming edges.
|
|
if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) {
|
|
Instruction *S1 = cast<Instruction>(S->first),
|
|
*S2 = cast<Instruction>(S->second);
|
|
for (unsigned o = 0; o < S1->getNumOperands(); ++o) {
|
|
Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o);
|
|
|
|
// Combining constants into vector constants (or small vector
|
|
// constants into larger ones are assumed free).
|
|
if (isa<Constant>(O1) && isa<Constant>(O2))
|
|
continue;
|
|
|
|
if (FlipOrder)
|
|
std::swap(O1, O2);
|
|
|
|
ValuePair VP = ValuePair(O1, O2);
|
|
ValuePair VPR = ValuePair(O2, O1);
|
|
|
|
// Internal edges are not handled here.
|
|
if (PrunedDAG.count(VP) || PrunedDAG.count(VPR))
|
|
continue;
|
|
|
|
Type *Ty1 = O1->getType(),
|
|
*Ty2 = O2->getType();
|
|
Type *VTy = getVecTypeForPair(Ty1, Ty2);
|
|
|
|
// Combining vector operations of the same type is also assumed
|
|
// folded with other operations.
|
|
if (Ty1 == Ty2) {
|
|
// If both are insert elements, then both can be widened.
|
|
InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1),
|
|
*IEO2 = dyn_cast<InsertElementInst>(O2);
|
|
if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2))
|
|
continue;
|
|
// If both are extract elements, and both have the same input
|
|
// type, then they can be replaced with a shuffle
|
|
ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1),
|
|
*EIO2 = dyn_cast<ExtractElementInst>(O2);
|
|
if (EIO1 && EIO2 &&
|
|
EIO1->getOperand(0)->getType() ==
|
|
EIO2->getOperand(0)->getType())
|
|
continue;
|
|
// If both are a shuffle with equal operand types and only two
|
|
// unqiue operands, then they can be replaced with a single
|
|
// shuffle
|
|
ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1),
|
|
*SIO2 = dyn_cast<ShuffleVectorInst>(O2);
|
|
if (SIO1 && SIO2 &&
|
|
SIO1->getOperand(0)->getType() ==
|
|
SIO2->getOperand(0)->getType()) {
|
|
SmallSet<Value *, 4> SIOps;
|
|
SIOps.insert(SIO1->getOperand(0));
|
|
SIOps.insert(SIO1->getOperand(1));
|
|
SIOps.insert(SIO2->getOperand(0));
|
|
SIOps.insert(SIO2->getOperand(1));
|
|
if (SIOps.size() <= 2)
|
|
continue;
|
|
}
|
|
}
|
|
|
|
int ESContrib;
|
|
// This pair has already been formed.
|
|
if (IncomingPairs.count(VP)) {
|
|
continue;
|
|
} else if (IncomingPairs.count(VPR)) {
|
|
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
|
|
VTy, VTy);
|
|
|
|
if (VTy->getVectorNumElements() == 2)
|
|
ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
|
|
TargetTransformInfo::SK_Reverse, VTy));
|
|
} else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
|
|
ESContrib = (int) TTI->getVectorInstrCost(
|
|
Instruction::InsertElement, VTy, 0);
|
|
ESContrib += (int) TTI->getVectorInstrCost(
|
|
Instruction::InsertElement, VTy, 1);
|
|
} else if (!Ty1->isVectorTy()) {
|
|
// O1 needs to be inserted into a vector of size O2, and then
|
|
// both need to be shuffled together.
|
|
ESContrib = (int) TTI->getVectorInstrCost(
|
|
Instruction::InsertElement, Ty2, 0);
|
|
ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
|
|
VTy, Ty2);
|
|
} else if (!Ty2->isVectorTy()) {
|
|
// O2 needs to be inserted into a vector of size O1, and then
|
|
// both need to be shuffled together.
|
|
ESContrib = (int) TTI->getVectorInstrCost(
|
|
Instruction::InsertElement, Ty1, 0);
|
|
ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
|
|
VTy, Ty1);
|
|
} else {
|
|
Type *TyBig = Ty1, *TySmall = Ty2;
|
|
if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements())
|
|
std::swap(TyBig, TySmall);
|
|
|
|
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
|
|
VTy, TyBig);
|
|
if (TyBig != TySmall)
|
|
ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
|
|
TyBig, TySmall);
|
|
}
|
|
|
|
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {"
|
|
<< *O1 << " <-> " << *O2 << "} = " <<
|
|
ESContrib << "\n");
|
|
EffSize -= ESContrib;
|
|
IncomingPairs.insert(VP);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!HasNontrivialInsts) {
|
|
DEBUG(if (DebugPairSelection) dbgs() <<
|
|
"\tNo non-trivial instructions in DAG;"
|
|
" override to zero effective size\n");
|
|
EffSize = 0;
|
|
}
|
|
} else {
|
|
for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
|
|
E = PrunedDAG.end(); S != E; ++S)
|
|
EffSize += (int) getDepthFactor(S->first);
|
|
}
|
|
|
|
DEBUG(if (DebugPairSelection)
|
|
dbgs() << "BBV: found pruned DAG for pair {"
|
|
<< *IJ.first << " <-> " << *IJ.second << "} of depth " <<
|
|
MaxDepth << " and size " << PrunedDAG.size() <<
|
|
" (effective size: " << EffSize << ")\n");
|
|
if (((TTI && !UseChainDepthWithTI) ||
|
|
MaxDepth >= Config.ReqChainDepth) &&
|
|
EffSize > 0 && EffSize > BestEffSize) {
|
|
BestMaxDepth = MaxDepth;
|
|
BestEffSize = EffSize;
|
|
BestDAG = PrunedDAG;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Given the list of candidate pairs, this function selects those
|
|
// that will be fused into vector instructions.
|
|
void BBVectorize::choosePairs(
|
|
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
|
|
DenseSet<ValuePair> &CandidatePairsSet,
|
|
DenseMap<ValuePair, int> &CandidatePairCostSavings,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseSet<ValuePair> &FixedOrderPairs,
|
|
DenseMap<VPPair, unsigned> &PairConnectionTypes,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
|
|
DenseSet<ValuePair> &PairableInstUsers,
|
|
DenseMap<Value *, Value *>& ChosenPairs) {
|
|
bool UseCycleCheck =
|
|
CandidatePairsSet.size() <= Config.MaxCandPairsForCycleCheck;
|
|
|
|
DenseMap<Value *, std::vector<Value *> > CandidatePairs2;
|
|
for (DenseSet<ValuePair>::iterator I = CandidatePairsSet.begin(),
|
|
E = CandidatePairsSet.end(); I != E; ++I) {
|
|
std::vector<Value *> &JJ = CandidatePairs2[I->second];
|
|
if (JJ.empty()) JJ.reserve(32);
|
|
JJ.push_back(I->first);
|
|
}
|
|
|
|
DenseMap<ValuePair, std::vector<ValuePair> > PairableInstUserMap;
|
|
DenseSet<VPPair> PairableInstUserPairSet;
|
|
for (std::vector<Value *>::iterator I = PairableInsts.begin(),
|
|
E = PairableInsts.end(); I != E; ++I) {
|
|
// The number of possible pairings for this variable:
|
|
size_t NumChoices = CandidatePairs.lookup(*I).size();
|
|
if (!NumChoices) continue;
|
|
|
|
std::vector<Value *> &JJ = CandidatePairs[*I];
|
|
|
|
// The best pair to choose and its dag:
|
|
size_t BestMaxDepth = 0;
|
|
int BestEffSize = 0;
|
|
DenseSet<ValuePair> BestDAG;
|
|
findBestDAGFor(CandidatePairs, CandidatePairsSet,
|
|
CandidatePairCostSavings,
|
|
PairableInsts, FixedOrderPairs, PairConnectionTypes,
|
|
ConnectedPairs, ConnectedPairDeps,
|
|
PairableInstUsers, PairableInstUserMap,
|
|
PairableInstUserPairSet, ChosenPairs,
|
|
BestDAG, BestMaxDepth, BestEffSize, *I, JJ,
|
|
UseCycleCheck);
|
|
|
|
if (BestDAG.empty())
|
|
continue;
|
|
|
|
// A dag has been chosen (or not) at this point. If no dag was
|
|
// chosen, then this instruction, I, cannot be paired (and is no longer
|
|
// considered).
|
|
|
|
DEBUG(dbgs() << "BBV: selected pairs in the best DAG for: "
|
|
<< *cast<Instruction>(*I) << "\n");
|
|
|
|
for (DenseSet<ValuePair>::iterator S = BestDAG.begin(),
|
|
SE2 = BestDAG.end(); S != SE2; ++S) {
|
|
// Insert the members of this dag into the list of chosen pairs.
|
|
ChosenPairs.insert(ValuePair(S->first, S->second));
|
|
DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
|
|
*S->second << "\n");
|
|
|
|
// Remove all candidate pairs that have values in the chosen dag.
|
|
std::vector<Value *> &KK = CandidatePairs[S->first];
|
|
for (std::vector<Value *>::iterator K = KK.begin(), KE = KK.end();
|
|
K != KE; ++K) {
|
|
if (*K == S->second)
|
|
continue;
|
|
|
|
CandidatePairsSet.erase(ValuePair(S->first, *K));
|
|
}
|
|
|
|
std::vector<Value *> &LL = CandidatePairs2[S->second];
|
|
for (std::vector<Value *>::iterator L = LL.begin(), LE = LL.end();
|
|
L != LE; ++L) {
|
|
if (*L == S->first)
|
|
continue;
|
|
|
|
CandidatePairsSet.erase(ValuePair(*L, S->second));
|
|
}
|
|
|
|
std::vector<Value *> &MM = CandidatePairs[S->second];
|
|
for (std::vector<Value *>::iterator M = MM.begin(), ME = MM.end();
|
|
M != ME; ++M) {
|
|
assert(*M != S->first && "Flipped pair in candidate list?");
|
|
CandidatePairsSet.erase(ValuePair(S->second, *M));
|
|
}
|
|
|
|
std::vector<Value *> &NN = CandidatePairs2[S->first];
|
|
for (std::vector<Value *>::iterator N = NN.begin(), NE = NN.end();
|
|
N != NE; ++N) {
|
|
assert(*N != S->second && "Flipped pair in candidate list?");
|
|
CandidatePairsSet.erase(ValuePair(*N, S->first));
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
|
|
}
|
|
|
|
std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
|
|
unsigned n = 0) {
|
|
if (!I->hasName())
|
|
return "";
|
|
|
|
return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
|
|
(n > 0 ? "." + utostr(n) : "")).str();
|
|
}
|
|
|
|
// Returns the value that is to be used as the pointer input to the vector
|
|
// instruction that fuses I with J.
|
|
Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
|
|
Instruction *I, Instruction *J, unsigned o) {
|
|
Value *IPtr, *JPtr;
|
|
unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
|
|
int64_t OffsetInElmts;
|
|
|
|
// Note: the analysis might fail here, that is why the pair order has
|
|
// been precomputed (OffsetInElmts must be unused here).
|
|
(void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
|
|
IAddressSpace, JAddressSpace,
|
|
OffsetInElmts, false);
|
|
|
|
// The pointer value is taken to be the one with the lowest offset.
|
|
Value *VPtr = IPtr;
|
|
|
|
Type *ArgTypeI = IPtr->getType()->getPointerElementType();
|
|
Type *ArgTypeJ = JPtr->getType()->getPointerElementType();
|
|
Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
|
|
Type *VArgPtrType
|
|
= PointerType::get(VArgType,
|
|
IPtr->getType()->getPointerAddressSpace());
|
|
return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
|
|
/* insert before */ I);
|
|
}
|
|
|
|
void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
|
|
unsigned MaskOffset, unsigned NumInElem,
|
|
unsigned NumInElem1, unsigned IdxOffset,
|
|
std::vector<Constant*> &Mask) {
|
|
unsigned NumElem1 = J->getType()->getVectorNumElements();
|
|
for (unsigned v = 0; v < NumElem1; ++v) {
|
|
int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
|
|
if (m < 0) {
|
|
Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
|
|
} else {
|
|
unsigned mm = m + (int) IdxOffset;
|
|
if (m >= (int) NumInElem1)
|
|
mm += (int) NumInElem;
|
|
|
|
Mask[v+MaskOffset] =
|
|
ConstantInt::get(Type::getInt32Ty(Context), mm);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the value that is to be used as the vector-shuffle mask to the
|
|
// vector instruction that fuses I with J.
|
|
Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
|
|
Instruction *I, Instruction *J) {
|
|
// This is the shuffle mask. We need to append the second
|
|
// mask to the first, and the numbers need to be adjusted.
|
|
|
|
Type *ArgTypeI = I->getType();
|
|
Type *ArgTypeJ = J->getType();
|
|
Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
|
|
|
|
unsigned NumElemI = ArgTypeI->getVectorNumElements();
|
|
|
|
// Get the total number of elements in the fused vector type.
|
|
// By definition, this must equal the number of elements in
|
|
// the final mask.
|
|
unsigned NumElem = VArgType->getVectorNumElements();
|
|
std::vector<Constant*> Mask(NumElem);
|
|
|
|
Type *OpTypeI = I->getOperand(0)->getType();
|
|
unsigned NumInElemI = OpTypeI->getVectorNumElements();
|
|
Type *OpTypeJ = J->getOperand(0)->getType();
|
|
unsigned NumInElemJ = OpTypeJ->getVectorNumElements();
|
|
|
|
// The fused vector will be:
|
|
// -----------------------------------------------------
|
|
// | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
|
|
// -----------------------------------------------------
|
|
// from which we'll extract NumElem total elements (where the first NumElemI
|
|
// of them come from the mask in I and the remainder come from the mask
|
|
// in J.
|
|
|
|
// For the mask from the first pair...
|
|
fillNewShuffleMask(Context, I, 0, NumInElemJ, NumInElemI,
|
|
0, Mask);
|
|
|
|
// For the mask from the second pair...
|
|
fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
|
|
NumInElemI, Mask);
|
|
|
|
return ConstantVector::get(Mask);
|
|
}
|
|
|
|
bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
|
|
Instruction *J, unsigned o, Value *&LOp,
|
|
unsigned numElemL,
|
|
Type *ArgTypeL, Type *ArgTypeH,
|
|
bool IBeforeJ, unsigned IdxOff) {
|
|
bool ExpandedIEChain = false;
|
|
if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
|
|
// If we have a pure insertelement chain, then this can be rewritten
|
|
// into a chain that directly builds the larger type.
|
|
if (isPureIEChain(LIE)) {
|
|
SmallVector<Value *, 8> VectElemts(numElemL,
|
|
UndefValue::get(ArgTypeL->getScalarType()));
|
|
InsertElementInst *LIENext = LIE;
|
|
do {
|
|
unsigned Idx =
|
|
cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
|
|
VectElemts[Idx] = LIENext->getOperand(1);
|
|
} while ((LIENext =
|
|
dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
|
|
|
|
LIENext = nullptr;
|
|
Value *LIEPrev = UndefValue::get(ArgTypeH);
|
|
for (unsigned i = 0; i < numElemL; ++i) {
|
|
if (isa<UndefValue>(VectElemts[i])) continue;
|
|
LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
|
|
ConstantInt::get(Type::getInt32Ty(Context),
|
|
i + IdxOff),
|
|
getReplacementName(IBeforeJ ? I : J,
|
|
true, o, i+1));
|
|
LIENext->insertBefore(IBeforeJ ? J : I);
|
|
LIEPrev = LIENext;
|
|
}
|
|
|
|
LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
|
|
ExpandedIEChain = true;
|
|
}
|
|
}
|
|
|
|
return ExpandedIEChain;
|
|
}
|
|
|
|
static unsigned getNumScalarElements(Type *Ty) {
|
|
if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
|
|
return VecTy->getNumElements();
|
|
return 1;
|
|
}
|
|
|
|
// Returns the value to be used as the specified operand of the vector
|
|
// instruction that fuses I with J.
|
|
Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
|
|
Instruction *J, unsigned o, bool IBeforeJ) {
|
|
Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
|
|
Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
|
|
|
|
// Compute the fused vector type for this operand
|
|
Type *ArgTypeI = I->getOperand(o)->getType();
|
|
Type *ArgTypeJ = J->getOperand(o)->getType();
|
|
VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
|
|
|
|
Instruction *L = I, *H = J;
|
|
Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
|
|
|
|
unsigned numElemL = getNumScalarElements(ArgTypeL);
|
|
unsigned numElemH = getNumScalarElements(ArgTypeH);
|
|
|
|
Value *LOp = L->getOperand(o);
|
|
Value *HOp = H->getOperand(o);
|
|
unsigned numElem = VArgType->getNumElements();
|
|
|
|
// First, we check if we can reuse the "original" vector outputs (if these
|
|
// exist). We might need a shuffle.
|
|
ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
|
|
ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
|
|
ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
|
|
ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
|
|
|
|
// FIXME: If we're fusing shuffle instructions, then we can't apply this
|
|
// optimization. The input vectors to the shuffle might be a different
|
|
// length from the shuffle outputs. Unfortunately, the replacement
|
|
// shuffle mask has already been formed, and the mask entries are sensitive
|
|
// to the sizes of the inputs.
|
|
bool IsSizeChangeShuffle =
|
|
isa<ShuffleVectorInst>(L) &&
|
|
(LOp->getType() != L->getType() || HOp->getType() != H->getType());
|
|
|
|
if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
|
|
// We can have at most two unique vector inputs.
|
|
bool CanUseInputs = true;
|
|
Value *I1, *I2 = nullptr;
|
|
if (LEE) {
|
|
I1 = LEE->getOperand(0);
|
|
} else {
|
|
I1 = LSV->getOperand(0);
|
|
I2 = LSV->getOperand(1);
|
|
if (I2 == I1 || isa<UndefValue>(I2))
|
|
I2 = nullptr;
|
|
}
|
|
|
|
if (HEE) {
|
|
Value *I3 = HEE->getOperand(0);
|
|
if (!I2 && I3 != I1)
|
|
I2 = I3;
|
|
else if (I3 != I1 && I3 != I2)
|
|
CanUseInputs = false;
|
|
} else {
|
|
Value *I3 = HSV->getOperand(0);
|
|
if (!I2 && I3 != I1)
|
|
I2 = I3;
|
|
else if (I3 != I1 && I3 != I2)
|
|
CanUseInputs = false;
|
|
|
|
if (CanUseInputs) {
|
|
Value *I4 = HSV->getOperand(1);
|
|
if (!isa<UndefValue>(I4)) {
|
|
if (!I2 && I4 != I1)
|
|
I2 = I4;
|
|
else if (I4 != I1 && I4 != I2)
|
|
CanUseInputs = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CanUseInputs) {
|
|
unsigned LOpElem =
|
|
cast<Instruction>(LOp)->getOperand(0)->getType()
|
|
->getVectorNumElements();
|
|
|
|
unsigned HOpElem =
|
|
cast<Instruction>(HOp)->getOperand(0)->getType()
|
|
->getVectorNumElements();
|
|
|
|
// We have one or two input vectors. We need to map each index of the
|
|
// operands to the index of the original vector.
|
|
SmallVector<std::pair<int, int>, 8> II(numElem);
|
|
for (unsigned i = 0; i < numElemL; ++i) {
|
|
int Idx, INum;
|
|
if (LEE) {
|
|
Idx =
|
|
cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
|
|
INum = LEE->getOperand(0) == I1 ? 0 : 1;
|
|
} else {
|
|
Idx = LSV->getMaskValue(i);
|
|
if (Idx < (int) LOpElem) {
|
|
INum = LSV->getOperand(0) == I1 ? 0 : 1;
|
|
} else {
|
|
Idx -= LOpElem;
|
|
INum = LSV->getOperand(1) == I1 ? 0 : 1;
|
|
}
|
|
}
|
|
|
|
II[i] = std::pair<int, int>(Idx, INum);
|
|
}
|
|
for (unsigned i = 0; i < numElemH; ++i) {
|
|
int Idx, INum;
|
|
if (HEE) {
|
|
Idx =
|
|
cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
|
|
INum = HEE->getOperand(0) == I1 ? 0 : 1;
|
|
} else {
|
|
Idx = HSV->getMaskValue(i);
|
|
if (Idx < (int) HOpElem) {
|
|
INum = HSV->getOperand(0) == I1 ? 0 : 1;
|
|
} else {
|
|
Idx -= HOpElem;
|
|
INum = HSV->getOperand(1) == I1 ? 0 : 1;
|
|
}
|
|
}
|
|
|
|
II[i + numElemL] = std::pair<int, int>(Idx, INum);
|
|
}
|
|
|
|
// We now have an array which tells us from which index of which
|
|
// input vector each element of the operand comes.
|
|
VectorType *I1T = cast<VectorType>(I1->getType());
|
|
unsigned I1Elem = I1T->getNumElements();
|
|
|
|
if (!I2) {
|
|
// In this case there is only one underlying vector input. Check for
|
|
// the trivial case where we can use the input directly.
|
|
if (I1Elem == numElem) {
|
|
bool ElemInOrder = true;
|
|
for (unsigned i = 0; i < numElem; ++i) {
|
|
if (II[i].first != (int) i && II[i].first != -1) {
|
|
ElemInOrder = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ElemInOrder)
|
|
return I1;
|
|
}
|
|
|
|
// A shuffle is needed.
|
|
std::vector<Constant *> Mask(numElem);
|
|
for (unsigned i = 0; i < numElem; ++i) {
|
|
int Idx = II[i].first;
|
|
if (Idx == -1)
|
|
Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
|
|
else
|
|
Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
|
|
}
|
|
|
|
Instruction *S =
|
|
new ShuffleVectorInst(I1, UndefValue::get(I1T),
|
|
ConstantVector::get(Mask),
|
|
getReplacementName(IBeforeJ ? I : J,
|
|
true, o));
|
|
S->insertBefore(IBeforeJ ? J : I);
|
|
return S;
|
|
}
|
|
|
|
VectorType *I2T = cast<VectorType>(I2->getType());
|
|
unsigned I2Elem = I2T->getNumElements();
|
|
|
|
// This input comes from two distinct vectors. The first step is to
|
|
// make sure that both vectors are the same length. If not, the
|
|
// smaller one will need to grow before they can be shuffled together.
|
|
if (I1Elem < I2Elem) {
|
|
std::vector<Constant *> Mask(I2Elem);
|
|
unsigned v = 0;
|
|
for (; v < I1Elem; ++v)
|
|
Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
|
|
for (; v < I2Elem; ++v)
|
|
Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
|
|
|
|
Instruction *NewI1 =
|
|
new ShuffleVectorInst(I1, UndefValue::get(I1T),
|
|
ConstantVector::get(Mask),
|
|
getReplacementName(IBeforeJ ? I : J,
|
|
true, o, 1));
|
|
NewI1->insertBefore(IBeforeJ ? J : I);
|
|
I1 = NewI1;
|
|
I1Elem = I2Elem;
|
|
} else if (I1Elem > I2Elem) {
|
|
std::vector<Constant *> Mask(I1Elem);
|
|
unsigned v = 0;
|
|
for (; v < I2Elem; ++v)
|
|
Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
|
|
for (; v < I1Elem; ++v)
|
|
Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
|
|
|
|
Instruction *NewI2 =
|
|
new ShuffleVectorInst(I2, UndefValue::get(I2T),
|
|
ConstantVector::get(Mask),
|
|
getReplacementName(IBeforeJ ? I : J,
|
|
true, o, 1));
|
|
NewI2->insertBefore(IBeforeJ ? J : I);
|
|
I2 = NewI2;
|
|
}
|
|
|
|
// Now that both I1 and I2 are the same length we can shuffle them
|
|
// together (and use the result).
|
|
std::vector<Constant *> Mask(numElem);
|
|
for (unsigned v = 0; v < numElem; ++v) {
|
|
if (II[v].first == -1) {
|
|
Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
|
|
} else {
|
|
int Idx = II[v].first + II[v].second * I1Elem;
|
|
Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
|
|
}
|
|
}
|
|
|
|
Instruction *NewOp =
|
|
new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
|
|
getReplacementName(IBeforeJ ? I : J, true, o));
|
|
NewOp->insertBefore(IBeforeJ ? J : I);
|
|
return NewOp;
|
|
}
|
|
}
|
|
|
|
Type *ArgType = ArgTypeL;
|
|
if (numElemL < numElemH) {
|
|
if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
|
|
ArgTypeL, VArgType, IBeforeJ, 1)) {
|
|
// This is another short-circuit case: we're combining a scalar into
|
|
// a vector that is formed by an IE chain. We've just expanded the IE
|
|
// chain, now insert the scalar and we're done.
|
|
|
|
Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
|
|
getReplacementName(IBeforeJ ? I : J, true, o));
|
|
S->insertBefore(IBeforeJ ? J : I);
|
|
return S;
|
|
} else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
|
|
ArgTypeH, IBeforeJ)) {
|
|
// The two vector inputs to the shuffle must be the same length,
|
|
// so extend the smaller vector to be the same length as the larger one.
|
|
Instruction *NLOp;
|
|
if (numElemL > 1) {
|
|
|
|
std::vector<Constant *> Mask(numElemH);
|
|
unsigned v = 0;
|
|
for (; v < numElemL; ++v)
|
|
Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
|
|
for (; v < numElemH; ++v)
|
|
Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
|
|
|
|
NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
|
|
ConstantVector::get(Mask),
|
|
getReplacementName(IBeforeJ ? I : J,
|
|
true, o, 1));
|
|
} else {
|
|
NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
|
|
getReplacementName(IBeforeJ ? I : J,
|
|
true, o, 1));
|
|
}
|
|
|
|
NLOp->insertBefore(IBeforeJ ? J : I);
|
|
LOp = NLOp;
|
|
}
|
|
|
|
ArgType = ArgTypeH;
|
|
} else if (numElemL > numElemH) {
|
|
if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
|
|
ArgTypeH, VArgType, IBeforeJ)) {
|
|
Instruction *S =
|
|
InsertElementInst::Create(LOp, HOp,
|
|
ConstantInt::get(Type::getInt32Ty(Context),
|
|
numElemL),
|
|
getReplacementName(IBeforeJ ? I : J,
|
|
true, o));
|
|
S->insertBefore(IBeforeJ ? J : I);
|
|
return S;
|
|
} else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
|
|
ArgTypeL, IBeforeJ)) {
|
|
Instruction *NHOp;
|
|
if (numElemH > 1) {
|
|
std::vector<Constant *> Mask(numElemL);
|
|
unsigned v = 0;
|
|
for (; v < numElemH; ++v)
|
|
Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
|
|
for (; v < numElemL; ++v)
|
|
Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
|
|
|
|
NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
|
|
ConstantVector::get(Mask),
|
|
getReplacementName(IBeforeJ ? I : J,
|
|
true, o, 1));
|
|
} else {
|
|
NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
|
|
getReplacementName(IBeforeJ ? I : J,
|
|
true, o, 1));
|
|
}
|
|
|
|
NHOp->insertBefore(IBeforeJ ? J : I);
|
|
HOp = NHOp;
|
|
}
|
|
}
|
|
|
|
if (ArgType->isVectorTy()) {
|
|
unsigned numElem = VArgType->getVectorNumElements();
|
|
std::vector<Constant*> Mask(numElem);
|
|
for (unsigned v = 0; v < numElem; ++v) {
|
|
unsigned Idx = v;
|
|
// If the low vector was expanded, we need to skip the extra
|
|
// undefined entries.
|
|
if (v >= numElemL && numElemH > numElemL)
|
|
Idx += (numElemH - numElemL);
|
|
Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
|
|
}
|
|
|
|
Instruction *BV = new ShuffleVectorInst(LOp, HOp,
|
|
ConstantVector::get(Mask),
|
|
getReplacementName(IBeforeJ ? I : J, true, o));
|
|
BV->insertBefore(IBeforeJ ? J : I);
|
|
return BV;
|
|
}
|
|
|
|
Instruction *BV1 = InsertElementInst::Create(
|
|
UndefValue::get(VArgType), LOp, CV0,
|
|
getReplacementName(IBeforeJ ? I : J,
|
|
true, o, 1));
|
|
BV1->insertBefore(IBeforeJ ? J : I);
|
|
Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
|
|
getReplacementName(IBeforeJ ? I : J,
|
|
true, o, 2));
|
|
BV2->insertBefore(IBeforeJ ? J : I);
|
|
return BV2;
|
|
}
|
|
|
|
// This function creates an array of values that will be used as the inputs
|
|
// to the vector instruction that fuses I with J.
|
|
void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
|
|
Instruction *I, Instruction *J,
|
|
SmallVectorImpl<Value *> &ReplacedOperands,
|
|
bool IBeforeJ) {
|
|
unsigned NumOperands = I->getNumOperands();
|
|
|
|
for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
|
|
// Iterate backward so that we look at the store pointer
|
|
// first and know whether or not we need to flip the inputs.
|
|
|
|
if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
|
|
// This is the pointer for a load/store instruction.
|
|
ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o);
|
|
continue;
|
|
} else if (isa<CallInst>(I)) {
|
|
Function *F = cast<CallInst>(I)->getCalledFunction();
|
|
Intrinsic::ID IID = F->getIntrinsicID();
|
|
if (o == NumOperands-1) {
|
|
BasicBlock &BB = *I->getParent();
|
|
|
|
Module *M = BB.getParent()->getParent();
|
|
Type *ArgTypeI = I->getType();
|
|
Type *ArgTypeJ = J->getType();
|
|
Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
|
|
|
|
ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
|
|
continue;
|
|
} else if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
|
|
IID == Intrinsic::cttz) && o == 1) {
|
|
// The second argument of powi/ctlz/cttz is a single integer/constant
|
|
// and we've already checked that both arguments are equal.
|
|
// As a result, we just keep I's second argument.
|
|
ReplacedOperands[o] = I->getOperand(o);
|
|
continue;
|
|
}
|
|
} else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
|
|
ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
|
|
continue;
|
|
}
|
|
|
|
ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ);
|
|
}
|
|
}
|
|
|
|
// This function creates two values that represent the outputs of the
|
|
// original I and J instructions. These are generally vector shuffles
|
|
// or extracts. In many cases, these will end up being unused and, thus,
|
|
// eliminated by later passes.
|
|
void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
|
|
Instruction *J, Instruction *K,
|
|
Instruction *&InsertionPt,
|
|
Instruction *&K1, Instruction *&K2) {
|
|
if (isa<StoreInst>(I))
|
|
return;
|
|
|
|
Type *IType = I->getType();
|
|
Type *JType = J->getType();
|
|
|
|
VectorType *VType = getVecTypeForPair(IType, JType);
|
|
unsigned numElem = VType->getNumElements();
|
|
|
|
unsigned numElemI = getNumScalarElements(IType);
|
|
unsigned numElemJ = getNumScalarElements(JType);
|
|
|
|
if (IType->isVectorTy()) {
|
|
std::vector<Constant *> Mask1(numElemI), Mask2(numElemI);
|
|
for (unsigned v = 0; v < numElemI; ++v) {
|
|
Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
|
|
Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ + v);
|
|
}
|
|
|
|
K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
|
|
ConstantVector::get(Mask1),
|
|
getReplacementName(K, false, 1));
|
|
} else {
|
|
Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
|
|
K1 = ExtractElementInst::Create(K, CV0, getReplacementName(K, false, 1));
|
|
}
|
|
|
|
if (JType->isVectorTy()) {
|
|
std::vector<Constant *> Mask1(numElemJ), Mask2(numElemJ);
|
|
for (unsigned v = 0; v < numElemJ; ++v) {
|
|
Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
|
|
Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI + v);
|
|
}
|
|
|
|
K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
|
|
ConstantVector::get(Mask2),
|
|
getReplacementName(K, false, 2));
|
|
} else {
|
|
Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem - 1);
|
|
K2 = ExtractElementInst::Create(K, CV1, getReplacementName(K, false, 2));
|
|
}
|
|
|
|
K1->insertAfter(K);
|
|
K2->insertAfter(K1);
|
|
InsertionPt = K2;
|
|
}
|
|
|
|
// Move all uses of the function I (including pairing-induced uses) after J.
|
|
bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
|
|
DenseSet<ValuePair> &LoadMoveSetPairs,
|
|
Instruction *I, Instruction *J) {
|
|
// Skip to the first instruction past I.
|
|
BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
|
|
|
|
DenseSet<Value *> Users;
|
|
AliasSetTracker WriteSet(*AA);
|
|
if (I->mayWriteToMemory()) WriteSet.add(I);
|
|
|
|
for (; cast<Instruction>(L) != J; ++L)
|
|
(void)trackUsesOfI(Users, WriteSet, I, &*L, true, &LoadMoveSetPairs);
|
|
|
|
assert(cast<Instruction>(L) == J &&
|
|
"Tracking has not proceeded far enough to check for dependencies");
|
|
// If J is now in the use set of I, then trackUsesOfI will return true
|
|
// and we have a dependency cycle (and the fusing operation must abort).
|
|
return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSetPairs);
|
|
}
|
|
|
|
// Move all uses of the function I (including pairing-induced uses) after J.
|
|
void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
|
|
DenseSet<ValuePair> &LoadMoveSetPairs,
|
|
Instruction *&InsertionPt,
|
|
Instruction *I, Instruction *J) {
|
|
// Skip to the first instruction past I.
|
|
BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
|
|
|
|
DenseSet<Value *> Users;
|
|
AliasSetTracker WriteSet(*AA);
|
|
if (I->mayWriteToMemory()) WriteSet.add(I);
|
|
|
|
for (; cast<Instruction>(L) != J;) {
|
|
if (trackUsesOfI(Users, WriteSet, I, &*L, true, &LoadMoveSetPairs)) {
|
|
// Move this instruction
|
|
Instruction *InstToMove = &*L++;
|
|
|
|
DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
|
|
" to after " << *InsertionPt << "\n");
|
|
InstToMove->removeFromParent();
|
|
InstToMove->insertAfter(InsertionPt);
|
|
InsertionPt = InstToMove;
|
|
} else {
|
|
++L;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect all load instruction that are in the move set of a given first
|
|
// pair member. These loads depend on the first instruction, I, and so need
|
|
// to be moved after J (the second instruction) when the pair is fused.
|
|
void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
|
|
DenseMap<Value *, Value *> &ChosenPairs,
|
|
DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
|
|
DenseSet<ValuePair> &LoadMoveSetPairs,
|
|
Instruction *I) {
|
|
// Skip to the first instruction past I.
|
|
BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
|
|
|
|
DenseSet<Value *> Users;
|
|
AliasSetTracker WriteSet(*AA);
|
|
if (I->mayWriteToMemory()) WriteSet.add(I);
|
|
|
|
// Note: We cannot end the loop when we reach J because J could be moved
|
|
// farther down the use chain by another instruction pairing. Also, J
|
|
// could be before I if this is an inverted input.
|
|
for (BasicBlock::iterator E = BB.end(); L != E; ++L) {
|
|
if (trackUsesOfI(Users, WriteSet, I, &*L)) {
|
|
if (L->mayReadFromMemory()) {
|
|
LoadMoveSet[&*L].push_back(I);
|
|
LoadMoveSetPairs.insert(ValuePair(&*L, I));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// In cases where both load/stores and the computation of their pointers
|
|
// are chosen for vectorization, we can end up in a situation where the
|
|
// aliasing analysis starts returning different query results as the
|
|
// process of fusing instruction pairs continues. Because the algorithm
|
|
// relies on finding the same use dags here as were found earlier, we'll
|
|
// need to precompute the necessary aliasing information here and then
|
|
// manually update it during the fusion process.
|
|
void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<Value *, Value *> &ChosenPairs,
|
|
DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
|
|
DenseSet<ValuePair> &LoadMoveSetPairs) {
|
|
for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
|
|
PIE = PairableInsts.end(); PI != PIE; ++PI) {
|
|
DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
|
|
if (P == ChosenPairs.end()) continue;
|
|
|
|
Instruction *I = cast<Instruction>(P->first);
|
|
collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet,
|
|
LoadMoveSetPairs, I);
|
|
}
|
|
}
|
|
|
|
// This function fuses the chosen instruction pairs into vector instructions,
|
|
// taking care preserve any needed scalar outputs and, then, it reorders the
|
|
// remaining instructions as needed (users of the first member of the pair
|
|
// need to be moved to after the location of the second member of the pair
|
|
// because the vector instruction is inserted in the location of the pair's
|
|
// second member).
|
|
void BBVectorize::fuseChosenPairs(BasicBlock &BB,
|
|
std::vector<Value *> &PairableInsts,
|
|
DenseMap<Value *, Value *> &ChosenPairs,
|
|
DenseSet<ValuePair> &FixedOrderPairs,
|
|
DenseMap<VPPair, unsigned> &PairConnectionTypes,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
|
|
DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps) {
|
|
LLVMContext& Context = BB.getContext();
|
|
|
|
// During the vectorization process, the order of the pairs to be fused
|
|
// could be flipped. So we'll add each pair, flipped, into the ChosenPairs
|
|
// list. After a pair is fused, the flipped pair is removed from the list.
|
|
DenseSet<ValuePair> FlippedPairs;
|
|
for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
|
|
E = ChosenPairs.end(); P != E; ++P)
|
|
FlippedPairs.insert(ValuePair(P->second, P->first));
|
|
for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(),
|
|
E = FlippedPairs.end(); P != E; ++P)
|
|
ChosenPairs.insert(*P);
|
|
|
|
DenseMap<Value *, std::vector<Value *> > LoadMoveSet;
|
|
DenseSet<ValuePair> LoadMoveSetPairs;
|
|
collectLoadMoveSet(BB, PairableInsts, ChosenPairs,
|
|
LoadMoveSet, LoadMoveSetPairs);
|
|
|
|
DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
|
|
|
|
for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
|
|
DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(&*PI);
|
|
if (P == ChosenPairs.end()) {
|
|
++PI;
|
|
continue;
|
|
}
|
|
|
|
if (getDepthFactor(P->first) == 0) {
|
|
// These instructions are not really fused, but are tracked as though
|
|
// they are. Any case in which it would be interesting to fuse them
|
|
// will be taken care of by InstCombine.
|
|
--NumFusedOps;
|
|
++PI;
|
|
continue;
|
|
}
|
|
|
|
Instruction *I = cast<Instruction>(P->first),
|
|
*J = cast<Instruction>(P->second);
|
|
|
|
DEBUG(dbgs() << "BBV: fusing: " << *I <<
|
|
" <-> " << *J << "\n");
|
|
|
|
// Remove the pair and flipped pair from the list.
|
|
DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
|
|
assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
|
|
ChosenPairs.erase(FP);
|
|
ChosenPairs.erase(P);
|
|
|
|
if (!canMoveUsesOfIAfterJ(BB, LoadMoveSetPairs, I, J)) {
|
|
DEBUG(dbgs() << "BBV: fusion of: " << *I <<
|
|
" <-> " << *J <<
|
|
" aborted because of non-trivial dependency cycle\n");
|
|
--NumFusedOps;
|
|
++PI;
|
|
continue;
|
|
}
|
|
|
|
// If the pair must have the other order, then flip it.
|
|
bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I));
|
|
if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) {
|
|
// This pair does not have a fixed order, and so we might want to
|
|
// flip it if that will yield fewer shuffles. We count the number
|
|
// of dependencies connected via swaps, and those directly connected,
|
|
// and flip the order if the number of swaps is greater.
|
|
bool OrigOrder = true;
|
|
DenseMap<ValuePair, std::vector<ValuePair> >::iterator IJ =
|
|
ConnectedPairDeps.find(ValuePair(I, J));
|
|
if (IJ == ConnectedPairDeps.end()) {
|
|
IJ = ConnectedPairDeps.find(ValuePair(J, I));
|
|
OrigOrder = false;
|
|
}
|
|
|
|
if (IJ != ConnectedPairDeps.end()) {
|
|
unsigned NumDepsDirect = 0, NumDepsSwap = 0;
|
|
for (std::vector<ValuePair>::iterator T = IJ->second.begin(),
|
|
TE = IJ->second.end(); T != TE; ++T) {
|
|
VPPair Q(IJ->first, *T);
|
|
DenseMap<VPPair, unsigned>::iterator R =
|
|
PairConnectionTypes.find(VPPair(Q.second, Q.first));
|
|
assert(R != PairConnectionTypes.end() &&
|
|
"Cannot find pair connection type");
|
|
if (R->second == PairConnectionDirect)
|
|
++NumDepsDirect;
|
|
else if (R->second == PairConnectionSwap)
|
|
++NumDepsSwap;
|
|
}
|
|
|
|
if (!OrigOrder)
|
|
std::swap(NumDepsDirect, NumDepsSwap);
|
|
|
|
if (NumDepsSwap > NumDepsDirect) {
|
|
FlipPairOrder = true;
|
|
DEBUG(dbgs() << "BBV: reordering pair: " << *I <<
|
|
" <-> " << *J << "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
Instruction *L = I, *H = J;
|
|
if (FlipPairOrder)
|
|
std::swap(H, L);
|
|
|
|
// If the pair being fused uses the opposite order from that in the pair
|
|
// connection map, then we need to flip the types.
|
|
DenseMap<ValuePair, std::vector<ValuePair> >::iterator HL =
|
|
ConnectedPairs.find(ValuePair(H, L));
|
|
if (HL != ConnectedPairs.end())
|
|
for (std::vector<ValuePair>::iterator T = HL->second.begin(),
|
|
TE = HL->second.end(); T != TE; ++T) {
|
|
VPPair Q(HL->first, *T);
|
|
DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(Q);
|
|
assert(R != PairConnectionTypes.end() &&
|
|
"Cannot find pair connection type");
|
|
if (R->second == PairConnectionDirect)
|
|
R->second = PairConnectionSwap;
|
|
else if (R->second == PairConnectionSwap)
|
|
R->second = PairConnectionDirect;
|
|
}
|
|
|
|
bool LBeforeH = !FlipPairOrder;
|
|
unsigned NumOperands = I->getNumOperands();
|
|
SmallVector<Value *, 3> ReplacedOperands(NumOperands);
|
|
getReplacementInputsForPair(Context, L, H, ReplacedOperands,
|
|
LBeforeH);
|
|
|
|
// Make a copy of the original operation, change its type to the vector
|
|
// type and replace its operands with the vector operands.
|
|
Instruction *K = L->clone();
|
|
if (L->hasName())
|
|
K->takeName(L);
|
|
else if (H->hasName())
|
|
K->takeName(H);
|
|
|
|
if (auto CS = CallSite(K)) {
|
|
SmallVector<Type *, 3> Tys;
|
|
FunctionType *Old = CS.getFunctionType();
|
|
unsigned NumOld = Old->getNumParams();
|
|
assert(NumOld <= ReplacedOperands.size());
|
|
for (unsigned i = 0; i != NumOld; ++i)
|
|
Tys.push_back(ReplacedOperands[i]->getType());
|
|
CS.mutateFunctionType(
|
|
FunctionType::get(getVecTypeForPair(L->getType(), H->getType()),
|
|
Tys, Old->isVarArg()));
|
|
} else if (!isa<StoreInst>(K))
|
|
K->mutateType(getVecTypeForPair(L->getType(), H->getType()));
|
|
|
|
unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
|
|
LLVMContext::MD_invariant_group};
|
|
combineMetadata(K, H, KnownIDs);
|
|
K->intersectOptionalDataWith(H);
|
|
|
|
for (unsigned o = 0; o < NumOperands; ++o)
|
|
K->setOperand(o, ReplacedOperands[o]);
|
|
|
|
K->insertAfter(J);
|
|
|
|
// Instruction insertion point:
|
|
Instruction *InsertionPt = K;
|
|
Instruction *K1 = nullptr, *K2 = nullptr;
|
|
replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
|
|
|
|
// The use dag of the first original instruction must be moved to after
|
|
// the location of the second instruction. The entire use dag of the
|
|
// first instruction is disjoint from the input dag of the second
|
|
// (by definition), and so commutes with it.
|
|
|
|
moveUsesOfIAfterJ(BB, LoadMoveSetPairs, InsertionPt, I, J);
|
|
|
|
if (!isa<StoreInst>(I)) {
|
|
L->replaceAllUsesWith(K1);
|
|
H->replaceAllUsesWith(K2);
|
|
}
|
|
|
|
// Instructions that may read from memory may be in the load move set.
|
|
// Once an instruction is fused, we no longer need its move set, and so
|
|
// the values of the map never need to be updated. However, when a load
|
|
// is fused, we need to merge the entries from both instructions in the
|
|
// pair in case those instructions were in the move set of some other
|
|
// yet-to-be-fused pair. The loads in question are the keys of the map.
|
|
if (I->mayReadFromMemory()) {
|
|
std::vector<ValuePair> NewSetMembers;
|
|
DenseMap<Value *, std::vector<Value *> >::iterator II =
|
|
LoadMoveSet.find(I);
|
|
if (II != LoadMoveSet.end())
|
|
for (std::vector<Value *>::iterator N = II->second.begin(),
|
|
NE = II->second.end(); N != NE; ++N)
|
|
NewSetMembers.push_back(ValuePair(K, *N));
|
|
DenseMap<Value *, std::vector<Value *> >::iterator JJ =
|
|
LoadMoveSet.find(J);
|
|
if (JJ != LoadMoveSet.end())
|
|
for (std::vector<Value *>::iterator N = JJ->second.begin(),
|
|
NE = JJ->second.end(); N != NE; ++N)
|
|
NewSetMembers.push_back(ValuePair(K, *N));
|
|
for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
|
|
AE = NewSetMembers.end(); A != AE; ++A) {
|
|
LoadMoveSet[A->first].push_back(A->second);
|
|
LoadMoveSetPairs.insert(*A);
|
|
}
|
|
}
|
|
|
|
// Before removing I, set the iterator to the next instruction.
|
|
PI = std::next(BasicBlock::iterator(I));
|
|
if (cast<Instruction>(PI) == J)
|
|
++PI;
|
|
|
|
SE->forgetValue(I);
|
|
SE->forgetValue(J);
|
|
I->eraseFromParent();
|
|
J->eraseFromParent();
|
|
|
|
DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" <<
|
|
BB << "\n");
|
|
}
|
|
|
|
DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
|
|
}
|
|
}
|
|
|
|
char BBVectorize::ID = 0;
|
|
static const char bb_vectorize_name[] = "Basic-Block Vectorization";
|
|
INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
|
|
INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
|
|
|
|
BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
|
|
return new BBVectorize(C);
|
|
}
|
|
|
|
bool
|
|
llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
|
|
BBVectorize BBVectorizer(P, *BB.getParent(), C);
|
|
return BBVectorizer.vectorizeBB(BB);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
VectorizeConfig::VectorizeConfig() {
|
|
VectorBits = ::VectorBits;
|
|
VectorizeBools = !::NoBools;
|
|
VectorizeInts = !::NoInts;
|
|
VectorizeFloats = !::NoFloats;
|
|
VectorizePointers = !::NoPointers;
|
|
VectorizeCasts = !::NoCasts;
|
|
VectorizeMath = !::NoMath;
|
|
VectorizeBitManipulations = !::NoBitManipulation;
|
|
VectorizeFMA = !::NoFMA;
|
|
VectorizeSelect = !::NoSelect;
|
|
VectorizeCmp = !::NoCmp;
|
|
VectorizeGEP = !::NoGEP;
|
|
VectorizeMemOps = !::NoMemOps;
|
|
AlignedOnly = ::AlignedOnly;
|
|
ReqChainDepth= ::ReqChainDepth;
|
|
SearchLimit = ::SearchLimit;
|
|
MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
|
|
SplatBreaksChain = ::SplatBreaksChain;
|
|
MaxInsts = ::MaxInsts;
|
|
MaxPairs = ::MaxPairs;
|
|
MaxIter = ::MaxIter;
|
|
Pow2LenOnly = ::Pow2LenOnly;
|
|
NoMemOpBoost = ::NoMemOpBoost;
|
|
FastDep = ::FastDep;
|
|
}
|