llvm-project/clang/Sema/SemaExpr.cpp

2287 lines
90 KiB
C++

//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for expressions.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "SemaUtil.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
/// multiple tokens. However, the common case is that StringToks points to one
/// string.
///
Action::ExprResult
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
assert(NumStringToks && "Must have at least one string!");
StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
if (Literal.hadError)
return ExprResult(true);
llvm::SmallVector<SourceLocation, 4> StringTokLocs;
for (unsigned i = 0; i != NumStringToks; ++i)
StringTokLocs.push_back(StringToks[i].getLocation());
// Verify that pascal strings aren't too large.
if (Literal.Pascal && Literal.GetStringLength() > 256)
return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
SourceRange(StringToks[0].getLocation(),
StringToks[NumStringToks-1].getLocation()));
QualType StrTy = Context.CharTy;
// FIXME: handle wchar_t
if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
// Get an array type for the string, according to C99 6.4.5. This includes
// the nul terminator character as well as the string length for pascal
// strings.
StrTy = Context.getConstantArrayType(StrTy,
llvm::APInt(32, Literal.GetStringLength()+1),
ArrayType::Normal, 0);
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
Literal.AnyWide, StrTy,
StringToks[0].getLocation(),
StringToks[NumStringToks-1].getLocation());
}
/// ActOnIdentifierExpr - The parser read an identifier in expression context,
/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
/// identifier is used in an function call context.
Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
IdentifierInfo &II,
bool HasTrailingLParen) {
// Could be enum-constant or decl.
ScopedDecl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S);
if (D == 0) {
// Otherwise, this could be an implicitly declared function reference (legal
// in C90, extension in C99).
if (HasTrailingLParen &&
// Not in C++.
!getLangOptions().CPlusPlus)
D = ImplicitlyDefineFunction(Loc, II, S);
else {
if (CurMethodDecl) {
ObjCInterfaceDecl *IFace = CurMethodDecl->getClassInterface();
ObjCInterfaceDecl *clsDeclared;
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II, clsDeclared)) {
IdentifierInfo &II = Context.Idents.get("self");
ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
static_cast<Expr*>(SelfExpr.Val), true, true);
}
}
// If this name wasn't predeclared and if this is not a function call,
// diagnose the problem.
return Diag(Loc, diag::err_undeclared_var_use, II.getName());
}
}
if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
// check if referencing an identifier with __attribute__((deprecated)).
if (VD->getAttr<DeprecatedAttr>())
Diag(Loc, diag::warn_deprecated, VD->getName());
// Only create DeclRefExpr's for valid Decl's.
if (VD->isInvalidDecl())
return true;
return new DeclRefExpr(VD, VD->getType(), Loc);
}
if (isa<TypedefDecl>(D))
return Diag(Loc, diag::err_unexpected_typedef, II.getName());
if (isa<ObjCInterfaceDecl>(D))
return Diag(Loc, diag::err_unexpected_interface, II.getName());
assert(0 && "Invalid decl");
abort();
}
Sema::ExprResult Sema::ActOnPreDefinedExpr(SourceLocation Loc,
tok::TokenKind Kind) {
PreDefinedExpr::IdentType IT;
switch (Kind) {
default: assert(0 && "Unknown simple primary expr!");
case tok::kw___func__: IT = PreDefinedExpr::Func; break; // [C99 6.4.2.2]
case tok::kw___FUNCTION__: IT = PreDefinedExpr::Function; break;
case tok::kw___PRETTY_FUNCTION__: IT = PreDefinedExpr::PrettyFunction; break;
}
// Verify that this is in a function context.
if (CurFunctionDecl == 0 && CurMethodDecl == 0)
return Diag(Loc, diag::err_predef_outside_function);
// Pre-defined identifiers are of type char[x], where x is the length of the
// string.
unsigned Length;
if (CurFunctionDecl)
Length = CurFunctionDecl->getIdentifier()->getLength();
else
Length = CurMethodDecl->getSynthesizedMethodSize();
llvm::APInt LengthI(32, Length + 1);
QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
return new PreDefinedExpr(Loc, ResTy, IT);
}
Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
llvm::SmallString<16> CharBuffer;
CharBuffer.resize(Tok.getLength());
const char *ThisTokBegin = &CharBuffer[0];
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
Tok.getLocation(), PP);
if (Literal.hadError())
return ExprResult(true);
QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
return new CharacterLiteral(Literal.getValue(), type, Tok.getLocation());
}
Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// fast path for a single digit (which is quite common). A single digit
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
if (Tok.getLength() == 1) {
const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation());
unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'),
Context.IntTy,
Tok.getLocation()));
}
llvm::SmallString<512> IntegerBuffer;
IntegerBuffer.resize(Tok.getLength());
const char *ThisTokBegin = &IntegerBuffer[0];
// Get the spelling of the token, which eliminates trigraphs, etc.
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
Tok.getLocation(), PP);
if (Literal.hadError)
return ExprResult(true);
Expr *Res;
if (Literal.isFloatingLiteral()) {
QualType Ty;
const llvm::fltSemantics *Format;
if (Literal.isFloat) {
Ty = Context.FloatTy;
Format = Context.Target.getFloatFormat();
} else if (!Literal.isLong) {
Ty = Context.DoubleTy;
Format = Context.Target.getDoubleFormat();
} else {
Ty = Context.LongDoubleTy;
Format = Context.Target.getLongDoubleFormat();
}
// isExact will be set by GetFloatValue().
bool isExact = false;
Res = new FloatingLiteral(Literal.GetFloatValue(*Format,&isExact), &isExact,
Ty, Tok.getLocation());
} else if (!Literal.isIntegerLiteral()) {
return ExprResult(true);
} else {
QualType t;
// long long is a C99 feature.
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
Literal.isLongLong)
Diag(Tok.getLocation(), diag::ext_longlong);
// Get the value in the widest-possible width.
llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
if (Literal.GetIntegerValue(ResultVal)) {
// If this value didn't fit into uintmax_t, warn and force to ull.
Diag(Tok.getLocation(), diag::warn_integer_too_large);
t = Context.UnsignedLongLongTy;
assert(Context.getTypeSize(t) == ResultVal.getBitWidth() &&
"long long is not intmax_t?");
} else {
// If this value fits into a ULL, try to figure out what else it fits into
// according to the rules of C99 6.4.4.1p5.
// Octal, Hexadecimal, and integers with a U suffix are allowed to
// be an unsigned int.
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
// Check from smallest to largest, picking the smallest type we can.
if (!Literal.isLong && !Literal.isLongLong) {
// Are int/unsigned possibilities?
unsigned IntSize =
static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
// Does it fit in a unsigned int?
if (ResultVal.isIntN(IntSize)) {
// Does it fit in a signed int?
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
t = Context.IntTy;
else if (AllowUnsigned)
t = Context.UnsignedIntTy;
}
if (!t.isNull())
ResultVal.trunc(IntSize);
}
// Are long/unsigned long possibilities?
if (t.isNull() && !Literal.isLongLong) {
unsigned LongSize =
static_cast<unsigned>(Context.getTypeSize(Context.LongTy));
// Does it fit in a unsigned long?
if (ResultVal.isIntN(LongSize)) {
// Does it fit in a signed long?
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
t = Context.LongTy;
else if (AllowUnsigned)
t = Context.UnsignedLongTy;
}
if (!t.isNull())
ResultVal.trunc(LongSize);
}
// Finally, check long long if needed.
if (t.isNull()) {
unsigned LongLongSize =
static_cast<unsigned>(Context.getTypeSize(Context.LongLongTy));
// Does it fit in a unsigned long long?
if (ResultVal.isIntN(LongLongSize)) {
// Does it fit in a signed long long?
if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
t = Context.LongLongTy;
else if (AllowUnsigned)
t = Context.UnsignedLongLongTy;
}
}
// If we still couldn't decide a type, we probably have something that
// does not fit in a signed long long, but has no U suffix.
if (t.isNull()) {
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
t = Context.UnsignedLongLongTy;
}
}
Res = new IntegerLiteral(ResultVal, t, Tok.getLocation());
}
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
if (Literal.isImaginary)
Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
return Res;
}
Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
ExprTy *Val) {
Expr *e = (Expr *)Val;
assert((e != 0) && "ActOnParenExpr() missing expr");
return new ParenExpr(L, R, e);
}
/// The UsualUnaryConversions() function is *not* called by this routine.
/// See C99 6.3.2.1p[2-4] for more details.
QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
SourceLocation OpLoc, bool isSizeof) {
// C99 6.5.3.4p1:
if (isa<FunctionType>(exprType) && isSizeof)
// alignof(function) is allowed.
Diag(OpLoc, diag::ext_sizeof_function_type);
else if (exprType->isVoidType())
Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
else if (exprType->isIncompleteType()) {
Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
diag::err_alignof_incomplete_type,
exprType.getAsString());
return QualType(); // error
}
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return Context.getSizeType();
}
Action::ExprResult Sema::
ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
SourceLocation LPLoc, TypeTy *Ty,
SourceLocation RPLoc) {
// If error parsing type, ignore.
if (Ty == 0) return true;
// Verify that this is a valid expression.
QualType ArgTy = QualType::getFromOpaquePtr(Ty);
QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
if (resultType.isNull())
return true;
return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
}
QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
DefaultFunctionArrayConversion(V);
// These operators return the element type of a complex type.
if (const ComplexType *CT = V->getType()->getAsComplexType())
return CT->getElementType();
// Otherwise they pass through real integer and floating point types here.
if (V->getType()->isArithmeticType())
return V->getType();
// Reject anything else.
Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
return QualType();
}
Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
tok::TokenKind Kind,
ExprTy *Input) {
UnaryOperator::Opcode Opc;
switch (Kind) {
default: assert(0 && "Unknown unary op!");
case tok::plusplus: Opc = UnaryOperator::PostInc; break;
case tok::minusminus: Opc = UnaryOperator::PostDec; break;
}
QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
if (result.isNull())
return true;
return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
}
Action::ExprResult Sema::
ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
ExprTy *Idx, SourceLocation RLoc) {
Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
// Perform default conversions.
DefaultFunctionArrayConversion(LHSExp);
DefaultFunctionArrayConversion(RHSExp);
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
// in the subscript position. As a result, we need to derive the array base
// and index from the expression types.
Expr *BaseExpr, *IndexExpr;
QualType ResultType;
if (const PointerType *PTy = LHSTy->getAsPointerType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
// FIXME: need to deal with const...
ResultType = PTy->getPointeeType();
} else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
// FIXME: need to deal with const...
ResultType = PTy->getPointeeType();
} else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
BaseExpr = LHSExp; // vectors: V[123]
IndexExpr = RHSExp;
// Component access limited to variables (reject vec4.rg[1]).
if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr))
return Diag(LLoc, diag::err_ocuvector_component_access,
SourceRange(LLoc, RLoc));
// FIXME: need to deal with const...
ResultType = VTy->getElementType();
} else {
return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
RHSExp->getSourceRange());
}
// C99 6.5.2.1p1
if (!IndexExpr->getType()->isIntegerType())
return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
IndexExpr->getSourceRange());
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice,
// the following check catches trying to index a pointer to a function (e.g.
// void (*)(int)). Functions are not objects in C99.
if (!ResultType->isObjectType())
return Diag(BaseExpr->getLocStart(),
diag::err_typecheck_subscript_not_object,
BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
}
QualType Sema::
CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
IdentifierInfo &CompName, SourceLocation CompLoc) {
const OCUVectorType *vecType = baseType->getAsOCUVectorType();
// The vector accessor can't exceed the number of elements.
const char *compStr = CompName.getName();
if (strlen(compStr) > vecType->getNumElements()) {
Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
baseType.getAsString(), SourceRange(CompLoc));
return QualType();
}
// The component names must come from the same set.
if (vecType->getPointAccessorIdx(*compStr) != -1) {
do
compStr++;
while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
} else if (vecType->getColorAccessorIdx(*compStr) != -1) {
do
compStr++;
while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
} else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
do
compStr++;
while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
}
if (*compStr) {
// We didn't get to the end of the string. This means the component names
// didn't come from the same set *or* we encountered an illegal name.
Diag(OpLoc, diag::err_ocuvector_component_name_illegal,
std::string(compStr,compStr+1), SourceRange(CompLoc));
return QualType();
}
// Each component accessor can't exceed the vector type.
compStr = CompName.getName();
while (*compStr) {
if (vecType->isAccessorWithinNumElements(*compStr))
compStr++;
else
break;
}
if (*compStr) {
// We didn't get to the end of the string. This means a component accessor
// exceeds the number of elements in the vector.
Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
baseType.getAsString(), SourceRange(CompLoc));
return QualType();
}
// The component accessor looks fine - now we need to compute the actual type.
// The vector type is implied by the component accessor. For example,
// vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
unsigned CompSize = strlen(CompName.getName());
if (CompSize == 1)
return vecType->getElementType();
QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize);
// Now look up the TypeDefDecl from the vector type. Without this,
// diagostics look bad. We want OCU vector types to appear built-in.
for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) {
if (OCUVectorDecls[i]->getUnderlyingType() == VT)
return Context.getTypedefType(OCUVectorDecls[i]);
}
return VT; // should never get here (a typedef type should always be found).
}
Action::ExprResult Sema::
ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
tok::TokenKind OpKind, SourceLocation MemberLoc,
IdentifierInfo &Member) {
Expr *BaseExpr = static_cast<Expr *>(Base);
assert(BaseExpr && "no record expression");
// Perform default conversions.
DefaultFunctionArrayConversion(BaseExpr);
QualType BaseType = BaseExpr->getType();
assert(!BaseType.isNull() && "no type for member expression");
if (OpKind == tok::arrow) {
if (const PointerType *PT = BaseType->getAsPointerType())
BaseType = PT->getPointeeType();
else
return Diag(OpLoc, diag::err_typecheck_member_reference_arrow,
SourceRange(MemberLoc));
}
// The base type is either a record or an OCUVectorType.
if (const RecordType *RTy = BaseType->getAsRecordType()) {
RecordDecl *RDecl = RTy->getDecl();
if (RTy->isIncompleteType())
return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
BaseExpr->getSourceRange());
// The record definition is complete, now make sure the member is valid.
FieldDecl *MemberDecl = RDecl->getMember(&Member);
if (!MemberDecl)
return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(),
SourceRange(MemberLoc));
// Figure out the type of the member; see C99 6.5.2.3p3
// FIXME: Handle address space modifiers
QualType MemberType = MemberDecl->getType();
unsigned combinedQualifiers =
MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
MemberType = MemberType.getQualifiedType(combinedQualifiers);
return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl,
MemberLoc, MemberType);
} else if (BaseType->isOCUVectorType() && OpKind == tok::period) {
// Component access limited to variables (reject vec4.rg.g).
if (!isa<DeclRefExpr>(BaseExpr))
return Diag(OpLoc, diag::err_ocuvector_component_access,
SourceRange(MemberLoc));
QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc);
if (ret.isNull())
return true;
return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
} else if (BaseType->isObjCInterfaceType()) {
ObjCInterfaceDecl *IFace;
if (isa<ObjCInterfaceType>(BaseType.getCanonicalType()))
IFace = dyn_cast<ObjCInterfaceType>(BaseType)->getDecl();
else
IFace = dyn_cast<ObjCQualifiedInterfaceType>(BaseType)->getDecl();
ObjCInterfaceDecl *clsDeclared;
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&Member, clsDeclared))
return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
OpKind==tok::arrow);
}
return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion,
SourceRange(MemberLoc));
}
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
Action::ExprResult Sema::
ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
ExprTy **args, unsigned NumArgs,
SourceLocation *CommaLocs, SourceLocation RParenLoc) {
Expr *Fn = static_cast<Expr *>(fn);
Expr **Args = reinterpret_cast<Expr**>(args);
assert(Fn && "no function call expression");
// Make the call expr early, before semantic checks. This guarantees cleanup
// of arguments and function on error.
llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
Context.BoolTy, RParenLoc));
// Promote the function operand.
TheCall->setCallee(UsualUnaryConversions(Fn));
// C99 6.5.2.2p1 - "The expression that denotes the called function shall have
// type pointer to function".
const PointerType *PT = Fn->getType()->getAsPointerType();
if (PT == 0)
return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
SourceRange(Fn->getLocStart(), RParenLoc));
const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType();
if (FuncT == 0)
return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
SourceRange(Fn->getLocStart(), RParenLoc));
// We know the result type of the call, set it.
TheCall->setType(FuncT->getResultType());
if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
// assignment, to the types of the corresponding parameter, ...
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned NumArgsToCheck = NumArgs;
// If too few arguments are available, don't make the call.
if (NumArgs < NumArgsInProto)
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
Fn->getSourceRange());
// If too many are passed and not variadic, error on the extras and drop
// them.
if (NumArgs > NumArgsInProto) {
if (!Proto->isVariadic()) {
Diag(Args[NumArgsInProto]->getLocStart(),
diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
SourceRange(Args[NumArgsInProto]->getLocStart(),
Args[NumArgs-1]->getLocEnd()));
// This deletes the extra arguments.
TheCall->setNumArgs(NumArgsInProto);
}
NumArgsToCheck = NumArgsInProto;
}
// Continue to check argument types (even if we have too few/many args).
for (unsigned i = 0; i != NumArgsToCheck; i++) {
Expr *Arg = Args[i];
QualType ProtoArgType = Proto->getArgType(i);
QualType ArgType = Arg->getType();
// Compute implicit casts from the operand to the formal argument type.
AssignConvertType ConvTy =
CheckSingleAssignmentConstraints(ProtoArgType, Arg);
TheCall->setArg(i, Arg);
if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
ArgType, Arg, "passing"))
return true;
}
// If this is a variadic call, handle args passed through "...".
if (Proto->isVariadic()) {
// Promote the arguments (C99 6.5.2.2p7).
for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
Expr *Arg = Args[i];
DefaultArgumentPromotion(Arg);
TheCall->setArg(i, Arg);
}
}
} else {
assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
// Promote the arguments (C99 6.5.2.2p6).
for (unsigned i = 0; i != NumArgs; i++) {
Expr *Arg = Args[i];
DefaultArgumentPromotion(Arg);
TheCall->setArg(i, Arg);
}
}
// Do special checking on direct calls to functions.
if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl()))
if (CheckFunctionCall(FDecl, TheCall.get()))
return true;
return TheCall.take();
}
Action::ExprResult Sema::
ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprTy *InitExpr) {
assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
QualType literalType = QualType::getFromOpaquePtr(Ty);
// FIXME: put back this assert when initializers are worked out.
//assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
Expr *literalExpr = static_cast<Expr*>(InitExpr);
// FIXME: add more semantic analysis (C99 6.5.2.5).
if (CheckInitializerTypes(literalExpr, literalType))
return true;
bool isFileScope = !CurFunctionDecl && !CurMethodDecl;
if (isFileScope) { // 6.5.2.5p3
if (CheckForConstantInitializer(literalExpr, literalType))
return true;
}
return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
}
Action::ExprResult Sema::
ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
SourceLocation RBraceLoc) {
Expr **InitList = reinterpret_cast<Expr**>(initlist);
// Semantic analysis for initializers is done by ActOnDeclarator() and
// CheckInitializer() - it requires knowledge of the object being intialized.
InitListExpr *e = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
e->setType(Context.VoidTy); // FIXME: just a place holder for now.
return e;
}
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
assert(VectorTy->isVectorType() && "Not a vector type!");
if (Ty->isVectorType() || Ty->isIntegerType()) {
if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
return Diag(R.getBegin(),
Ty->isVectorType() ?
diag::err_invalid_conversion_between_vectors :
diag::err_invalid_conversion_between_vector_and_integer,
VectorTy.getAsString().c_str(),
Ty.getAsString().c_str(), R);
} else
return Diag(R.getBegin(),
diag::err_invalid_conversion_between_vector_and_scalar,
VectorTy.getAsString().c_str(),
Ty.getAsString().c_str(), R);
return false;
}
Action::ExprResult Sema::
ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprTy *Op) {
assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
Expr *castExpr = static_cast<Expr*>(Op);
QualType castType = QualType::getFromOpaquePtr(Ty);
UsualUnaryConversions(castExpr);
// C99 6.5.4p2: the cast type needs to be void or scalar and the expression
// type needs to be scalar.
if (!castType->isVoidType()) { // Cast to void allows any expr type.
if (!castType->isScalarType() && !castType->isVectorType())
return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
if (!castExpr->getType()->isScalarType() &&
!castExpr->getType()->isVectorType())
return Diag(castExpr->getLocStart(),
diag::err_typecheck_expect_scalar_operand,
castExpr->getType().getAsString(),castExpr->getSourceRange());
if (castExpr->getType()->isVectorType()) {
if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
castExpr->getType(), castType))
return true;
} else if (castType->isVectorType()) {
if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
castType, castExpr->getType()))
return true;
}
}
return new CastExpr(castType, castExpr, LParenLoc);
}
/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, lex = cond.
inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
UsualUnaryConversions(cond);
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
QualType condT = cond->getType();
QualType lexT = lex->getType();
QualType rexT = rex->getType();
// first, check the condition.
if (!condT->isScalarType()) { // C99 6.5.15p2
Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
condT.getAsString());
return QualType();
}
// Now check the two expressions.
// If both operands have arithmetic type, do the usual arithmetic conversions
// to find a common type: C99 6.5.15p3,5.
if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
UsualArithmeticConversions(lex, rex);
return lex->getType();
}
// If both operands are the same structure or union type, the result is that
// type.
if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3
if (const RecordType *RHSRT = rexT->getAsRecordType())
if (LHSRT->getDecl() == RHSRT->getDecl())
// "If both the operands have structure or union type, the result has
// that type." This implies that CV qualifiers are dropped.
return lexT.getUnqualifiedType();
}
// C99 6.5.15p5: "If both operands have void type, the result has void type."
if (lexT->isVoidType() && rexT->isVoidType())
return lexT.getUnqualifiedType();
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
// the type of the other operand."
if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) {
ImpCastExprToType(rex, lexT); // promote the null to a pointer.
return lexT;
}
if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) {
ImpCastExprToType(lex, rexT); // promote the null to a pointer.
return rexT;
}
// Handle the case where both operands are pointers before we handle null
// pointer constants in case both operands are null pointer constants.
if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
if (const PointerType *RHSPT = rexT->getAsPointerType()) {
// get the "pointed to" types
QualType lhptee = LHSPT->getPointeeType();
QualType rhptee = RHSPT->getPointeeType();
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
if (lhptee->isVoidType() &&
(rhptee->isObjectType() || rhptee->isIncompleteType())) {
// Figure out necessary qualifiers (C99 6.5.15p6)
QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
QualType destType = Context.getPointerType(destPointee);
ImpCastExprToType(lex, destType); // add qualifiers if necessary
ImpCastExprToType(rex, destType); // promote to void*
return destType;
}
if (rhptee->isVoidType() &&
(lhptee->isObjectType() || lhptee->isIncompleteType())) {
QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
QualType destType = Context.getPointerType(destPointee);
ImpCastExprToType(lex, destType); // add qualifiers if necessary
ImpCastExprToType(rex, destType); // promote to void*
return destType;
}
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
rhptee.getUnqualifiedType())) {
Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
lexT.getAsString(), rexT.getAsString(),
lex->getSourceRange(), rex->getSourceRange());
// In this situation, we assume void* type. No especially good
// reason, but this is what gcc does, and we do have to pick
// to get a consistent AST.
QualType voidPtrTy = Context.getPointerType(Context.VoidTy);
ImpCastExprToType(lex, voidPtrTy);
ImpCastExprToType(rex, voidPtrTy);
return voidPtrTy;
}
// The pointer types are compatible.
// C99 6.5.15p6: If both operands are pointers to compatible types *or* to
// differently qualified versions of compatible types, the result type is
// a pointer to an appropriately qualified version of the *composite*
// type.
// FIXME: Need to return the composite type.
// FIXME: Need to add qualifiers
return lexT;
}
}
// Otherwise, the operands are not compatible.
Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
lexT.getAsString(), rexT.getAsString(),
lex->getSourceRange(), rex->getSourceRange());
return QualType();
}
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
ExprTy *Cond, ExprTy *LHS,
ExprTy *RHS) {
Expr *CondExpr = (Expr *) Cond;
Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
// was the condition.
bool isLHSNull = LHSExpr == 0;
if (isLHSNull)
LHSExpr = CondExpr;
QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
RHSExpr, QuestionLoc);
if (result.isNull())
return true;
return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
RHSExpr, result);
}
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
/// do not have a prototype. Arguments that have type float are promoted to
/// double. All other argument types are converted by UsualUnaryConversions().
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
QualType Ty = Expr->getType();
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
if (Ty == Context.FloatTy)
ImpCastExprToType(Expr, Context.DoubleTy);
else
UsualUnaryConversions(Expr);
}
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
void Sema::DefaultFunctionArrayConversion(Expr *&e) {
QualType t = e->getType();
assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type");
if (const ReferenceType *ref = t->getAsReferenceType()) {
ImpCastExprToType(e, ref->getReferenceeType()); // C++ [expr]
t = e->getType();
}
if (t->isFunctionType())
ImpCastExprToType(e, Context.getPointerType(t));
else if (const ArrayType *ary = t->getAsArrayType()) {
// Make sure we don't lose qualifiers when dealing with typedefs. Example:
// typedef int arr[10];
// void test2() {
// const arr b;
// b[4] = 1;
// }
QualType ELT = ary->getElementType();
// FIXME: Handle ASQualType
ELT = ELT.getQualifiedType(t.getCVRQualifiers()|ELT.getCVRQualifiers());
ImpCastExprToType(e, Context.getPointerType(ELT));
}
}
/// UsualUnaryConversions - Performs various conversions that are common to most
/// operators (C99 6.3). The conversions of array and function types are
/// sometimes surpressed. For example, the array->pointer conversion doesn't
/// apply if the array is an argument to the sizeof or address (&) operators.
/// In these instances, this routine should *not* be called.
Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
QualType Ty = Expr->getType();
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
ImpCastExprToType(Expr, Ref->getReferenceeType()); // C++ [expr]
Ty = Expr->getType();
}
if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
ImpCastExprToType(Expr, Context.IntTy);
else
DefaultFunctionArrayConversion(Expr);
return Expr;
}
/// UsualArithmeticConversions - Performs various conversions that are common to
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
/// routine returns the first non-arithmetic type found. The client is
/// responsible for emitting appropriate error diagnostics.
/// FIXME: verify the conversion rules for "complex int" are consistent with GCC.
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
bool isCompAssign) {
if (!isCompAssign) {
UsualUnaryConversions(lhsExpr);
UsualUnaryConversions(rhsExpr);
}
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType lhs = lhsExpr->getType().getCanonicalType().getUnqualifiedType();
QualType rhs = rhsExpr->getType().getCanonicalType().getUnqualifiedType();
// If both types are identical, no conversion is needed.
if (lhs == rhs)
return lhs;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
return lhs;
// At this point, we have two different arithmetic types.
// Handle complex types first (C99 6.3.1.8p1).
if (lhs->isComplexType() || rhs->isComplexType()) {
// if we have an integer operand, the result is the complex type.
if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
// convert the rhs to the lhs complex type.
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
return lhs;
}
if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
// convert the lhs to the rhs complex type.
if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
return rhs;
}
// This handles complex/complex, complex/float, or float/complex.
// When both operands are complex, the shorter operand is converted to the
// type of the longer, and that is the type of the result. This corresponds
// to what is done when combining two real floating-point operands.
// The fun begins when size promotion occur across type domains.
// From H&S 6.3.4: When one operand is complex and the other is a real
// floating-point type, the less precise type is converted, within it's
// real or complex domain, to the precision of the other type. For example,
// when combining a "long double" with a "double _Complex", the
// "double _Complex" is promoted to "long double _Complex".
int result = Context.compareFloatingType(lhs, rhs);
if (result > 0) { // The left side is bigger, convert rhs.
rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
if (!isCompAssign)
ImpCastExprToType(rhsExpr, rhs);
} else if (result < 0) { // The right side is bigger, convert lhs.
lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
if (!isCompAssign)
ImpCastExprToType(lhsExpr, lhs);
}
// At this point, lhs and rhs have the same rank/size. Now, make sure the
// domains match. This is a requirement for our implementation, C99
// does not require this promotion.
if (lhs != rhs) { // Domains don't match, we have complex/float mix.
if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
if (!isCompAssign)
ImpCastExprToType(lhsExpr, rhs);
return rhs;
} else { // handle "_Complex double, double".
if (!isCompAssign)
ImpCastExprToType(rhsExpr, lhs);
return lhs;
}
}
return lhs; // The domain/size match exactly.
}
// Now handle "real" floating types (i.e. float, double, long double).
if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
// if we have an integer operand, the result is the real floating type.
if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
// convert rhs to the lhs floating point type.
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
return lhs;
}
if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
// convert lhs to the rhs floating point type.
if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
return rhs;
}
// We have two real floating types, float/complex combos were handled above.
// Convert the smaller operand to the bigger result.
int result = Context.compareFloatingType(lhs, rhs);
if (result > 0) { // convert the rhs
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
return lhs;
}
if (result < 0) { // convert the lhs
if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
return rhs;
}
assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
}
if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
// Handle GCC complex int extension.
const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
if (lhsComplexInt && rhsComplexInt) {
if (Context.maxIntegerType(lhsComplexInt->getElementType(),
rhsComplexInt->getElementType()) == lhs) {
// convert the rhs
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
return lhs;
}
if (!isCompAssign)
ImpCastExprToType(lhsExpr, rhs); // convert the lhs
return rhs;
} else if (lhsComplexInt && rhs->isIntegerType()) {
// convert the rhs to the lhs complex type.
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
return lhs;
} else if (rhsComplexInt && lhs->isIntegerType()) {
// convert the lhs to the rhs complex type.
if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
return rhs;
}
}
// Finally, we have two differing integer types.
if (Context.maxIntegerType(lhs, rhs) == lhs) { // convert the rhs
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
return lhs;
}
if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
return rhs;
}
// CheckPointerTypesForAssignment - This is a very tricky routine (despite
// being closely modeled after the C99 spec:-). The odd characteristic of this
// routine is it effectively iqnores the qualifiers on the top level pointee.
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
// FIXME: add a couple examples in this comment.
Sema::AssignConvertType
Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
QualType lhptee, rhptee;
// get the "pointed to" type (ignoring qualifiers at the top level)
lhptee = lhsType->getAsPointerType()->getPointeeType();
rhptee = rhsType->getAsPointerType()->getPointeeType();
// make sure we operate on the canonical type
lhptee = lhptee.getCanonicalType();
rhptee = rhptee.getCanonicalType();
AssignConvertType ConvTy = Compatible;
// C99 6.5.16.1p1: This following citation is common to constraints
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
// qualifiers of the type *pointed to* by the right;
// FIXME: Handle ASQualType
if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
rhptee.getCVRQualifiers())
ConvTy = CompatiblePointerDiscardsQualifiers;
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
// incomplete type and the other is a pointer to a qualified or unqualified
// version of void...
if (lhptee->isVoidType()) {
if (rhptee->isObjectType() || rhptee->isIncompleteType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
if (rhptee->isFunctionType())
return FunctionVoidPointer;
}
if (rhptee->isVoidType()) {
if (lhptee->isObjectType() || lhptee->isIncompleteType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
if (lhptee->isFunctionType())
return FunctionVoidPointer;
}
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
// unqualified versions of compatible types, ...
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
rhptee.getUnqualifiedType()))
return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
return ConvTy;
}
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
/// has code to accommodate several GCC extensions when type checking
/// pointers. Here are some objectionable examples that GCC considers warnings:
///
/// int a, *pint;
/// short *pshort;
/// struct foo *pfoo;
///
/// pint = pshort; // warning: assignment from incompatible pointer type
/// a = pint; // warning: assignment makes integer from pointer without a cast
/// pint = a; // warning: assignment makes pointer from integer without a cast
/// pint = pfoo; // warning: assignment from incompatible pointer type
///
/// As a result, the code for dealing with pointers is more complex than the
/// C99 spec dictates.
/// Note: the warning above turn into errors when -pedantic-errors is enabled.
///
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
// Get canonical types. We're not formatting these types, just comparing
// them.
lhsType = lhsType.getCanonicalType();
rhsType = rhsType.getCanonicalType();
if (lhsType.getUnqualifiedType() == rhsType.getUnqualifiedType())
return Compatible; // Common case: fast path an exact match.
if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
if (Context.referenceTypesAreCompatible(lhsType, rhsType))
return Compatible;
return Incompatible;
}
if (lhsType->isObjCQualifiedIdType()
|| rhsType->isObjCQualifiedIdType()) {
if (Context.ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType))
return Compatible;
return Incompatible;
}
if (lhsType->isVectorType() || rhsType->isVectorType()) {
// For OCUVector, allow vector splats; float -> <n x float>
if (const OCUVectorType *LV = lhsType->getAsOCUVectorType()) {
if (LV->getElementType().getTypePtr() == rhsType.getTypePtr())
return Compatible;
}
// If LHS and RHS are both vectors of integer or both vectors of floating
// point types, and the total vector length is the same, allow the
// conversion. This is a bitcast; no bits are changed but the result type
// is different.
if (getLangOptions().LaxVectorConversions &&
lhsType->isVectorType() && rhsType->isVectorType()) {
if ((lhsType->isIntegerType() && rhsType->isIntegerType()) ||
(lhsType->isRealFloatingType() && rhsType->isRealFloatingType())) {
if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
return Compatible;
}
}
return Incompatible;
}
if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
return Compatible;
if (lhsType->isPointerType()) {
if (rhsType->isIntegerType())
return IntToPointer;
if (rhsType->isPointerType())
return CheckPointerTypesForAssignment(lhsType, rhsType);
return Incompatible;
}
if (rhsType->isPointerType()) {
// C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy))
return PointerToInt;
if (lhsType->isPointerType())
return CheckPointerTypesForAssignment(lhsType, rhsType);
return Incompatible;
}
if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
if (Context.tagTypesAreCompatible(lhsType, rhsType))
return Compatible;
}
return Incompatible;
}
Sema::AssignConvertType
Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
// C99 6.5.16.1p1: the left operand is a pointer and the right is
// a null pointer constant.
if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType())
&& rExpr->isNullPointerConstant(Context)) {
ImpCastExprToType(rExpr, lhsType);
return Compatible;
}
// This check seems unnatural, however it is necessary to ensure the proper
// conversion of functions/arrays. If the conversion were done for all
// DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
// expressions that surpress this implicit conversion (&, sizeof).
//
// Suppress this for references: C99 8.5.3p5. FIXME: revisit when references
// are better understood.
if (!lhsType->isReferenceType())
DefaultFunctionArrayConversion(rExpr);
Sema::AssignConvertType result =
CheckAssignmentConstraints(lhsType, rExpr->getType());
// C99 6.5.16.1p2: The value of the right operand is converted to the
// type of the assignment expression.
if (rExpr->getType() != lhsType)
ImpCastExprToType(rExpr, lhsType);
return result;
}
Sema::AssignConvertType
Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
return CheckAssignmentConstraints(lhsType, rhsType);
}
QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
Diag(loc, diag::err_typecheck_invalid_operands,
lex->getType().getAsString(), rex->getType().getAsString(),
lex->getSourceRange(), rex->getSourceRange());
return QualType();
}
inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
Expr *&rex) {
QualType lhsType = lex->getType(), rhsType = rex->getType();
// make sure the vector types are identical.
if (lhsType == rhsType)
return lhsType;
// if the lhs is an ocu vector and the rhs is a scalar of the same type,
// promote the rhs to the vector type.
if (const OCUVectorType *V = lhsType->getAsOCUVectorType()) {
if (V->getElementType().getCanonicalType().getTypePtr()
== rhsType.getCanonicalType().getTypePtr()) {
ImpCastExprToType(rex, lhsType);
return lhsType;
}
}
// if the rhs is an ocu vector and the lhs is a scalar of the same type,
// promote the lhs to the vector type.
if (const OCUVectorType *V = rhsType->getAsOCUVectorType()) {
if (V->getElementType().getCanonicalType().getTypePtr()
== lhsType.getCanonicalType().getTypePtr()) {
ImpCastExprToType(lex, rhsType);
return rhsType;
}
}
// You cannot convert between vector values of different size.
Diag(loc, diag::err_typecheck_vector_not_convertable,
lex->getType().getAsString(), rex->getType().getAsString(),
lex->getSourceRange(), rex->getSourceRange());
return QualType();
}
inline QualType Sema::CheckMultiplyDivideOperands(
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
{
QualType lhsType = lex->getType(), rhsType = rex->getType();
if (lhsType->isVectorType() || rhsType->isVectorType())
return CheckVectorOperands(loc, lex, rex);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
return compType;
return InvalidOperands(loc, lex, rex);
}
inline QualType Sema::CheckRemainderOperands(
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
{
QualType lhsType = lex->getType(), rhsType = rex->getType();
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
return compType;
return InvalidOperands(loc, lex, rex);
}
inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
{
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(loc, lex, rex);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
// handle the common case first (both operands are arithmetic).
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
return compType;
if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
return lex->getType();
if (lex->getType()->isIntegerType() && rex->getType()->isPointerType())
return rex->getType();
return InvalidOperands(loc, lex, rex);
}
inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
{
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(loc, lex, rex);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
// Enforce type constraints: C99 6.5.6p3.
// Handle the common case first (both operands are arithmetic).
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
return compType;
// Either ptr - int or ptr - ptr.
if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
QualType lpointee = LHSPTy->getPointeeType();
// The LHS must be an object type, not incomplete, function, etc.
if (!lpointee->isObjectType()) {
// Handle the GNU void* extension.
if (lpointee->isVoidType()) {
Diag(loc, diag::ext_gnu_void_ptr,
lex->getSourceRange(), rex->getSourceRange());
} else {
Diag(loc, diag::err_typecheck_sub_ptr_object,
lex->getType().getAsString(), lex->getSourceRange());
return QualType();
}
}
// The result type of a pointer-int computation is the pointer type.
if (rex->getType()->isIntegerType())
return lex->getType();
// Handle pointer-pointer subtractions.
if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
QualType rpointee = RHSPTy->getPointeeType();
// RHS must be an object type, unless void (GNU).
if (!rpointee->isObjectType()) {
// Handle the GNU void* extension.
if (rpointee->isVoidType()) {
if (!lpointee->isVoidType())
Diag(loc, diag::ext_gnu_void_ptr,
lex->getSourceRange(), rex->getSourceRange());
} else {
Diag(loc, diag::err_typecheck_sub_ptr_object,
rex->getType().getAsString(), rex->getSourceRange());
return QualType();
}
}
// Pointee types must be compatible.
if (!Context.typesAreCompatible(lpointee.getUnqualifiedType(),
rpointee.getUnqualifiedType())) {
Diag(loc, diag::err_typecheck_sub_ptr_compatible,
lex->getType().getAsString(), rex->getType().getAsString(),
lex->getSourceRange(), rex->getSourceRange());
return QualType();
}
return Context.getPointerDiffType();
}
}
return InvalidOperands(loc, lex, rex);
}
inline QualType Sema::CheckShiftOperands( // C99 6.5.7
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) {
// C99 6.5.7p2: Each of the operands shall have integer type.
if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
return InvalidOperands(loc, lex, rex);
// Shifts don't perform usual arithmetic conversions, they just do integer
// promotions on each operand. C99 6.5.7p3
if (!isCompAssign)
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
// "The type of the result is that of the promoted left operand."
return lex->getType();
}
inline QualType Sema::CheckCompareOperands( // C99 6.5.8
Expr *&lex, Expr *&rex, SourceLocation loc, bool isRelational)
{
// C99 6.5.8p3 / C99 6.5.9p4
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
UsualArithmeticConversions(lex, rex);
else {
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
}
QualType lType = lex->getType();
QualType rType = rex->getType();
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
if (!lType->isFloatingType()) {
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
if (DRL->getDecl() == DRR->getDecl())
Diag(loc, diag::warn_selfcomparison);
}
if (isRelational) {
if (lType->isRealType() && rType->isRealType())
return Context.IntTy;
} else {
// Check for comparisons of floating point operands using != and ==.
if (lType->isFloatingType()) {
assert (rType->isFloatingType());
CheckFloatComparison(loc,lex,rex);
}
if (lType->isArithmeticType() && rType->isArithmeticType())
return Context.IntTy;
}
bool LHSIsNull = lex->isNullPointerConstant(Context);
bool RHSIsNull = rex->isNullPointerConstant(Context);
// All of the following pointer related warnings are GCC extensions, except
// when handling null pointer constants. One day, we can consider making them
// errors (when -pedantic-errors is enabled).
if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
QualType lpointee = lType->getAsPointerType()->getPointeeType();
QualType rpointee = rType->getAsPointerType()->getPointeeType();
if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2
!lpointee->isVoidType() && !lpointee->isVoidType() &&
!Context.typesAreCompatible(lpointee.getUnqualifiedType(),
rpointee.getUnqualifiedType())) {
Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
lType.getAsString(), rType.getAsString(),
lex->getSourceRange(), rex->getSourceRange());
}
ImpCastExprToType(rex, lType); // promote the pointer to pointer
return Context.IntTy;
}
if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())
&& Context.ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
ImpCastExprToType(rex, lType);
return Context.IntTy;
}
if (lType->isPointerType() && rType->isIntegerType()) {
if (!RHSIsNull)
Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
lType.getAsString(), rType.getAsString(),
lex->getSourceRange(), rex->getSourceRange());
ImpCastExprToType(rex, lType); // promote the integer to pointer
return Context.IntTy;
}
if (lType->isIntegerType() && rType->isPointerType()) {
if (!LHSIsNull)
Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
lType.getAsString(), rType.getAsString(),
lex->getSourceRange(), rex->getSourceRange());
ImpCastExprToType(lex, rType); // promote the integer to pointer
return Context.IntTy;
}
return InvalidOperands(loc, lex, rex);
}
inline QualType Sema::CheckBitwiseOperands(
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
{
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(loc, lex, rex);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
return compType;
return InvalidOperands(loc, lex, rex);
}
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
Expr *&lex, Expr *&rex, SourceLocation loc)
{
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
if (lex->getType()->isScalarType() || rex->getType()->isScalarType())
return Context.IntTy;
return InvalidOperands(loc, lex, rex);
}
inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
{
QualType lhsType = lex->getType();
QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
switch (mlval) { // C99 6.5.16p2
case Expr::MLV_Valid:
break;
case Expr::MLV_ConstQualified:
Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
return QualType();
case Expr::MLV_ArrayType:
Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
lhsType.getAsString(), lex->getSourceRange());
return QualType();
case Expr::MLV_NotObjectType:
Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
lhsType.getAsString(), lex->getSourceRange());
return QualType();
case Expr::MLV_InvalidExpression:
Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
lex->getSourceRange());
return QualType();
case Expr::MLV_IncompleteType:
case Expr::MLV_IncompleteVoidType:
Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
lhsType.getAsString(), lex->getSourceRange());
return QualType();
case Expr::MLV_DuplicateVectorComponents:
Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
lex->getSourceRange());
return QualType();
}
AssignConvertType ConvTy;
if (compoundType.isNull())
ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
else
ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
rex, "assigning"))
return QualType();
// C99 6.5.16p3: The type of an assignment expression is the type of the
// left operand unless the left operand has qualified type, in which case
// it is the unqualified version of the type of the left operand.
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
// is converted to the type of the assignment expression (above).
// C++ 5.17p1: the type of the assignment expression is that of its left
// oprdu.
return lhsType.getUnqualifiedType();
}
inline QualType Sema::CheckCommaOperands( // C99 6.5.17
Expr *&lex, Expr *&rex, SourceLocation loc) {
UsualUnaryConversions(rex);
return rex->getType();
}
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
QualType resType = op->getType();
assert(!resType.isNull() && "no type for increment/decrement expression");
// C99 6.5.2.4p1: We allow complex as a GCC extension.
if (const PointerType *pt = resType->getAsPointerType()) {
if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2
Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
resType.getAsString(), op->getSourceRange());
return QualType();
}
} else if (!resType->isRealType()) {
if (resType->isComplexType())
// C99 does not support ++/-- on complex types.
Diag(OpLoc, diag::ext_integer_increment_complex,
resType.getAsString(), op->getSourceRange());
else {
Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
resType.getAsString(), op->getSourceRange());
return QualType();
}
}
// At this point, we know we have a real, complex or pointer type.
// Now make sure the operand is a modifiable lvalue.
Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
if (mlval != Expr::MLV_Valid) {
// FIXME: emit a more precise diagnostic...
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
op->getSourceRange());
return QualType();
}
return resType;
}
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
/// This routine allows us to typecheck complex/recursive expressions
/// where the declaration is needed for type checking. Here are some
/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
static ValueDecl *getPrimaryDecl(Expr *e) {
switch (e->getStmtClass()) {
case Stmt::DeclRefExprClass:
return cast<DeclRefExpr>(e)->getDecl();
case Stmt::MemberExprClass:
// Fields cannot be declared with a 'register' storage class.
// &X->f is always ok, even if X is declared register.
if (cast<MemberExpr>(e)->isArrow())
return 0;
return getPrimaryDecl(cast<MemberExpr>(e)->getBase());
case Stmt::ArraySubscriptExprClass: {
// &X[4] and &4[X] is invalid if X is invalid and X is not a pointer.
ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(e)->getBase());
if (!VD || VD->getType()->isPointerType())
return 0;
else
return VD;
}
case Stmt::UnaryOperatorClass:
return getPrimaryDecl(cast<UnaryOperator>(e)->getSubExpr());
case Stmt::ParenExprClass:
return getPrimaryDecl(cast<ParenExpr>(e)->getSubExpr());
case Stmt::ImplicitCastExprClass:
// &X[4] when X is an array, has an implicit cast from array to pointer.
return getPrimaryDecl(cast<ImplicitCastExpr>(e)->getSubExpr());
default:
return 0;
}
}
/// CheckAddressOfOperand - The operand of & must be either a function
/// designator or an lvalue designating an object. If it is an lvalue, the
/// object cannot be declared with storage class register or be a bit field.
/// Note: The usual conversions are *not* applied to the operand of the &
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
if (getLangOptions().C99) {
// Implement C99-only parts of addressof rules.
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
if (uOp->getOpcode() == UnaryOperator::Deref)
// Per C99 6.5.3.2, the address of a deref always returns a valid result
// (assuming the deref expression is valid).
return uOp->getSubExpr()->getType();
}
// Technically, there should be a check for array subscript
// expressions here, but the result of one is always an lvalue anyway.
}
ValueDecl *dcl = getPrimaryDecl(op);
Expr::isLvalueResult lval = op->isLvalue();
if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
// FIXME: emit more specific diag...
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
op->getSourceRange());
return QualType();
}
} else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
if (MemExpr->getMemberDecl()->isBitField()) {
Diag(OpLoc, diag::err_typecheck_address_of,
std::string("bit-field"), op->getSourceRange());
return QualType();
}
// Check for Apple extension for accessing vector components.
} else if (isa<ArraySubscriptExpr>(op) &&
cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
Diag(OpLoc, diag::err_typecheck_address_of,
std::string("vector"), op->getSourceRange());
return QualType();
} else if (dcl) { // C99 6.5.3.2p1
// We have an lvalue with a decl. Make sure the decl is not declared
// with the register storage-class specifier.
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
if (vd->getStorageClass() == VarDecl::Register) {
Diag(OpLoc, diag::err_typecheck_address_of,
std::string("register variable"), op->getSourceRange());
return QualType();
}
} else
assert(0 && "Unknown/unexpected decl type");
}
// If the operand has type "type", the result has type "pointer to type".
return Context.getPointerType(op->getType());
}
QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
UsualUnaryConversions(op);
QualType qType = op->getType();
if (const PointerType *PT = qType->getAsPointerType()) {
// Note that per both C89 and C99, this is always legal, even
// if ptype is an incomplete type or void.
// It would be possible to warn about dereferencing a
// void pointer, but it's completely well-defined,
// and such a warning is unlikely to catch any mistakes.
return PT->getPointeeType();
}
Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
qType.getAsString(), op->getSourceRange());
return QualType();
}
static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
tok::TokenKind Kind) {
BinaryOperator::Opcode Opc;
switch (Kind) {
default: assert(0 && "Unknown binop!");
case tok::star: Opc = BinaryOperator::Mul; break;
case tok::slash: Opc = BinaryOperator::Div; break;
case tok::percent: Opc = BinaryOperator::Rem; break;
case tok::plus: Opc = BinaryOperator::Add; break;
case tok::minus: Opc = BinaryOperator::Sub; break;
case tok::lessless: Opc = BinaryOperator::Shl; break;
case tok::greatergreater: Opc = BinaryOperator::Shr; break;
case tok::lessequal: Opc = BinaryOperator::LE; break;
case tok::less: Opc = BinaryOperator::LT; break;
case tok::greaterequal: Opc = BinaryOperator::GE; break;
case tok::greater: Opc = BinaryOperator::GT; break;
case tok::exclaimequal: Opc = BinaryOperator::NE; break;
case tok::equalequal: Opc = BinaryOperator::EQ; break;
case tok::amp: Opc = BinaryOperator::And; break;
case tok::caret: Opc = BinaryOperator::Xor; break;
case tok::pipe: Opc = BinaryOperator::Or; break;
case tok::ampamp: Opc = BinaryOperator::LAnd; break;
case tok::pipepipe: Opc = BinaryOperator::LOr; break;
case tok::equal: Opc = BinaryOperator::Assign; break;
case tok::starequal: Opc = BinaryOperator::MulAssign; break;
case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
case tok::comma: Opc = BinaryOperator::Comma; break;
}
return Opc;
}
static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
tok::TokenKind Kind) {
UnaryOperator::Opcode Opc;
switch (Kind) {
default: assert(0 && "Unknown unary op!");
case tok::plusplus: Opc = UnaryOperator::PreInc; break;
case tok::minusminus: Opc = UnaryOperator::PreDec; break;
case tok::amp: Opc = UnaryOperator::AddrOf; break;
case tok::star: Opc = UnaryOperator::Deref; break;
case tok::plus: Opc = UnaryOperator::Plus; break;
case tok::minus: Opc = UnaryOperator::Minus; break;
case tok::tilde: Opc = UnaryOperator::Not; break;
case tok::exclaim: Opc = UnaryOperator::LNot; break;
case tok::kw_sizeof: Opc = UnaryOperator::SizeOf; break;
case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
case tok::kw___real: Opc = UnaryOperator::Real; break;
case tok::kw___imag: Opc = UnaryOperator::Imag; break;
case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
}
return Opc;
}
// Binary Operators. 'Tok' is the token for the operator.
Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
ExprTy *LHS, ExprTy *RHS) {
BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
assert((lhs != 0) && "ActOnBinOp(): missing left expression");
assert((rhs != 0) && "ActOnBinOp(): missing right expression");
QualType ResultTy; // Result type of the binary operator.
QualType CompTy; // Computation type for compound assignments (e.g. '+=')
switch (Opc) {
default:
assert(0 && "Unknown binary expr!");
case BinaryOperator::Assign:
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
break;
case BinaryOperator::Mul:
case BinaryOperator::Div:
ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
break;
case BinaryOperator::Rem:
ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
break;
case BinaryOperator::Add:
ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
break;
case BinaryOperator::Sub:
ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
break;
case BinaryOperator::Shl:
case BinaryOperator::Shr:
ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
break;
case BinaryOperator::LE:
case BinaryOperator::LT:
case BinaryOperator::GE:
case BinaryOperator::GT:
ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
break;
case BinaryOperator::EQ:
case BinaryOperator::NE:
ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
break;
case BinaryOperator::And:
case BinaryOperator::Xor:
case BinaryOperator::Or:
ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
break;
case BinaryOperator::LAnd:
case BinaryOperator::LOr:
ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
break;
case BinaryOperator::MulAssign:
case BinaryOperator::DivAssign:
CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
break;
case BinaryOperator::RemAssign:
CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
break;
case BinaryOperator::AddAssign:
CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
break;
case BinaryOperator::SubAssign:
CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
break;
case BinaryOperator::ShlAssign:
case BinaryOperator::ShrAssign:
CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
break;
case BinaryOperator::AndAssign:
case BinaryOperator::XorAssign:
case BinaryOperator::OrAssign:
CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
break;
case BinaryOperator::Comma:
ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
break;
}
if (ResultTy.isNull())
return true;
if (CompTy.isNull())
return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
else
return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
}
// Unary Operators. 'Tok' is the token for the operator.
Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
ExprTy *input) {
Expr *Input = (Expr*)input;
UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
QualType resultType;
switch (Opc) {
default:
assert(0 && "Unimplemented unary expr!");
case UnaryOperator::PreInc:
case UnaryOperator::PreDec:
resultType = CheckIncrementDecrementOperand(Input, OpLoc);
break;
case UnaryOperator::AddrOf:
resultType = CheckAddressOfOperand(Input, OpLoc);
break;
case UnaryOperator::Deref:
DefaultFunctionArrayConversion(Input);
resultType = CheckIndirectionOperand(Input, OpLoc);
break;
case UnaryOperator::Plus:
case UnaryOperator::Minus:
UsualUnaryConversions(Input);
resultType = Input->getType();
if (!resultType->isArithmeticType()) // C99 6.5.3.3p1
return Diag(OpLoc, diag::err_typecheck_unary_expr,
resultType.getAsString());
break;
case UnaryOperator::Not: // bitwise complement
UsualUnaryConversions(Input);
resultType = Input->getType();
// C99 6.5.3.3p1. We allow complex as a GCC extension.
if (!resultType->isIntegerType()) {
if (resultType->isComplexType())
// C99 does not support '~' for complex conjugation.
Diag(OpLoc, diag::ext_integer_complement_complex,
resultType.getAsString());
else
return Diag(OpLoc, diag::err_typecheck_unary_expr,
resultType.getAsString());
}
break;
case UnaryOperator::LNot: // logical negation
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
DefaultFunctionArrayConversion(Input);
resultType = Input->getType();
if (!resultType->isScalarType()) // C99 6.5.3.3p1
return Diag(OpLoc, diag::err_typecheck_unary_expr,
resultType.getAsString());
// LNot always has type int. C99 6.5.3.3p5.
resultType = Context.IntTy;
break;
case UnaryOperator::SizeOf:
resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
break;
case UnaryOperator::AlignOf:
resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
break;
case UnaryOperator::Real:
case UnaryOperator::Imag:
resultType = CheckRealImagOperand(Input, OpLoc);
break;
case UnaryOperator::Extension:
resultType = Input->getType();
break;
}
if (resultType.isNull())
return true;
return new UnaryOperator(Input, Opc, resultType, OpLoc);
}
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
SourceLocation LabLoc,
IdentifierInfo *LabelII) {
// Look up the record for this label identifier.
LabelStmt *&LabelDecl = LabelMap[LabelII];
// If we haven't seen this label yet, create a forward reference.
if (LabelDecl == 0)
LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
// Create the AST node. The address of a label always has type 'void*'.
return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
Context.getPointerType(Context.VoidTy));
}
Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
SourceLocation RPLoc) { // "({..})"
Stmt *SubStmt = static_cast<Stmt*>(substmt);
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
// FIXME: there are a variety of strange constraints to enforce here, for
// example, it is not possible to goto into a stmt expression apparently.
// More semantic analysis is needed.
// FIXME: the last statement in the compount stmt has its value used. We
// should not warn about it being unused.
// If there are sub stmts in the compound stmt, take the type of the last one
// as the type of the stmtexpr.
QualType Ty = Context.VoidTy;
if (!Compound->body_empty())
if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
Ty = LastExpr->getType();
return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
}
Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
TypeTy *argty,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RPLoc) {
QualType ArgTy = QualType::getFromOpaquePtr(argty);
assert(!ArgTy.isNull() && "Missing type argument!");
// We must have at least one component that refers to the type, and the first
// one is known to be a field designator. Verify that the ArgTy represents
// a struct/union/class.
if (!ArgTy->isRecordType())
return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
// Otherwise, create a compound literal expression as the base, and
// iteratively process the offsetof designators.
Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
// offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
// GCC extension, diagnose them.
if (NumComponents != 1)
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
for (unsigned i = 0; i != NumComponents; ++i) {
const OffsetOfComponent &OC = CompPtr[i];
if (OC.isBrackets) {
// Offset of an array sub-field. TODO: Should we allow vector elements?
const ArrayType *AT = Res->getType()->getAsArrayType();
if (!AT) {
delete Res;
return Diag(OC.LocEnd, diag::err_offsetof_array_type,
Res->getType().getAsString());
}
// FIXME: C++: Verify that operator[] isn't overloaded.
// C99 6.5.2.1p1
Expr *Idx = static_cast<Expr*>(OC.U.E);
if (!Idx->getType()->isIntegerType())
return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
Idx->getSourceRange());
Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
continue;
}
const RecordType *RC = Res->getType()->getAsRecordType();
if (!RC) {
delete Res;
return Diag(OC.LocEnd, diag::err_offsetof_record_type,
Res->getType().getAsString());
}
// Get the decl corresponding to this.
RecordDecl *RD = RC->getDecl();
FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
if (!MemberDecl)
return Diag(BuiltinLoc, diag::err_typecheck_no_member,
OC.U.IdentInfo->getName(),
SourceRange(OC.LocStart, OC.LocEnd));
// FIXME: C++: Verify that MemberDecl isn't a static field.
// FIXME: Verify that MemberDecl isn't a bitfield.
// MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
// matter here.
Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
}
return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
BuiltinLoc);
}
Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
TypeTy *arg1, TypeTy *arg2,
SourceLocation RPLoc) {
QualType argT1 = QualType::getFromOpaquePtr(arg1);
QualType argT2 = QualType::getFromOpaquePtr(arg2);
assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
}
Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
ExprTy *expr1, ExprTy *expr2,
SourceLocation RPLoc) {
Expr *CondExpr = static_cast<Expr*>(cond);
Expr *LHSExpr = static_cast<Expr*>(expr1);
Expr *RHSExpr = static_cast<Expr*>(expr2);
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
// The conditional expression is required to be a constant expression.
llvm::APSInt condEval(32);
SourceLocation ExpLoc;
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
CondExpr->getSourceRange());
// If the condition is > zero, then the AST type is the same as the LSHExpr.
QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
RHSExpr->getType();
return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
}
/// ExprsMatchFnType - return true if the Exprs in array Args have
/// QualTypes that match the QualTypes of the arguments of the FnType.
/// The number of arguments has already been validated to match the number of
/// arguments in FnType.
static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType) {
unsigned NumParams = FnType->getNumArgs();
for (unsigned i = 0; i != NumParams; ++i)
if (Args[i]->getType().getCanonicalType() !=
FnType->getArgType(i).getCanonicalType())
return false;
return true;
}
Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc) {
// __builtin_overload requires at least 2 arguments
if (NumArgs < 2)
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
SourceRange(BuiltinLoc, RParenLoc));
// The first argument is required to be a constant expression. It tells us
// the number of arguments to pass to each of the functions to be overloaded.
Expr **Args = reinterpret_cast<Expr**>(args);
Expr *NParamsExpr = Args[0];
llvm::APSInt constEval(32);
SourceLocation ExpLoc;
if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
NParamsExpr->getSourceRange());
// Verify that the number of parameters is > 0
unsigned NumParams = constEval.getZExtValue();
if (NumParams == 0)
return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
NParamsExpr->getSourceRange());
// Verify that we have at least 1 + NumParams arguments to the builtin.
if ((NumParams + 1) > NumArgs)
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
SourceRange(BuiltinLoc, RParenLoc));
// Figure out the return type, by matching the args to one of the functions
// listed after the parameters.
OverloadExpr *OE = 0;
for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
// UsualUnaryConversions will convert the function DeclRefExpr into a
// pointer to function.
Expr *Fn = UsualUnaryConversions(Args[i]);
FunctionTypeProto *FnType = 0;
if (const PointerType *PT = Fn->getType()->getAsPointerType()) {
QualType PointeeType = PT->getPointeeType().getCanonicalType();
FnType = dyn_cast<FunctionTypeProto>(PointeeType);
}
// The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
// parameters, and the number of parameters must match the value passed to
// the builtin.
if (!FnType || (FnType->getNumArgs() != NumParams))
return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
Fn->getSourceRange());
// Scan the parameter list for the FunctionType, checking the QualType of
// each parameter against the QualTypes of the arguments to the builtin.
// If they match, return a new OverloadExpr.
if (ExprsMatchFnType(Args+1, FnType)) {
if (OE)
return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
OE->getFn()->getSourceRange());
// Remember our match, and continue processing the remaining arguments
// to catch any errors.
OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
BuiltinLoc, RParenLoc);
}
}
// Return the newly created OverloadExpr node, if we succeded in matching
// exactly one of the candidate functions.
if (OE)
return OE;
// If we didn't find a matching function Expr in the __builtin_overload list
// the return an error.
std::string typeNames;
for (unsigned i = 0; i != NumParams; ++i) {
if (i != 0) typeNames += ", ";
typeNames += Args[i+1]->getType().getAsString();
}
return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
SourceRange(BuiltinLoc, RParenLoc));
}
Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
ExprTy *expr, TypeTy *type,
SourceLocation RPLoc) {
Expr *E = static_cast<Expr*>(expr);
QualType T = QualType::getFromOpaquePtr(type);
InitBuiltinVaListType();
if (CheckAssignmentConstraints(Context.getBuiltinVaListType(), E->getType())
!= Compatible)
return Diag(E->getLocStart(),
diag::err_first_argument_to_va_arg_not_of_type_va_list,
E->getType().getAsString(),
E->getSourceRange());
// FIXME: Warn if a non-POD type is passed in.
return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
}
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, const char *Flavor) {
// Decode the result (notice that AST's are still created for extensions).
bool isInvalid = false;
unsigned DiagKind;
switch (ConvTy) {
default: assert(0 && "Unknown conversion type");
case Compatible: return false;
case PointerToInt:
DiagKind = diag::ext_typecheck_convert_pointer_int;
break;
case IntToPointer:
DiagKind = diag::ext_typecheck_convert_int_pointer;
break;
case IncompatiblePointer:
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
break;
case FunctionVoidPointer:
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
break;
case CompatiblePointerDiscardsQualifiers:
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
break;
case Incompatible:
DiagKind = diag::err_typecheck_convert_incompatible;
isInvalid = true;
break;
}
Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
SrcExpr->getSourceRange());
return isInvalid;
}