forked from OSchip/llvm-project
499 lines
20 KiB
C++
499 lines
20 KiB
C++
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related semantic analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
using namespace clang;
|
|
|
|
/// ConvertDeclSpecToType - Convert the specified declspec to the appropriate
|
|
/// type object. This returns null on error.
|
|
QualType Sema::ConvertDeclSpecToType(DeclSpec &DS) {
|
|
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
|
|
// checking.
|
|
QualType Result;
|
|
|
|
switch (DS.getTypeSpecType()) {
|
|
default: return QualType(); // FIXME: Handle unimp cases!
|
|
case DeclSpec::TST_void: return Context.VoidTy;
|
|
case DeclSpec::TST_char:
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
|
|
Result = Context.CharTy;
|
|
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
|
|
Result = Context.SignedCharTy;
|
|
else {
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
|
|
"Unknown TSS value");
|
|
Result = Context.UnsignedCharTy;
|
|
}
|
|
break;
|
|
case DeclSpec::TST_unspecified: // Unspecific typespec defaults to int.
|
|
case DeclSpec::TST_int: {
|
|
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
|
|
case DeclSpec::TSW_short: Result = Context.ShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Context.LongTy; break;
|
|
case DeclSpec::TSW_longlong: Result = Context.LongLongTy; break;
|
|
}
|
|
} else {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
|
|
case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
|
|
case DeclSpec::TSW_longlong: Result =Context.UnsignedLongLongTy; break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_float: Result = Context.FloatTy; break;
|
|
case DeclSpec::TST_double:
|
|
if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
|
|
Result = Context.LongDoubleTy;
|
|
else
|
|
Result = Context.DoubleTy;
|
|
break;
|
|
case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
|
|
case DeclSpec::TST_decimal32: // _Decimal32
|
|
case DeclSpec::TST_decimal64: // _Decimal64
|
|
case DeclSpec::TST_decimal128: // _Decimal128
|
|
assert(0 && "FIXME: GNU decimal extensions not supported yet!");
|
|
case DeclSpec::TST_enum:
|
|
case DeclSpec::TST_union:
|
|
case DeclSpec::TST_struct: {
|
|
Decl *D = static_cast<Decl *>(DS.getTypeRep());
|
|
assert(D && "Didn't get a decl for a enum/union/struct?");
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 &&
|
|
"Can't handle qualifiers on typedef names yet!");
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTagDeclType(cast<TagDecl>(D));
|
|
break;
|
|
}
|
|
case DeclSpec::TST_typedef: {
|
|
Decl *D = static_cast<Decl *>(DS.getTypeRep());
|
|
assert(D && "Didn't get a decl for a typedef?");
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 &&
|
|
"Can't handle qualifiers on typedef names yet!");
|
|
// FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
|
|
// we have this "hack" for now...
|
|
if (ObjCInterfaceDecl *ObjCIntDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
|
|
if (DS.getProtocolQualifiers() == 0) {
|
|
Result = Context.getObjCInterfaceType(ObjCIntDecl);
|
|
break;
|
|
}
|
|
|
|
Action::DeclTy **PPDecl = &(*DS.getProtocolQualifiers())[0];
|
|
Result = Context.getObjCQualifiedInterfaceType(ObjCIntDecl,
|
|
reinterpret_cast<ObjCProtocolDecl**>(PPDecl),
|
|
DS.getNumProtocolQualifiers());
|
|
break;
|
|
}
|
|
else if (TypedefDecl *typeDecl = dyn_cast<TypedefDecl>(D)) {
|
|
if (Context.getObjCIdType() == Context.getTypedefType(typeDecl)
|
|
&& DS.getProtocolQualifiers()) {
|
|
// id<protocol-list>
|
|
Action::DeclTy **PPDecl = &(*DS.getProtocolQualifiers())[0];
|
|
Result = Context.getObjCQualifiedIdType(typeDecl->getUnderlyingType(),
|
|
reinterpret_cast<ObjCProtocolDecl**>(PPDecl),
|
|
DS.getNumProtocolQualifiers());
|
|
break;
|
|
}
|
|
}
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypedefType(cast<TypedefDecl>(D));
|
|
break;
|
|
}
|
|
case DeclSpec::TST_typeofType:
|
|
Result = QualType::getFromOpaquePtr(DS.getTypeRep());
|
|
assert(!Result.isNull() && "Didn't get a type for typeof?");
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypeOfType(Result);
|
|
break;
|
|
case DeclSpec::TST_typeofExpr: {
|
|
Expr *E = static_cast<Expr *>(DS.getTypeRep());
|
|
assert(E && "Didn't get an expression for typeof?");
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypeOfExpr(E);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Handle complex types.
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex)
|
|
Result = Context.getComplexType(Result);
|
|
|
|
assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
|
|
"FIXME: imaginary types not supported yet!");
|
|
|
|
// See if there are any attributes on the declspec that apply to the type (as
|
|
// opposed to the decl).
|
|
if (AttributeList *AL = DS.getAttributes())
|
|
DS.SetAttributes(ProcessTypeAttributes(Result, AL));
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// GetTypeForDeclarator - Convert the type for the specified declarator to Type
|
|
/// instances.
|
|
QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
|
|
// long long is a C99 feature.
|
|
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
|
|
D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
|
|
Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
|
|
|
|
QualType T = ConvertDeclSpecToType(D.getDeclSpec());
|
|
|
|
// Apply const/volatile/restrict qualifiers to T.
|
|
T = T.getQualifiedType(D.getDeclSpec().getTypeQualifiers());
|
|
|
|
// Walk the DeclTypeInfo, building the recursive type as we go. DeclTypeInfos
|
|
// are ordered from the identifier out, which is opposite of what we want :).
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
|
|
switch (DeclType.Kind) {
|
|
default: assert(0 && "Unknown decltype!");
|
|
case DeclaratorChunk::Pointer:
|
|
if (T->isReferenceType()) {
|
|
// C++ 8.3.2p4: There shall be no ... pointers to references ...
|
|
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_pointer_to_reference,
|
|
D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
|
|
D.setInvalidType(true);
|
|
T = Context.IntTy;
|
|
}
|
|
|
|
// Apply the pointer typequals to the pointer object.
|
|
T = Context.getPointerType(T).getQualifiedType(DeclType.Ptr.TypeQuals);
|
|
|
|
// See if there are any attributes on the pointer that apply to it.
|
|
if (AttributeList *AL = DeclType.Ptr.AttrList)
|
|
DeclType.Ptr.AttrList = ProcessTypeAttributes(T, AL);
|
|
|
|
break;
|
|
case DeclaratorChunk::Reference:
|
|
if (const ReferenceType *RT = T->getAsReferenceType()) {
|
|
// C++ 8.3.2p4: There shall be no references to references.
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_illegal_decl_reference_to_reference,
|
|
D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
|
|
D.setInvalidType(true);
|
|
T = RT->getReferenceeType();
|
|
}
|
|
|
|
T = Context.getReferenceType(T);
|
|
|
|
// FIXME: Handle Ref.Restrict!
|
|
|
|
// See if there are any attributes on the pointer that apply to it.
|
|
if (AttributeList *AL = DeclType.Ref.AttrList)
|
|
DeclType.Ref.AttrList = ProcessTypeAttributes(T, AL);
|
|
break;
|
|
case DeclaratorChunk::Array: {
|
|
const DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
|
|
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
|
|
ArrayType::ArraySizeModifier ASM;
|
|
if (ATI.isStar)
|
|
ASM = ArrayType::Star;
|
|
else if (ATI.hasStatic)
|
|
ASM = ArrayType::Static;
|
|
else
|
|
ASM = ArrayType::Normal;
|
|
|
|
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
|
|
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
|
|
if (T->isIncompleteType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_incomplete_type,
|
|
T.getAsString());
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
} else if (T->isFunctionType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_functions,
|
|
D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
|
|
T = Context.getPointerType(T);
|
|
D.setInvalidType(true);
|
|
} else if (const ReferenceType *RT = T->getAsReferenceType()) {
|
|
// C++ 8.3.2p4: There shall be no ... arrays of references ...
|
|
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_references,
|
|
D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
|
|
T = RT->getReferenceeType();
|
|
D.setInvalidType(true);
|
|
} else if (const RecordType *EltTy = T->getAsRecordType()) {
|
|
// If the element type is a struct or union that contains a variadic
|
|
// array, reject it: C99 6.7.2.1p2.
|
|
if (EltTy->getDecl()->hasFlexibleArrayMember()) {
|
|
Diag(DeclType.Loc, diag::err_flexible_array_in_array,
|
|
T.getAsString());
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
// C99 6.7.5.2p1: The size expression shall have integer type.
|
|
if (ArraySize && !ArraySize->getType()->isIntegerType()) {
|
|
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int,
|
|
ArraySize->getType().getAsString(), ArraySize->getSourceRange());
|
|
D.setInvalidType(true);
|
|
}
|
|
llvm::APSInt ConstVal(32);
|
|
// If no expression was provided, we consider it a VLA.
|
|
if (!ArraySize) {
|
|
T = Context.getIncompleteArrayType(T, ASM, ATI.TypeQuals);
|
|
} else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context)) {
|
|
T = Context.getVariableArrayType(T, ArraySize, ASM, ATI.TypeQuals);
|
|
} else {
|
|
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
|
|
// have a value greater than zero.
|
|
if (ConstVal.isSigned()) {
|
|
if (ConstVal.isNegative()) {
|
|
Diag(ArraySize->getLocStart(),
|
|
diag::err_typecheck_negative_array_size,
|
|
ArraySize->getSourceRange());
|
|
D.setInvalidType(true);
|
|
} else if (ConstVal == 0) {
|
|
// GCC accepts zero sized static arrays.
|
|
Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size,
|
|
ArraySize->getSourceRange());
|
|
}
|
|
}
|
|
T = Context.getConstantArrayType(T, ConstVal, ASM, ATI.TypeQuals);
|
|
}
|
|
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
|
|
if (!getLangOptions().C99 &&
|
|
(ASM != ArrayType::Normal ||
|
|
(ArraySize && !ArraySize->isIntegerConstantExpr(Context))))
|
|
Diag(D.getIdentifierLoc(), diag::ext_vla);
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Function:
|
|
// If the function declarator has a prototype (i.e. it is not () and
|
|
// does not have a K&R-style identifier list), then the arguments are part
|
|
// of the type, otherwise the argument list is ().
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
|
|
// C99 6.7.5.3p1: The return type may not be a function or array type.
|
|
if (T->isArrayType() || T->isFunctionType()) {
|
|
Diag(DeclType.Loc, diag::err_func_returning_array_function,
|
|
T.getAsString());
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
if (!FTI.hasPrototype) {
|
|
// Simple void foo(), where the incoming T is the result type.
|
|
T = Context.getFunctionTypeNoProto(T);
|
|
|
|
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
|
|
if (FTI.NumArgs != 0)
|
|
Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
|
|
|
|
} else {
|
|
// Otherwise, we have a function with an argument list that is
|
|
// potentially variadic.
|
|
llvm::SmallVector<QualType, 16> ArgTys;
|
|
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
|
|
QualType ArgTy = QualType::getFromOpaquePtr(FTI.ArgInfo[i].TypeInfo);
|
|
assert(!ArgTy.isNull() && "Couldn't parse type?");
|
|
//
|
|
// Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
|
|
// This matches the conversion that is done in
|
|
// Sema::ActOnParamDeclarator(). Without this conversion, the
|
|
// argument type in the function prototype *will not* match the
|
|
// type in ParmVarDecl (which makes the code generator unhappy).
|
|
//
|
|
// FIXME: We still apparently need the conversion in
|
|
// Sema::ParseParamDeclarator(). This doesn't make any sense, since
|
|
// it should be driving off the type being created here.
|
|
//
|
|
// FIXME: If a source translation tool needs to see the original type,
|
|
// then we need to consider storing both types somewhere...
|
|
//
|
|
if (const ArrayType *AT = ArgTy->getAsArrayType()) {
|
|
// int x[restrict 4] -> int *restrict
|
|
ArgTy = Context.getPointerType(AT->getElementType());
|
|
ArgTy = ArgTy.getQualifiedType(AT->getIndexTypeQualifier());
|
|
} else if (ArgTy->isFunctionType())
|
|
ArgTy = Context.getPointerType(ArgTy);
|
|
// Look for 'void'. void is allowed only as a single argument to a
|
|
// function with no other parameters (C99 6.7.5.3p10). We record
|
|
// int(void) as a FunctionTypeProto with an empty argument list.
|
|
else if (ArgTy->isVoidType()) {
|
|
// If this is something like 'float(int, void)', reject it. 'void'
|
|
// is an incomplete type (C99 6.2.5p19) and function decls cannot
|
|
// have arguments of incomplete type.
|
|
if (FTI.NumArgs != 1 || FTI.isVariadic) {
|
|
Diag(DeclType.Loc, diag::err_void_only_param);
|
|
ArgTy = Context.IntTy;
|
|
FTI.ArgInfo[i].TypeInfo = ArgTy.getAsOpaquePtr();
|
|
} else if (FTI.ArgInfo[i].Ident) {
|
|
// Reject, but continue to parse 'int(void abc)'.
|
|
Diag(FTI.ArgInfo[i].IdentLoc,
|
|
diag::err_param_with_void_type);
|
|
ArgTy = Context.IntTy;
|
|
FTI.ArgInfo[i].TypeInfo = ArgTy.getAsOpaquePtr();
|
|
} else {
|
|
// Reject, but continue to parse 'float(const void)'.
|
|
if (ArgTy.getCVRQualifiers())
|
|
Diag(DeclType.Loc, diag::err_void_param_qualified);
|
|
|
|
// Do not add 'void' to the ArgTys list.
|
|
break;
|
|
}
|
|
}
|
|
|
|
ArgTys.push_back(ArgTy);
|
|
}
|
|
T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
|
|
FTI.isVariadic);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
|
|
/// declarator
|
|
QualType Sema::ObjCGetTypeForMethodDefinition(DeclTy *D) {
|
|
ObjCMethodDecl *MDecl = dyn_cast<ObjCMethodDecl>(static_cast<Decl *>(D));
|
|
QualType T = MDecl->getResultType();
|
|
llvm::SmallVector<QualType, 16> ArgTys;
|
|
|
|
// Add the first two invisible argument types for self and _cmd.
|
|
if (MDecl->isInstance()) {
|
|
QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
|
|
selfTy = Context.getPointerType(selfTy);
|
|
ArgTys.push_back(selfTy);
|
|
}
|
|
else
|
|
ArgTys.push_back(Context.getObjCIdType());
|
|
ArgTys.push_back(Context.getObjCSelType());
|
|
|
|
for (int i = 0; i < MDecl->getNumParams(); i++) {
|
|
ParmVarDecl *PDecl = MDecl->getParamDecl(i);
|
|
QualType ArgTy = PDecl->getType();
|
|
assert(!ArgTy.isNull() && "Couldn't parse type?");
|
|
// Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
|
|
// This matches the conversion that is done in
|
|
// Sema::ParseParamDeclarator().
|
|
if (const ArrayType *AT = ArgTy->getAsArrayType())
|
|
ArgTy = Context.getPointerType(AT->getElementType());
|
|
else if (ArgTy->isFunctionType())
|
|
ArgTy = Context.getPointerType(ArgTy);
|
|
ArgTys.push_back(ArgTy);
|
|
}
|
|
T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
|
|
MDecl->isVariadic());
|
|
return T;
|
|
}
|
|
|
|
Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
|
|
// C99 6.7.6: Type names have no identifier. This is already validated by
|
|
// the parser.
|
|
assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
|
|
|
|
QualType T = GetTypeForDeclarator(D, S);
|
|
|
|
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
|
|
|
// In this context, we *do not* check D.getInvalidType(). If the declarator
|
|
// type was invalid, GetTypeForDeclarator() still returns a "valid" type,
|
|
// though it will not reflect the user specified type.
|
|
return T.getAsOpaquePtr();
|
|
}
|
|
|
|
// Called from Parser::ParseParenDeclarator().
|
|
Sema::TypeResult Sema::ActOnParamDeclaratorType(Scope *S, Declarator &D) {
|
|
// Note: parameters have identifiers, but we don't care about them here, we
|
|
// just want the type converted.
|
|
QualType T = GetTypeForDeclarator(D, S);
|
|
|
|
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
|
|
|
// In this context, we *do not* check D.getInvalidType(). If the declarator
|
|
// type was invalid, GetTypeForDeclarator() still returns a "valid" type,
|
|
// though it will not reflect the user specified type.
|
|
return T.getAsOpaquePtr();
|
|
}
|
|
|
|
AttributeList *Sema::ProcessTypeAttributes(QualType &Result, AttributeList *AL){
|
|
// Scan through and apply attributes to this type where it makes sense. Some
|
|
// attributes (such as __address_space__, __vector_size__, etc) apply to the
|
|
// type, but others can be present in the type specifiers even though they
|
|
// apply to the decl. Here we apply and delete attributes that apply to the
|
|
// type and leave the others alone.
|
|
llvm::SmallVector<AttributeList *, 8> LeftOverAttrs;
|
|
while (AL) {
|
|
// Unlink this attribute from the chain, so we can process it independently.
|
|
AttributeList *ThisAttr = AL;
|
|
AL = AL->getNext();
|
|
ThisAttr->setNext(0);
|
|
|
|
// If this is an attribute we can handle, do so now, otherwise, add it to
|
|
// the LeftOverAttrs list for rechaining.
|
|
switch (ThisAttr->getKind()) {
|
|
default: break;
|
|
case AttributeList::AT_address_space:
|
|
Result = HandleAddressSpaceTypeAttribute(Result, ThisAttr);
|
|
delete ThisAttr; // Consume the attribute.
|
|
continue;
|
|
}
|
|
|
|
LeftOverAttrs.push_back(ThisAttr);
|
|
}
|
|
|
|
// Rechain any attributes that haven't been deleted to the DeclSpec.
|
|
AttributeList *List = 0;
|
|
for (unsigned i = 0, e = LeftOverAttrs.size(); i != e; ++i) {
|
|
LeftOverAttrs[i]->setNext(List);
|
|
List = LeftOverAttrs[i];
|
|
}
|
|
|
|
return List;
|
|
}
|
|
|
|
/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
|
|
/// specified type.
|
|
QualType Sema::HandleAddressSpaceTypeAttribute(QualType Type,
|
|
AttributeList *Attr) {
|
|
// If this type is already address space qualified, reject it.
|
|
// Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
|
|
// for two or more different address spaces."
|
|
if (Type.getAddressSpace()) {
|
|
Diag(Attr->getLoc(), diag::err_attribute_address_multiple_qualifiers);
|
|
return Type;
|
|
}
|
|
|
|
// Check the attribute arguments.
|
|
if (Attr->getNumArgs() != 1) {
|
|
Diag(Attr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("1"));
|
|
return Type;
|
|
}
|
|
Expr *ASArgExpr = static_cast<Expr *>(Attr->getArg(0));
|
|
llvm::APSInt addrSpace(32);
|
|
if (!ASArgExpr->isIntegerConstantExpr(addrSpace, Context)) {
|
|
Diag(Attr->getLoc(), diag::err_attribute_address_space_not_int,
|
|
ASArgExpr->getSourceRange());
|
|
return Type;
|
|
}
|
|
|
|
unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
|
|
return Context.getASQualType(Type, ASIdx);
|
|
}
|
|
|