forked from OSchip/llvm-project
2281 lines
86 KiB
C++
2281 lines
86 KiB
C++
//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for declarations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Builtins.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "clang/Parse/Scope.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Lex/HeaderSearch.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
using namespace clang;
|
|
|
|
Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const {
|
|
Decl *IIDecl = II.getFETokenInfo<Decl>();
|
|
// Find first occurance of none-tagged declaration
|
|
while(IIDecl && IIDecl->getIdentifierNamespace() != Decl::IDNS_Ordinary)
|
|
IIDecl = cast<ScopedDecl>(IIDecl)->getNext();
|
|
if (!IIDecl)
|
|
return 0;
|
|
if (isa<TypedefDecl>(IIDecl) || isa<ObjCInterfaceDecl>(IIDecl))
|
|
return IIDecl;
|
|
if (ObjCCompatibleAliasDecl *ADecl =
|
|
dyn_cast<ObjCCompatibleAliasDecl>(IIDecl))
|
|
return ADecl->getClassInterface();
|
|
return 0;
|
|
}
|
|
|
|
void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
|
|
if (S->decl_empty()) return;
|
|
assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
|
|
|
|
for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
|
|
I != E; ++I) {
|
|
Decl *TmpD = static_cast<Decl*>(*I);
|
|
assert(TmpD && "This decl didn't get pushed??");
|
|
ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
|
|
assert(D && "This decl isn't a ScopedDecl?");
|
|
|
|
IdentifierInfo *II = D->getIdentifier();
|
|
if (!II) continue;
|
|
|
|
// Unlink this decl from the identifier. Because the scope contains decls
|
|
// in an unordered collection, and because we have multiple identifier
|
|
// namespaces (e.g. tag, normal, label),the decl may not be the first entry.
|
|
if (II->getFETokenInfo<Decl>() == D) {
|
|
// Normal case, no multiple decls in different namespaces.
|
|
II->setFETokenInfo(D->getNext());
|
|
} else {
|
|
// Scan ahead. There are only three namespaces in C, so this loop can
|
|
// never execute more than 3 times.
|
|
ScopedDecl *SomeDecl = II->getFETokenInfo<ScopedDecl>();
|
|
while (SomeDecl->getNext() != D) {
|
|
SomeDecl = SomeDecl->getNext();
|
|
assert(SomeDecl && "Didn't find this decl on its identifier's chain!");
|
|
}
|
|
SomeDecl->setNext(D->getNext());
|
|
}
|
|
|
|
// This will have to be revisited for C++: there we want to nest stuff in
|
|
// namespace decls etc. Even for C, we might want a top-level translation
|
|
// unit decl or something.
|
|
if (!CurFunctionDecl)
|
|
continue;
|
|
|
|
// Chain this decl to the containing function, it now owns the memory for
|
|
// the decl.
|
|
D->setNext(CurFunctionDecl->getDeclChain());
|
|
CurFunctionDecl->setDeclChain(D);
|
|
}
|
|
}
|
|
|
|
/// LookupInterfaceDecl - Lookup interface declaration in the scope chain.
|
|
/// Return the first declaration found (which may or may not be a class
|
|
/// declaration. Caller is responsible for handling the none-class case.
|
|
/// Bypassing the alias of a class by returning the aliased class.
|
|
ScopedDecl *Sema::LookupInterfaceDecl(IdentifierInfo *ClassName) {
|
|
ScopedDecl *IDecl;
|
|
// Scan up the scope chain looking for a decl that matches this identifier
|
|
// that is in the appropriate namespace.
|
|
for (IDecl = ClassName->getFETokenInfo<ScopedDecl>(); IDecl;
|
|
IDecl = IDecl->getNext())
|
|
if (IDecl->getIdentifierNamespace() == Decl::IDNS_Ordinary)
|
|
break;
|
|
|
|
if (ObjCCompatibleAliasDecl *ADecl =
|
|
dyn_cast_or_null<ObjCCompatibleAliasDecl>(IDecl))
|
|
return ADecl->getClassInterface();
|
|
return IDecl;
|
|
}
|
|
|
|
/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
|
|
/// return 0 if one not found.
|
|
ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
|
|
ScopedDecl *IdDecl = LookupInterfaceDecl(Id);
|
|
return cast_or_null<ObjCInterfaceDecl>(IdDecl);
|
|
}
|
|
|
|
/// LookupScopedDecl - Look up the inner-most declaration in the specified
|
|
/// namespace.
|
|
ScopedDecl *Sema::LookupScopedDecl(IdentifierInfo *II, unsigned NSI,
|
|
SourceLocation IdLoc, Scope *S) {
|
|
if (II == 0) return 0;
|
|
Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI;
|
|
|
|
// Scan up the scope chain looking for a decl that matches this identifier
|
|
// that is in the appropriate namespace. This search should not take long, as
|
|
// shadowing of names is uncommon, and deep shadowing is extremely uncommon.
|
|
for (ScopedDecl *D = II->getFETokenInfo<ScopedDecl>(); D; D = D->getNext())
|
|
if (D->getIdentifierNamespace() == NS)
|
|
return D;
|
|
|
|
// If we didn't find a use of this identifier, and if the identifier
|
|
// corresponds to a compiler builtin, create the decl object for the builtin
|
|
// now, injecting it into translation unit scope, and return it.
|
|
if (NS == Decl::IDNS_Ordinary) {
|
|
// If this is a builtin on this (or all) targets, create the decl.
|
|
if (unsigned BuiltinID = II->getBuiltinID())
|
|
return LazilyCreateBuiltin(II, BuiltinID, S);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void Sema::InitBuiltinVaListType()
|
|
{
|
|
if (!Context.getBuiltinVaListType().isNull())
|
|
return;
|
|
|
|
IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
|
|
ScopedDecl *VaDecl = LookupScopedDecl(VaIdent, Decl::IDNS_Ordinary,
|
|
SourceLocation(), TUScope);
|
|
TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
|
|
Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
|
|
}
|
|
|
|
/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
|
|
/// lazily create a decl for it.
|
|
ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
|
|
Scope *S) {
|
|
Builtin::ID BID = (Builtin::ID)bid;
|
|
|
|
if (BID == Builtin::BI__builtin_va_start ||
|
|
BID == Builtin::BI__builtin_va_copy ||
|
|
BID == Builtin::BI__builtin_va_end)
|
|
InitBuiltinVaListType();
|
|
|
|
QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
|
|
FunctionDecl *New = new FunctionDecl(SourceLocation(), II, R,
|
|
FunctionDecl::Extern, false, 0);
|
|
|
|
// Find translation-unit scope to insert this function into.
|
|
if (Scope *FnS = S->getFnParent())
|
|
S = FnS->getParent(); // Skip all scopes in a function at once.
|
|
while (S->getParent())
|
|
S = S->getParent();
|
|
S->AddDecl(New);
|
|
|
|
// Add this decl to the end of the identifier info.
|
|
if (ScopedDecl *LastDecl = II->getFETokenInfo<ScopedDecl>()) {
|
|
// Scan until we find the last (outermost) decl in the id chain.
|
|
while (LastDecl->getNext())
|
|
LastDecl = LastDecl->getNext();
|
|
// Insert before (outside) it.
|
|
LastDecl->setNext(New);
|
|
} else {
|
|
II->setFETokenInfo(New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
|
|
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
|
|
/// situation, merging decls or emitting diagnostics as appropriate.
|
|
///
|
|
TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, ScopedDecl *OldD) {
|
|
// Verify the old decl was also a typedef.
|
|
TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
|
|
if (!Old) {
|
|
Diag(New->getLocation(), diag::err_redefinition_different_kind,
|
|
New->getName());
|
|
Diag(OldD->getLocation(), diag::err_previous_definition);
|
|
return New;
|
|
}
|
|
|
|
// Allow multiple definitions for ObjC built-in typedefs.
|
|
// FIXME: Verify the underlying types are equivalent!
|
|
if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
|
|
return Old;
|
|
|
|
// Redeclaration of a type is a constraint violation (6.7.2.3p1).
|
|
// Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
|
|
// *either* declaration is in a system header. The code below implements
|
|
// this adhoc compatibility rule. FIXME: The following code will not
|
|
// work properly when compiling ".i" files (containing preprocessed output).
|
|
SourceManager &SrcMgr = Context.getSourceManager();
|
|
const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
|
|
const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
|
|
HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
|
|
DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
|
|
DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
|
|
|
|
if ((OldDirType == DirectoryLookup::ExternCSystemHeaderDir ||
|
|
NewDirType == DirectoryLookup::ExternCSystemHeaderDir) ||
|
|
getLangOptions().Microsoft)
|
|
return New;
|
|
|
|
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
|
|
// TODO: This is totally simplistic. It should handle merging functions
|
|
// together etc, merging extern int X; int X; ...
|
|
Diag(New->getLocation(), diag::err_redefinition, New->getName());
|
|
Diag(Old->getLocation(), diag::err_previous_definition);
|
|
return New;
|
|
}
|
|
|
|
/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
|
|
static bool DeclHasAttr(const Decl *decl, const Attr *target) {
|
|
for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
|
|
if (attr->getKind() == target->getKind())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// MergeAttributes - append attributes from the Old decl to the New one.
|
|
static void MergeAttributes(Decl *New, Decl *Old) {
|
|
Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
|
|
|
|
// FIXME: fix this code to cleanup the Old attrs correctly
|
|
while (attr) {
|
|
tmp = attr;
|
|
attr = attr->getNext();
|
|
|
|
if (!DeclHasAttr(New, tmp)) {
|
|
New->addAttr(tmp);
|
|
} else {
|
|
tmp->setNext(0);
|
|
delete(tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// MergeFunctionDecl - We just parsed a function 'New' which has the same name
|
|
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
|
|
/// situation, merging decls or emitting diagnostics as appropriate.
|
|
///
|
|
FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, ScopedDecl *OldD) {
|
|
// Verify the old decl was also a function.
|
|
FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
|
|
if (!Old) {
|
|
Diag(New->getLocation(), diag::err_redefinition_different_kind,
|
|
New->getName());
|
|
Diag(OldD->getLocation(), diag::err_previous_definition);
|
|
return New;
|
|
}
|
|
|
|
MergeAttributes(New, Old);
|
|
|
|
|
|
QualType OldQType = Old->getCanonicalType();
|
|
QualType NewQType = New->getCanonicalType();
|
|
|
|
// Function types need to be compatible, not identical. This handles
|
|
// duplicate function decls like "void f(int); void f(enum X);" properly.
|
|
if (Context.functionTypesAreCompatible(OldQType, NewQType))
|
|
return New;
|
|
|
|
// A function that has already been declared has been redeclared or defined
|
|
// with a different type- show appropriate diagnostic
|
|
diag::kind PrevDiag = Old->getBody() ? diag::err_previous_definition :
|
|
diag::err_previous_declaration;
|
|
|
|
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
|
|
// TODO: This is totally simplistic. It should handle merging functions
|
|
// together etc, merging extern int X; int X; ...
|
|
Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
|
|
Diag(Old->getLocation(), PrevDiag);
|
|
return New;
|
|
}
|
|
|
|
/// equivalentArrayTypes - Used to determine whether two array types are
|
|
/// equivalent.
|
|
/// We need to check this explicitly as an incomplete array definition is
|
|
/// considered a VariableArrayType, so will not match a complete array
|
|
/// definition that would be otherwise equivalent.
|
|
static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
|
|
const ArrayType *NewAT = NewQType->getAsArrayType();
|
|
const ArrayType *OldAT = OldQType->getAsArrayType();
|
|
|
|
if (!NewAT || !OldAT)
|
|
return false;
|
|
|
|
// If either (or both) array types in incomplete we need to strip off the
|
|
// outer VariableArrayType. Once the outer VAT is removed the remaining
|
|
// types must be identical if the array types are to be considered
|
|
// equivalent.
|
|
// eg. int[][1] and int[1][1] become
|
|
// VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
|
|
// removing the outermost VAT gives
|
|
// CAT(1, int) and CAT(1, int)
|
|
// which are equal, therefore the array types are equivalent.
|
|
if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
|
|
if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
|
|
return false;
|
|
NewQType = NewAT->getElementType().getCanonicalType();
|
|
OldQType = OldAT->getElementType().getCanonicalType();
|
|
}
|
|
|
|
return NewQType == OldQType;
|
|
}
|
|
|
|
/// MergeVarDecl - We just parsed a variable 'New' which has the same name
|
|
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
|
|
/// situation, merging decls or emitting diagnostics as appropriate.
|
|
///
|
|
/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
|
|
/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
|
|
///
|
|
VarDecl *Sema::MergeVarDecl(VarDecl *New, ScopedDecl *OldD) {
|
|
// Verify the old decl was also a variable.
|
|
VarDecl *Old = dyn_cast<VarDecl>(OldD);
|
|
if (!Old) {
|
|
Diag(New->getLocation(), diag::err_redefinition_different_kind,
|
|
New->getName());
|
|
Diag(OldD->getLocation(), diag::err_previous_definition);
|
|
return New;
|
|
}
|
|
|
|
MergeAttributes(New, Old);
|
|
|
|
// Verify the types match.
|
|
if (Old->getCanonicalType() != New->getCanonicalType() &&
|
|
!areEquivalentArrayTypes(New->getCanonicalType(), Old->getCanonicalType())) {
|
|
Diag(New->getLocation(), diag::err_redefinition, New->getName());
|
|
Diag(Old->getLocation(), diag::err_previous_definition);
|
|
return New;
|
|
}
|
|
// C99 6.2.2p4: Check if we have a static decl followed by a non-static.
|
|
if (New->getStorageClass() == VarDecl::Static &&
|
|
(Old->getStorageClass() == VarDecl::None ||
|
|
Old->getStorageClass() == VarDecl::Extern)) {
|
|
Diag(New->getLocation(), diag::err_static_non_static, New->getName());
|
|
Diag(Old->getLocation(), diag::err_previous_definition);
|
|
return New;
|
|
}
|
|
// C99 6.2.2p4: Check if we have a non-static decl followed by a static.
|
|
if (New->getStorageClass() != VarDecl::Static &&
|
|
Old->getStorageClass() == VarDecl::Static) {
|
|
Diag(New->getLocation(), diag::err_non_static_static, New->getName());
|
|
Diag(Old->getLocation(), diag::err_previous_definition);
|
|
return New;
|
|
}
|
|
// We've verified the types match, now handle "tentative" definitions.
|
|
FileVarDecl *OldFSDecl = dyn_cast<FileVarDecl>(Old);
|
|
FileVarDecl *NewFSDecl = dyn_cast<FileVarDecl>(New);
|
|
|
|
if (OldFSDecl && NewFSDecl) {
|
|
// Handle C "tentative" external object definitions (C99 6.9.2).
|
|
bool OldIsTentative = false;
|
|
bool NewIsTentative = false;
|
|
|
|
if (!OldFSDecl->getInit() &&
|
|
(OldFSDecl->getStorageClass() == VarDecl::None ||
|
|
OldFSDecl->getStorageClass() == VarDecl::Static))
|
|
OldIsTentative = true;
|
|
|
|
// FIXME: this check doesn't work (since the initializer hasn't been
|
|
// attached yet). This check should be moved to FinalizeDeclaratorGroup.
|
|
// Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
|
|
// thrown out the old decl.
|
|
if (!NewFSDecl->getInit() &&
|
|
(NewFSDecl->getStorageClass() == VarDecl::None ||
|
|
NewFSDecl->getStorageClass() == VarDecl::Static))
|
|
; // change to NewIsTentative = true; once the code is moved.
|
|
|
|
if (NewIsTentative || OldIsTentative)
|
|
return New;
|
|
}
|
|
if (Old->getStorageClass() != VarDecl::Extern &&
|
|
New->getStorageClass() != VarDecl::Extern) {
|
|
Diag(New->getLocation(), diag::err_redefinition, New->getName());
|
|
Diag(Old->getLocation(), diag::err_previous_definition);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
|
|
/// no declarator (e.g. "struct foo;") is parsed.
|
|
Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
|
|
// TODO: emit error on 'int;' or 'const enum foo;'.
|
|
// TODO: emit error on 'typedef int;'
|
|
// if (!DS.isMissingDeclaratorOk()) Diag(...);
|
|
|
|
return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
|
|
}
|
|
|
|
bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
|
|
// Get the type before calling CheckSingleAssignmentConstraints(), since
|
|
// it can promote the expression.
|
|
QualType InitType = Init->getType();
|
|
|
|
AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
|
|
return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
|
|
InitType, Init, "initializing");
|
|
}
|
|
|
|
bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
|
|
QualType ElementType) {
|
|
Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
|
|
if (CheckSingleInitializer(expr, ElementType))
|
|
return true; // types weren't compatible.
|
|
|
|
if (savExpr != expr) // The type was promoted, update initializer list.
|
|
IList->setInit(slot, expr);
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
|
|
if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
|
|
// C99 6.7.8p14. We have an array of character type with unknown size
|
|
// being initialized to a string literal.
|
|
llvm::APSInt ConstVal(32);
|
|
ConstVal = strLiteral->getByteLength() + 1;
|
|
// Return a new array type (C99 6.7.8p22).
|
|
DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
|
|
ArrayType::Normal, 0);
|
|
} else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
|
|
// C99 6.7.8p14. We have an array of character type with known size.
|
|
if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
|
|
Diag(strLiteral->getSourceRange().getBegin(),
|
|
diag::warn_initializer_string_for_char_array_too_long,
|
|
strLiteral->getSourceRange());
|
|
} else {
|
|
assert(0 && "HandleStringLiteralInit(): Invalid array type");
|
|
}
|
|
// Set type from "char *" to "constant array of char".
|
|
strLiteral->setType(DeclT);
|
|
// For now, we always return false (meaning success).
|
|
return false;
|
|
}
|
|
|
|
StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
|
|
const ArrayType *AT = DeclType->getAsArrayType();
|
|
if (AT && AT->getElementType()->isCharType()) {
|
|
return dyn_cast<StringLiteral>(Init);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// CheckInitializerListTypes - Checks the types of elements of an initializer
|
|
// list. This function is recursive: it calls itself to initialize subelements
|
|
// of aggregate types. Note that the topLevel parameter essentially refers to
|
|
// whether this expression "owns" the initializer list passed in, or if this
|
|
// initialization is taking elements out of a parent initializer. Each
|
|
// call to this function adds zero or more to startIndex, reports any errors,
|
|
// and returns true if it found any inconsistent types.
|
|
bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
|
|
bool topLevel, unsigned& startIndex) {
|
|
bool hadError = false;
|
|
|
|
if (DeclType->isScalarType()) {
|
|
// The simplest case: initializing a single scalar
|
|
if (topLevel) {
|
|
Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
|
|
IList->getSourceRange());
|
|
}
|
|
if (startIndex < IList->getNumInits()) {
|
|
Expr* expr = IList->getInit(startIndex);
|
|
if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
|
|
// FIXME: Should an error be reported here instead?
|
|
unsigned newIndex = 0;
|
|
CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
|
|
} else {
|
|
hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
|
|
}
|
|
++startIndex;
|
|
}
|
|
// FIXME: Should an error be reported for empty initializer list + scalar?
|
|
} else if (DeclType->isVectorType()) {
|
|
if (startIndex < IList->getNumInits()) {
|
|
const VectorType *VT = DeclType->getAsVectorType();
|
|
int maxElements = VT->getNumElements();
|
|
QualType elementType = VT->getElementType();
|
|
|
|
for (int i = 0; i < maxElements; ++i) {
|
|
// Don't attempt to go past the end of the init list
|
|
if (startIndex >= IList->getNumInits())
|
|
break;
|
|
Expr* expr = IList->getInit(startIndex);
|
|
if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
|
|
unsigned newIndex = 0;
|
|
hadError |= CheckInitializerListTypes(SubInitList, elementType,
|
|
true, newIndex);
|
|
++startIndex;
|
|
} else {
|
|
hadError |= CheckInitializerListTypes(IList, elementType,
|
|
false, startIndex);
|
|
}
|
|
}
|
|
}
|
|
} else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
|
|
if (DeclType->isStructureType() || DeclType->isUnionType()) {
|
|
if (startIndex < IList->getNumInits() && !topLevel &&
|
|
Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
|
|
DeclType)) {
|
|
// We found a compatible struct; per the standard, this initializes the
|
|
// struct. (The C standard technically says that this only applies for
|
|
// initializers for declarations with automatic scope; however, this
|
|
// construct is unambiguous anyway because a struct cannot contain
|
|
// a type compatible with itself. We'll output an error when we check
|
|
// if the initializer is constant.)
|
|
// FIXME: Is a call to CheckSingleInitializer required here?
|
|
++startIndex;
|
|
} else {
|
|
RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
|
|
|
|
// If the record is invalid, some of it's members are invalid. To avoid
|
|
// confusion, we forgo checking the intializer for the entire record.
|
|
if (structDecl->isInvalidDecl())
|
|
return true;
|
|
|
|
// If structDecl is a forward declaration, this loop won't do anything;
|
|
// That's okay, because an error should get printed out elsewhere. It
|
|
// might be worthwhile to skip over the rest of the initializer, though.
|
|
int numMembers = structDecl->getNumMembers() -
|
|
structDecl->hasFlexibleArrayMember();
|
|
for (int i = 0; i < numMembers; i++) {
|
|
// Don't attempt to go past the end of the init list
|
|
if (startIndex >= IList->getNumInits())
|
|
break;
|
|
FieldDecl * curField = structDecl->getMember(i);
|
|
if (!curField->getIdentifier()) {
|
|
// Don't initialize unnamed fields, e.g. "int : 20;"
|
|
continue;
|
|
}
|
|
QualType fieldType = curField->getType();
|
|
Expr* expr = IList->getInit(startIndex);
|
|
if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
|
|
unsigned newStart = 0;
|
|
hadError |= CheckInitializerListTypes(SubInitList, fieldType,
|
|
true, newStart);
|
|
++startIndex;
|
|
} else {
|
|
hadError |= CheckInitializerListTypes(IList, fieldType,
|
|
false, startIndex);
|
|
}
|
|
if (DeclType->isUnionType())
|
|
break;
|
|
}
|
|
// FIXME: Implement flexible array initialization GCC extension (it's a
|
|
// really messy extension to implement, unfortunately...the necessary
|
|
// information isn't actually even here!)
|
|
}
|
|
} else if (DeclType->isArrayType()) {
|
|
// Check for the special-case of initializing an array with a string.
|
|
if (startIndex < IList->getNumInits()) {
|
|
if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
|
|
DeclType)) {
|
|
CheckStringLiteralInit(lit, DeclType);
|
|
++startIndex;
|
|
if (topLevel && startIndex < IList->getNumInits()) {
|
|
// We have leftover initializers; warn
|
|
Diag(IList->getInit(startIndex)->getLocStart(),
|
|
diag::err_excess_initializers_in_char_array_initializer,
|
|
IList->getInit(startIndex)->getSourceRange());
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
int maxElements;
|
|
if (DeclType->isIncompleteArrayType()) {
|
|
// FIXME: use a proper constant
|
|
maxElements = 0x7FFFFFFF;
|
|
} else if (const VariableArrayType *VAT =
|
|
DeclType->getAsVariableArrayType()) {
|
|
// Check for VLAs; in standard C it would be possible to check this
|
|
// earlier, but I don't know where clang accepts VLAs (gcc accepts
|
|
// them in all sorts of strange places).
|
|
Diag(VAT->getSizeExpr()->getLocStart(),
|
|
diag::err_variable_object_no_init,
|
|
VAT->getSizeExpr()->getSourceRange());
|
|
hadError = true;
|
|
maxElements = 0x7FFFFFFF;
|
|
} else {
|
|
const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
|
|
maxElements = static_cast<int>(CAT->getSize().getZExtValue());
|
|
}
|
|
QualType elementType = DeclType->getAsArrayType()->getElementType();
|
|
int numElements = 0;
|
|
for (int i = 0; i < maxElements; ++i, ++numElements) {
|
|
// Don't attempt to go past the end of the init list
|
|
if (startIndex >= IList->getNumInits())
|
|
break;
|
|
Expr* expr = IList->getInit(startIndex);
|
|
if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
|
|
unsigned newIndex = 0;
|
|
hadError |= CheckInitializerListTypes(SubInitList, elementType,
|
|
true, newIndex);
|
|
++startIndex;
|
|
} else {
|
|
hadError |= CheckInitializerListTypes(IList, elementType,
|
|
false, startIndex);
|
|
}
|
|
}
|
|
if (DeclType->isIncompleteArrayType()) {
|
|
// If this is an incomplete array type, the actual type needs to
|
|
// be calculated here
|
|
if (numElements == 0) {
|
|
// Sizing an array implicitly to zero is not allowed
|
|
// (It could in theory be allowed, but it doesn't really matter.)
|
|
Diag(IList->getLocStart(),
|
|
diag::err_at_least_one_initializer_needed_to_size_array);
|
|
hadError = true;
|
|
} else {
|
|
llvm::APSInt ConstVal(32);
|
|
ConstVal = numElements;
|
|
DeclType = Context.getConstantArrayType(elementType, ConstVal,
|
|
ArrayType::Normal, 0);
|
|
}
|
|
}
|
|
} else {
|
|
assert(0 && "Aggregate that isn't a function or array?!");
|
|
}
|
|
} else {
|
|
// In C, all types are either scalars or aggregates, but
|
|
// additional handling is needed here for C++ (and possibly others?).
|
|
assert(0 && "Unsupported initializer type");
|
|
}
|
|
|
|
// If this init list is a base list, we set the type; an initializer doesn't
|
|
// fundamentally have a type, but this makes the ASTs a bit easier to read
|
|
if (topLevel)
|
|
IList->setType(DeclType);
|
|
|
|
if (topLevel && startIndex < IList->getNumInits()) {
|
|
// We have leftover initializers; warn
|
|
Diag(IList->getInit(startIndex)->getLocStart(),
|
|
diag::warn_excess_initializers,
|
|
IList->getInit(startIndex)->getSourceRange());
|
|
}
|
|
return hadError;
|
|
}
|
|
|
|
bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
|
|
// C99 6.7.8p3: The type of the entity to be initialized shall be an array
|
|
// of unknown size ("[]") or an object type that is not a variable array type.
|
|
if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
|
|
return Diag(VAT->getSizeExpr()->getLocStart(),
|
|
diag::err_variable_object_no_init,
|
|
VAT->getSizeExpr()->getSourceRange());
|
|
|
|
InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
|
|
if (!InitList) {
|
|
// FIXME: Handle wide strings
|
|
if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
|
|
return CheckStringLiteralInit(strLiteral, DeclType);
|
|
|
|
if (DeclType->isArrayType())
|
|
return Diag(Init->getLocStart(),
|
|
diag::err_array_init_list_required,
|
|
Init->getSourceRange());
|
|
|
|
return CheckSingleInitializer(Init, DeclType);
|
|
}
|
|
unsigned newIndex = 0;
|
|
return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
|
|
}
|
|
|
|
Sema::DeclTy *
|
|
Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
|
|
ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
|
|
IdentifierInfo *II = D.getIdentifier();
|
|
|
|
// All of these full declarators require an identifier. If it doesn't have
|
|
// one, the ParsedFreeStandingDeclSpec action should be used.
|
|
if (II == 0) {
|
|
Diag(D.getDeclSpec().getSourceRange().getBegin(),
|
|
diag::err_declarator_need_ident,
|
|
D.getDeclSpec().getSourceRange(), D.getSourceRange());
|
|
return 0;
|
|
}
|
|
|
|
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
|
// we find one that is.
|
|
while ((S->getFlags() & Scope::DeclScope) == 0)
|
|
S = S->getParent();
|
|
|
|
// See if this is a redefinition of a variable in the same scope.
|
|
ScopedDecl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary,
|
|
D.getIdentifierLoc(), S);
|
|
ScopedDecl *New;
|
|
bool InvalidDecl = false;
|
|
|
|
QualType R = GetTypeForDeclarator(D, S);
|
|
assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
|
|
|
|
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
|
|
TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
|
|
if (!NewTD) return 0;
|
|
|
|
// Handle attributes prior to checking for duplicates in MergeVarDecl
|
|
HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
|
|
D.getAttributes());
|
|
// Merge the decl with the existing one if appropriate. If the decl is
|
|
// in an outer scope, it isn't the same thing.
|
|
if (PrevDecl && S->isDeclScope(PrevDecl)) {
|
|
NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
|
|
if (NewTD == 0) return 0;
|
|
}
|
|
New = NewTD;
|
|
if (S->getParent() == 0) {
|
|
// C99 6.7.7p2: If a typedef name specifies a variably modified type
|
|
// then it shall have block scope.
|
|
if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
|
|
// FIXME: Diagnostic needs to be fixed.
|
|
Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
|
|
InvalidDecl = true;
|
|
}
|
|
}
|
|
} else if (R.getTypePtr()->isFunctionType()) {
|
|
FunctionDecl::StorageClass SC = FunctionDecl::None;
|
|
switch (D.getDeclSpec().getStorageClassSpec()) {
|
|
default: assert(0 && "Unknown storage class!");
|
|
case DeclSpec::SCS_auto:
|
|
case DeclSpec::SCS_register:
|
|
Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
|
|
R.getAsString());
|
|
InvalidDecl = true;
|
|
break;
|
|
case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
|
|
case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break;
|
|
case DeclSpec::SCS_static: SC = FunctionDecl::Static; break;
|
|
case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
|
|
}
|
|
|
|
FunctionDecl *NewFD = new FunctionDecl(D.getIdentifierLoc(), II, R, SC,
|
|
D.getDeclSpec().isInlineSpecified(),
|
|
LastDeclarator);
|
|
// Handle attributes.
|
|
|
|
HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
|
|
D.getAttributes());
|
|
|
|
// Merge the decl with the existing one if appropriate. Since C functions
|
|
// are in a flat namespace, make sure we consider decls in outer scopes.
|
|
if (PrevDecl) {
|
|
NewFD = MergeFunctionDecl(NewFD, PrevDecl);
|
|
if (NewFD == 0) return 0;
|
|
}
|
|
New = NewFD;
|
|
} else {
|
|
if (R.getTypePtr()->isObjCInterfaceType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
|
|
D.getIdentifier()->getName());
|
|
InvalidDecl = true;
|
|
}
|
|
|
|
VarDecl *NewVD;
|
|
VarDecl::StorageClass SC;
|
|
switch (D.getDeclSpec().getStorageClassSpec()) {
|
|
default: assert(0 && "Unknown storage class!");
|
|
case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
|
|
case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
|
|
case DeclSpec::SCS_static: SC = VarDecl::Static; break;
|
|
case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
|
|
case DeclSpec::SCS_register: SC = VarDecl::Register; break;
|
|
case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
|
|
}
|
|
if (S->getParent() == 0) {
|
|
// C99 6.9p2: The storage-class specifiers auto and register shall not
|
|
// appear in the declaration specifiers in an external declaration.
|
|
if (SC == VarDecl::Auto || SC == VarDecl::Register) {
|
|
Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
|
|
R.getAsString());
|
|
InvalidDecl = true;
|
|
}
|
|
NewVD = new FileVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator);
|
|
} else {
|
|
NewVD = new BlockVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator);
|
|
}
|
|
// Handle attributes prior to checking for duplicates in MergeVarDecl
|
|
HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
|
|
D.getAttributes());
|
|
|
|
// Merge the decl with the existing one if appropriate. If the decl is
|
|
// in an outer scope, it isn't the same thing.
|
|
if (PrevDecl && S->isDeclScope(PrevDecl)) {
|
|
NewVD = MergeVarDecl(NewVD, PrevDecl);
|
|
if (NewVD == 0) return 0;
|
|
}
|
|
New = NewVD;
|
|
}
|
|
|
|
// If this has an identifier, add it to the scope stack.
|
|
if (II) {
|
|
New->setNext(II->getFETokenInfo<ScopedDecl>());
|
|
II->setFETokenInfo(New);
|
|
S->AddDecl(New);
|
|
}
|
|
// If any semantic error occurred, mark the decl as invalid.
|
|
if (D.getInvalidType() || InvalidDecl)
|
|
New->setInvalidDecl();
|
|
|
|
return New;
|
|
}
|
|
|
|
bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
|
|
SourceLocation loc;
|
|
// FIXME: Remove the isReference check and handle assignment to a reference.
|
|
if (!DclT->isReferenceType() && !Init->isConstantExpr(Context, &loc)) {
|
|
assert(loc.isValid() && "isConstantExpr didn't return a loc!");
|
|
Diag(loc, diag::err_init_element_not_constant, Init->getSourceRange());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
|
|
Decl *RealDecl = static_cast<Decl *>(dcl);
|
|
Expr *Init = static_cast<Expr *>(init);
|
|
assert(Init && "missing initializer");
|
|
|
|
// If there is no declaration, there was an error parsing it. Just ignore
|
|
// the initializer.
|
|
if (RealDecl == 0) {
|
|
delete Init;
|
|
return;
|
|
}
|
|
|
|
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
|
|
if (!VDecl) {
|
|
Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
|
|
diag::err_illegal_initializer);
|
|
RealDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
// Get the decls type and save a reference for later, since
|
|
// CheckInitializerTypes may change it.
|
|
QualType DclT = VDecl->getType(), SavT = DclT;
|
|
if (BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(VDecl)) {
|
|
VarDecl::StorageClass SC = BVD->getStorageClass();
|
|
if (SC == VarDecl::Extern) { // C99 6.7.8p5
|
|
Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
|
|
BVD->setInvalidDecl();
|
|
} else if (!BVD->isInvalidDecl()) {
|
|
if (CheckInitializerTypes(Init, DclT))
|
|
BVD->setInvalidDecl();
|
|
if (SC == VarDecl::Static) // C99 6.7.8p4.
|
|
CheckForConstantInitializer(Init, DclT);
|
|
}
|
|
} else if (FileVarDecl *FVD = dyn_cast<FileVarDecl>(VDecl)) {
|
|
if (FVD->getStorageClass() == VarDecl::Extern)
|
|
Diag(VDecl->getLocation(), diag::warn_extern_init);
|
|
if (!FVD->isInvalidDecl())
|
|
if (CheckInitializerTypes(Init, DclT))
|
|
FVD->setInvalidDecl();
|
|
|
|
// C99 6.7.8p4. All file scoped initializers need to be constant.
|
|
CheckForConstantInitializer(Init, DclT);
|
|
}
|
|
// If the type changed, it means we had an incomplete type that was
|
|
// completed by the initializer. For example:
|
|
// int ary[] = { 1, 3, 5 };
|
|
// "ary" transitions from a VariableArrayType to a ConstantArrayType.
|
|
if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
|
|
VDecl->setType(DclT);
|
|
Init->setType(DclT);
|
|
}
|
|
|
|
// Attach the initializer to the decl.
|
|
VDecl->setInit(Init);
|
|
return;
|
|
}
|
|
|
|
/// The declarators are chained together backwards, reverse the list.
|
|
Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
|
|
// Often we have single declarators, handle them quickly.
|
|
Decl *GroupDecl = static_cast<Decl*>(group);
|
|
if (GroupDecl == 0)
|
|
return 0;
|
|
|
|
ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
|
|
ScopedDecl *NewGroup = 0;
|
|
if (Group->getNextDeclarator() == 0)
|
|
NewGroup = Group;
|
|
else { // reverse the list.
|
|
while (Group) {
|
|
ScopedDecl *Next = Group->getNextDeclarator();
|
|
Group->setNextDeclarator(NewGroup);
|
|
NewGroup = Group;
|
|
Group = Next;
|
|
}
|
|
}
|
|
// Perform semantic analysis that depends on having fully processed both
|
|
// the declarator and initializer.
|
|
for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
|
|
VarDecl *IDecl = dyn_cast<VarDecl>(ID);
|
|
if (!IDecl)
|
|
continue;
|
|
FileVarDecl *FVD = dyn_cast<FileVarDecl>(IDecl);
|
|
BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(IDecl);
|
|
QualType T = IDecl->getType();
|
|
|
|
// C99 6.7.5.2p2: If an identifier is declared to be an object with
|
|
// static storage duration, it shall not have a variable length array.
|
|
if ((FVD || BVD) && IDecl->getStorageClass() == VarDecl::Static) {
|
|
if (T->getAsVariableArrayType()) {
|
|
Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
|
|
IDecl->setInvalidDecl();
|
|
}
|
|
}
|
|
// Block scope. C99 6.7p7: If an identifier for an object is declared with
|
|
// no linkage (C99 6.2.2p6), the type for the object shall be complete...
|
|
if (BVD && IDecl->getStorageClass() != VarDecl::Extern) {
|
|
if (T->isIncompleteType()) {
|
|
Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
|
|
T.getAsString());
|
|
IDecl->setInvalidDecl();
|
|
}
|
|
}
|
|
// File scope. C99 6.9.2p2: A declaration of an identifier for and
|
|
// object that has file scope without an initializer, and without a
|
|
// storage-class specifier or with the storage-class specifier "static",
|
|
// constitutes a tentative definition. Note: A tentative definition with
|
|
// external linkage is valid (C99 6.2.2p5).
|
|
if (FVD && !FVD->getInit() && (FVD->getStorageClass() == VarDecl::Static ||
|
|
FVD->getStorageClass() == VarDecl::None)) {
|
|
if (T->isIncompleteArrayType()) {
|
|
// C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
|
|
// array to be completed. Don't issue a diagnostic.
|
|
} else if (T->isIncompleteType()) {
|
|
// C99 6.9.2p3: If the declaration of an identifier for an object is
|
|
// a tentative definition and has internal linkage (C99 6.2.2p3), the
|
|
// declared type shall not be an incomplete type.
|
|
Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
|
|
T.getAsString());
|
|
IDecl->setInvalidDecl();
|
|
}
|
|
}
|
|
}
|
|
return NewGroup;
|
|
}
|
|
|
|
// Called from Sema::ParseStartOfFunctionDef().
|
|
ParmVarDecl *
|
|
Sema::ActOnParamDeclarator(struct DeclaratorChunk::ParamInfo &PI,
|
|
Scope *FnScope) {
|
|
IdentifierInfo *II = PI.Ident;
|
|
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
|
|
// Can this happen for params? We already checked that they don't conflict
|
|
// among each other. Here they can only shadow globals, which is ok.
|
|
if (/*Decl *PrevDecl = */LookupScopedDecl(II, Decl::IDNS_Ordinary,
|
|
PI.IdentLoc, FnScope)) {
|
|
|
|
}
|
|
|
|
// FIXME: Handle storage class (auto, register). No declarator?
|
|
// TODO: Chain to previous parameter with the prevdeclarator chain?
|
|
|
|
// Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
|
|
// Doing the promotion here has a win and a loss. The win is the type for
|
|
// both Decl's and DeclRefExpr's will match (a convenient invariant for the
|
|
// code generator). The loss is the orginal type isn't preserved. For example:
|
|
//
|
|
// void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
|
|
// int blockvardecl[5];
|
|
// sizeof(parmvardecl); // size == 4
|
|
// sizeof(blockvardecl); // size == 20
|
|
// }
|
|
//
|
|
// For expressions, all implicit conversions are captured using the
|
|
// ImplicitCastExpr AST node (we have no such mechanism for Decl's).
|
|
//
|
|
// FIXME: If a source translation tool needs to see the original type, then
|
|
// we need to consider storing both types (in ParmVarDecl)...
|
|
//
|
|
QualType parmDeclType = QualType::getFromOpaquePtr(PI.TypeInfo);
|
|
if (const ArrayType *AT = parmDeclType->getAsArrayType()) {
|
|
// int x[restrict 4] -> int *restrict
|
|
parmDeclType = Context.getPointerType(AT->getElementType());
|
|
parmDeclType = parmDeclType.getQualifiedType(AT->getIndexTypeQualifier());
|
|
} else if (parmDeclType->isFunctionType())
|
|
parmDeclType = Context.getPointerType(parmDeclType);
|
|
|
|
ParmVarDecl *New = new ParmVarDecl(PI.IdentLoc, II, parmDeclType,
|
|
VarDecl::None, 0);
|
|
|
|
if (PI.InvalidType)
|
|
New->setInvalidDecl();
|
|
|
|
// If this has an identifier, add it to the scope stack.
|
|
if (II) {
|
|
New->setNext(II->getFETokenInfo<ScopedDecl>());
|
|
II->setFETokenInfo(New);
|
|
FnScope->AddDecl(New);
|
|
}
|
|
|
|
HandleDeclAttributes(New, PI.AttrList, 0);
|
|
return New;
|
|
}
|
|
|
|
Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
|
|
assert(CurFunctionDecl == 0 && "Function parsing confused");
|
|
assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
|
|
"Not a function declarator!");
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
|
|
|
|
// Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
|
|
// for a K&R function.
|
|
if (!FTI.hasPrototype) {
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
|
|
if (FTI.ArgInfo[i].TypeInfo == 0) {
|
|
Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
|
|
FTI.ArgInfo[i].Ident->getName());
|
|
// Implicitly declare the argument as type 'int' for lack of a better
|
|
// type.
|
|
FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr();
|
|
}
|
|
}
|
|
|
|
// Since this is a function definition, act as though we have information
|
|
// about the arguments.
|
|
if (FTI.NumArgs)
|
|
FTI.hasPrototype = true;
|
|
} else {
|
|
// FIXME: Diagnose arguments without names in C.
|
|
|
|
}
|
|
|
|
Scope *GlobalScope = FnBodyScope->getParent();
|
|
|
|
// See if this is a redefinition.
|
|
ScopedDecl *PrevDcl = LookupScopedDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
|
|
D.getIdentifierLoc(), GlobalScope);
|
|
if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(PrevDcl)) {
|
|
if (FD->getBody()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_redefinition,
|
|
D.getIdentifier()->getName());
|
|
Diag(FD->getLocation(), diag::err_previous_definition);
|
|
}
|
|
}
|
|
Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
|
|
FunctionDecl *FD = cast<FunctionDecl>(decl);
|
|
CurFunctionDecl = FD;
|
|
|
|
// Create Decl objects for each parameter, adding them to the FunctionDecl.
|
|
llvm::SmallVector<ParmVarDecl*, 16> Params;
|
|
|
|
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
|
|
// no arguments, not a function that takes a single void argument.
|
|
if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
|
|
!QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo).getCVRQualifiers() &&
|
|
QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo)->isVoidType()) {
|
|
// empty arg list, don't push any params.
|
|
} else {
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
|
|
Params.push_back(ActOnParamDeclarator(D.getTypeObject(0).Fun.ArgInfo[i],
|
|
FnBodyScope));
|
|
}
|
|
}
|
|
|
|
FD->setParams(&Params[0], Params.size());
|
|
|
|
return FD;
|
|
}
|
|
|
|
Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
|
|
Decl *dcl = static_cast<Decl *>(D);
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
|
|
FD->setBody((Stmt*)Body);
|
|
assert(FD == CurFunctionDecl && "Function parsing confused");
|
|
CurFunctionDecl = 0;
|
|
} else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
|
|
MD->setBody((Stmt*)Body);
|
|
CurMethodDecl = 0;
|
|
}
|
|
// Verify and clean out per-function state.
|
|
|
|
// Check goto/label use.
|
|
for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
|
|
I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
|
|
// Verify that we have no forward references left. If so, there was a goto
|
|
// or address of a label taken, but no definition of it. Label fwd
|
|
// definitions are indicated with a null substmt.
|
|
if (I->second->getSubStmt() == 0) {
|
|
LabelStmt *L = I->second;
|
|
// Emit error.
|
|
Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
|
|
|
|
// At this point, we have gotos that use the bogus label. Stitch it into
|
|
// the function body so that they aren't leaked and that the AST is well
|
|
// formed.
|
|
if (Body) {
|
|
L->setSubStmt(new NullStmt(L->getIdentLoc()));
|
|
cast<CompoundStmt>((Stmt*)Body)->push_back(L);
|
|
} else {
|
|
// The whole function wasn't parsed correctly, just delete this.
|
|
delete L;
|
|
}
|
|
}
|
|
}
|
|
LabelMap.clear();
|
|
|
|
return D;
|
|
}
|
|
|
|
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
|
|
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
|
|
ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
|
|
IdentifierInfo &II, Scope *S) {
|
|
if (getLangOptions().C99) // Extension in C99.
|
|
Diag(Loc, diag::ext_implicit_function_decl, II.getName());
|
|
else // Legal in C90, but warn about it.
|
|
Diag(Loc, diag::warn_implicit_function_decl, II.getName());
|
|
|
|
// FIXME: handle stuff like:
|
|
// void foo() { extern float X(); }
|
|
// void bar() { X(); } <-- implicit decl for X in another scope.
|
|
|
|
// Set a Declarator for the implicit definition: int foo();
|
|
const char *Dummy;
|
|
DeclSpec DS;
|
|
bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
|
|
Error = Error; // Silence warning.
|
|
assert(!Error && "Error setting up implicit decl!");
|
|
Declarator D(DS, Declarator::BlockContext);
|
|
D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
|
|
D.SetIdentifier(&II, Loc);
|
|
|
|
// Find translation-unit scope to insert this function into.
|
|
if (Scope *FnS = S->getFnParent())
|
|
S = FnS->getParent(); // Skip all scopes in a function at once.
|
|
while (S->getParent())
|
|
S = S->getParent();
|
|
|
|
return dyn_cast<ScopedDecl>(static_cast<Decl*>(ActOnDeclarator(S, D, 0)));
|
|
}
|
|
|
|
|
|
TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
|
|
ScopedDecl *LastDeclarator) {
|
|
assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
|
|
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
|
|
|
// Scope manipulation handled by caller.
|
|
TypedefDecl *NewTD = new TypedefDecl(D.getIdentifierLoc(), D.getIdentifier(),
|
|
T, LastDeclarator);
|
|
if (D.getInvalidType())
|
|
NewTD->setInvalidDecl();
|
|
return NewTD;
|
|
}
|
|
|
|
/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
|
|
/// former case, Name will be non-null. In the later case, Name will be null.
|
|
/// TagType indicates what kind of tag this is. TK indicates whether this is a
|
|
/// reference/declaration/definition of a tag.
|
|
Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
|
|
SourceLocation KWLoc, IdentifierInfo *Name,
|
|
SourceLocation NameLoc, AttributeList *Attr) {
|
|
// If this is a use of an existing tag, it must have a name.
|
|
assert((Name != 0 || TK == TK_Definition) &&
|
|
"Nameless record must be a definition!");
|
|
|
|
Decl::Kind Kind;
|
|
switch (TagType) {
|
|
default: assert(0 && "Unknown tag type!");
|
|
case DeclSpec::TST_struct: Kind = Decl::Struct; break;
|
|
case DeclSpec::TST_union: Kind = Decl::Union; break;
|
|
//case DeclSpec::TST_class: Kind = Decl::Class; break;
|
|
case DeclSpec::TST_enum: Kind = Decl::Enum; break;
|
|
}
|
|
|
|
// If this is a named struct, check to see if there was a previous forward
|
|
// declaration or definition.
|
|
if (TagDecl *PrevDecl =
|
|
dyn_cast_or_null<TagDecl>(LookupScopedDecl(Name, Decl::IDNS_Tag,
|
|
NameLoc, S))) {
|
|
|
|
// If this is a use of a previous tag, or if the tag is already declared in
|
|
// the same scope (so that the definition/declaration completes or
|
|
// rementions the tag), reuse the decl.
|
|
if (TK == TK_Reference || S->isDeclScope(PrevDecl)) {
|
|
// Make sure that this wasn't declared as an enum and now used as a struct
|
|
// or something similar.
|
|
if (PrevDecl->getKind() != Kind) {
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
|
|
Diag(PrevDecl->getLocation(), diag::err_previous_use);
|
|
}
|
|
|
|
// If this is a use or a forward declaration, we're good.
|
|
if (TK != TK_Definition)
|
|
return PrevDecl;
|
|
|
|
// Diagnose attempts to redefine a tag.
|
|
if (PrevDecl->isDefinition()) {
|
|
Diag(NameLoc, diag::err_redefinition, Name->getName());
|
|
Diag(PrevDecl->getLocation(), diag::err_previous_definition);
|
|
// If this is a redefinition, recover by making this struct be
|
|
// anonymous, which will make any later references get the previous
|
|
// definition.
|
|
Name = 0;
|
|
} else {
|
|
// Okay, this is definition of a previously declared or referenced tag.
|
|
// Move the location of the decl to be the definition site.
|
|
PrevDecl->setLocation(NameLoc);
|
|
return PrevDecl;
|
|
}
|
|
}
|
|
// If we get here, this is a definition of a new struct type in a nested
|
|
// scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
|
|
// type.
|
|
}
|
|
|
|
// If there is an identifier, use the location of the identifier as the
|
|
// location of the decl, otherwise use the location of the struct/union
|
|
// keyword.
|
|
SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
|
|
|
|
// Otherwise, if this is the first time we've seen this tag, create the decl.
|
|
TagDecl *New;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown tag kind!");
|
|
case Decl::Enum:
|
|
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
|
|
// enum X { A, B, C } D; D should chain to X.
|
|
New = new EnumDecl(Loc, Name, 0);
|
|
// If this is an undefined enum, warn.
|
|
if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
|
|
break;
|
|
case Decl::Union:
|
|
case Decl::Struct:
|
|
case Decl::Class:
|
|
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
|
|
// struct X { int A; } D; D should chain to X.
|
|
New = new RecordDecl(Kind, Loc, Name, 0);
|
|
break;
|
|
}
|
|
|
|
// If this has an identifier, add it to the scope stack.
|
|
if (Name) {
|
|
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
|
// we find one that is.
|
|
while ((S->getFlags() & Scope::DeclScope) == 0)
|
|
S = S->getParent();
|
|
|
|
// Add it to the decl chain.
|
|
New->setNext(Name->getFETokenInfo<ScopedDecl>());
|
|
Name->setFETokenInfo(New);
|
|
S->AddDecl(New);
|
|
}
|
|
|
|
HandleDeclAttributes(New, Attr, 0);
|
|
return New;
|
|
}
|
|
|
|
/// ActOnField - Each field of a struct/union/class is passed into this in order
|
|
/// to create a FieldDecl object for it.
|
|
Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagDecl,
|
|
SourceLocation DeclStart,
|
|
Declarator &D, ExprTy *BitfieldWidth) {
|
|
IdentifierInfo *II = D.getIdentifier();
|
|
Expr *BitWidth = (Expr*)BitfieldWidth;
|
|
SourceLocation Loc = DeclStart;
|
|
if (II) Loc = D.getIdentifierLoc();
|
|
|
|
// FIXME: Unnamed fields can be handled in various different ways, for
|
|
// example, unnamed unions inject all members into the struct namespace!
|
|
|
|
|
|
if (BitWidth) {
|
|
// TODO: Validate.
|
|
//printf("WARNING: BITFIELDS IGNORED!\n");
|
|
|
|
// 6.7.2.1p3
|
|
// 6.7.2.1p4
|
|
|
|
} else {
|
|
// Not a bitfield.
|
|
|
|
// validate II.
|
|
|
|
}
|
|
|
|
QualType T = GetTypeForDeclarator(D, S);
|
|
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
|
bool InvalidDecl = false;
|
|
|
|
// C99 6.7.2.1p8: A member of a structure or union may have any type other
|
|
// than a variably modified type.
|
|
if (T->isVariablyModifiedType()) {
|
|
// FIXME: This diagnostic needs work
|
|
Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
|
|
InvalidDecl = true;
|
|
}
|
|
// FIXME: Chain fielddecls together.
|
|
FieldDecl *NewFD;
|
|
|
|
if (isa<RecordDecl>(static_cast<Decl *>(TagDecl)))
|
|
NewFD = new FieldDecl(Loc, II, T, BitWidth);
|
|
else if (isa<ObjCInterfaceDecl>(static_cast<Decl *>(TagDecl)) ||
|
|
isa<ObjCImplementationDecl>(static_cast<Decl *>(TagDecl)) ||
|
|
isa<ObjCCategoryDecl>(static_cast<Decl *>(TagDecl)) ||
|
|
// FIXME: ivars are currently used to model properties, and
|
|
// properties can appear within a protocol.
|
|
// See corresponding FIXME in DeclObjC.h:ObjCPropertyDecl.
|
|
isa<ObjCProtocolDecl>(static_cast<Decl *>(TagDecl)))
|
|
NewFD = new ObjCIvarDecl(Loc, II, T);
|
|
else
|
|
assert(0 && "Sema::ActOnField(): Unknown TagDecl");
|
|
|
|
HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
|
|
D.getAttributes());
|
|
|
|
if (D.getInvalidType() || InvalidDecl)
|
|
NewFD->setInvalidDecl();
|
|
return NewFD;
|
|
}
|
|
|
|
/// TranslateIvarVisibility - Translate visibility from a token ID to an
|
|
/// AST enum value.
|
|
static ObjCIvarDecl::AccessControl
|
|
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
|
|
switch (ivarVisibility) {
|
|
case tok::objc_private: return ObjCIvarDecl::Private;
|
|
case tok::objc_public: return ObjCIvarDecl::Public;
|
|
case tok::objc_protected: return ObjCIvarDecl::Protected;
|
|
case tok::objc_package: return ObjCIvarDecl::Package;
|
|
default: assert(false && "Unknown visitibility kind");
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnFields(Scope* S,
|
|
SourceLocation RecLoc, DeclTy *RecDecl,
|
|
DeclTy **Fields, unsigned NumFields,
|
|
SourceLocation LBrac, SourceLocation RBrac,
|
|
tok::ObjCKeywordKind *visibility) {
|
|
Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
|
|
assert(EnclosingDecl && "missing record or interface decl");
|
|
RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
|
|
|
|
if (Record && Record->isDefinition()) {
|
|
// Diagnose code like:
|
|
// struct S { struct S {} X; };
|
|
// We discover this when we complete the outer S. Reject and ignore the
|
|
// outer S.
|
|
Diag(Record->getLocation(), diag::err_nested_redefinition,
|
|
Record->getKindName());
|
|
Diag(RecLoc, diag::err_previous_definition);
|
|
Record->setInvalidDecl();
|
|
return;
|
|
}
|
|
// Verify that all the fields are okay.
|
|
unsigned NumNamedMembers = 0;
|
|
llvm::SmallVector<FieldDecl*, 32> RecFields;
|
|
llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
|
|
|
|
for (unsigned i = 0; i != NumFields; ++i) {
|
|
|
|
FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
|
|
assert(FD && "missing field decl");
|
|
|
|
// Remember all fields.
|
|
RecFields.push_back(FD);
|
|
|
|
// Get the type for the field.
|
|
Type *FDTy = FD->getType().getTypePtr();
|
|
|
|
// If we have visibility info, make sure the AST is set accordingly.
|
|
if (visibility)
|
|
cast<ObjCIvarDecl>(FD)->setAccessControl(
|
|
TranslateIvarVisibility(visibility[i]));
|
|
|
|
// C99 6.7.2.1p2 - A field may not be a function type.
|
|
if (FDTy->isFunctionType()) {
|
|
Diag(FD->getLocation(), diag::err_field_declared_as_function,
|
|
FD->getName());
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
// C99 6.7.2.1p2 - A field may not be an incomplete type except...
|
|
if (FDTy->isIncompleteType()) {
|
|
if (!Record) { // Incomplete ivar type is always an error.
|
|
Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
if (i != NumFields-1 || // ... that the last member ...
|
|
Record->getKind() != Decl::Struct || // ... of a structure ...
|
|
!FDTy->isArrayType()) { //... may have incomplete array type.
|
|
Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
if (NumNamedMembers < 1) { //... must have more than named member ...
|
|
Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
|
|
FD->getName());
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
// Okay, we have a legal flexible array member at the end of the struct.
|
|
if (Record)
|
|
Record->setHasFlexibleArrayMember(true);
|
|
}
|
|
/// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
|
|
/// field of another structure or the element of an array.
|
|
if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
|
|
if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
|
|
// If this is a member of a union, then entire union becomes "flexible".
|
|
if (Record && Record->getKind() == Decl::Union) {
|
|
Record->setHasFlexibleArrayMember(true);
|
|
} else {
|
|
// If this is a struct/class and this is not the last element, reject
|
|
// it. Note that GCC supports variable sized arrays in the middle of
|
|
// structures.
|
|
if (i != NumFields-1) {
|
|
Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
|
|
FD->getName());
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
// We support flexible arrays at the end of structs in other structs
|
|
// as an extension.
|
|
Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
|
|
FD->getName());
|
|
if (Record)
|
|
Record->setHasFlexibleArrayMember(true);
|
|
}
|
|
}
|
|
}
|
|
/// A field cannot be an Objective-c object
|
|
if (FDTy->isObjCInterfaceType()) {
|
|
Diag(FD->getLocation(), diag::err_statically_allocated_object,
|
|
FD->getName());
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
// Keep track of the number of named members.
|
|
if (IdentifierInfo *II = FD->getIdentifier()) {
|
|
// Detect duplicate member names.
|
|
if (!FieldIDs.insert(II)) {
|
|
Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
|
|
// Find the previous decl.
|
|
SourceLocation PrevLoc;
|
|
for (unsigned i = 0, e = RecFields.size(); ; ++i) {
|
|
assert(i != e && "Didn't find previous def!");
|
|
if (RecFields[i]->getIdentifier() == II) {
|
|
PrevLoc = RecFields[i]->getLocation();
|
|
break;
|
|
}
|
|
}
|
|
Diag(PrevLoc, diag::err_previous_definition);
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
++NumNamedMembers;
|
|
}
|
|
}
|
|
|
|
// Okay, we successfully defined 'Record'.
|
|
if (Record) {
|
|
Record->defineBody(&RecFields[0], RecFields.size());
|
|
Consumer.HandleTagDeclDefinition(Record);
|
|
} else {
|
|
ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
|
|
if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
|
|
ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
|
|
else if (ObjCImplementationDecl *IMPDecl =
|
|
dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
|
|
assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
|
|
IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
|
|
CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
|
|
}
|
|
}
|
|
}
|
|
|
|
Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
|
|
DeclTy *lastEnumConst,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
SourceLocation EqualLoc, ExprTy *val) {
|
|
theEnumDecl = theEnumDecl; // silence unused warning.
|
|
EnumConstantDecl *LastEnumConst =
|
|
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
|
|
Expr *Val = static_cast<Expr*>(val);
|
|
|
|
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
|
// we find one that is.
|
|
while ((S->getFlags() & Scope::DeclScope) == 0)
|
|
S = S->getParent();
|
|
|
|
// Verify that there isn't already something declared with this name in this
|
|
// scope.
|
|
if (ScopedDecl *PrevDecl = LookupScopedDecl(Id, Decl::IDNS_Ordinary,
|
|
IdLoc, S)) {
|
|
if (S->isDeclScope(PrevDecl)) {
|
|
if (isa<EnumConstantDecl>(PrevDecl))
|
|
Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
|
|
else
|
|
Diag(IdLoc, diag::err_redefinition, Id->getName());
|
|
Diag(PrevDecl->getLocation(), diag::err_previous_definition);
|
|
delete Val;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
llvm::APSInt EnumVal(32);
|
|
QualType EltTy;
|
|
if (Val) {
|
|
// Make sure to promote the operand type to int.
|
|
UsualUnaryConversions(Val);
|
|
|
|
// C99 6.7.2.2p2: Make sure we have an integer constant expression.
|
|
SourceLocation ExpLoc;
|
|
if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
|
|
Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
|
|
Id->getName());
|
|
delete Val;
|
|
Val = 0; // Just forget about it.
|
|
} else {
|
|
EltTy = Val->getType();
|
|
}
|
|
}
|
|
|
|
if (!Val) {
|
|
if (LastEnumConst) {
|
|
// Assign the last value + 1.
|
|
EnumVal = LastEnumConst->getInitVal();
|
|
++EnumVal;
|
|
|
|
// Check for overflow on increment.
|
|
if (EnumVal < LastEnumConst->getInitVal())
|
|
Diag(IdLoc, diag::warn_enum_value_overflow);
|
|
|
|
EltTy = LastEnumConst->getType();
|
|
} else {
|
|
// First value, set to zero.
|
|
EltTy = Context.IntTy;
|
|
EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
|
|
}
|
|
}
|
|
|
|
EnumConstantDecl *New = new EnumConstantDecl(IdLoc, Id, EltTy, Val, EnumVal,
|
|
LastEnumConst);
|
|
|
|
// Register this decl in the current scope stack.
|
|
New->setNext(Id->getFETokenInfo<ScopedDecl>());
|
|
Id->setFETokenInfo(New);
|
|
S->AddDecl(New);
|
|
return New;
|
|
}
|
|
|
|
void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
|
|
DeclTy **Elements, unsigned NumElements) {
|
|
EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
|
|
assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
|
|
|
|
// TODO: If the result value doesn't fit in an int, it must be a long or long
|
|
// long value. ISO C does not support this, but GCC does as an extension,
|
|
// emit a warning.
|
|
unsigned IntWidth = Context.Target.getIntWidth();
|
|
|
|
// Verify that all the values are okay, compute the size of the values, and
|
|
// reverse the list.
|
|
unsigned NumNegativeBits = 0;
|
|
unsigned NumPositiveBits = 0;
|
|
|
|
// Keep track of whether all elements have type int.
|
|
bool AllElementsInt = true;
|
|
|
|
EnumConstantDecl *EltList = 0;
|
|
for (unsigned i = 0; i != NumElements; ++i) {
|
|
EnumConstantDecl *ECD =
|
|
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
|
|
if (!ECD) continue; // Already issued a diagnostic.
|
|
|
|
// If the enum value doesn't fit in an int, emit an extension warning.
|
|
const llvm::APSInt &InitVal = ECD->getInitVal();
|
|
assert(InitVal.getBitWidth() >= IntWidth &&
|
|
"Should have promoted value to int");
|
|
if (InitVal.getBitWidth() > IntWidth) {
|
|
llvm::APSInt V(InitVal);
|
|
V.trunc(IntWidth);
|
|
V.extend(InitVal.getBitWidth());
|
|
if (V != InitVal)
|
|
Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
|
|
InitVal.toString());
|
|
}
|
|
|
|
// Keep track of the size of positive and negative values.
|
|
if (InitVal.isUnsigned() || InitVal.isNonNegative())
|
|
NumPositiveBits = std::max(NumPositiveBits,
|
|
(unsigned)InitVal.getActiveBits());
|
|
else
|
|
NumNegativeBits = std::max(NumNegativeBits,
|
|
(unsigned)InitVal.getMinSignedBits());
|
|
|
|
// Keep track of whether every enum element has type int (very commmon).
|
|
if (AllElementsInt)
|
|
AllElementsInt = ECD->getType() == Context.IntTy;
|
|
|
|
ECD->setNextDeclarator(EltList);
|
|
EltList = ECD;
|
|
}
|
|
|
|
// Figure out the type that should be used for this enum.
|
|
// FIXME: Support attribute(packed) on enums and -fshort-enums.
|
|
QualType BestType;
|
|
unsigned BestWidth;
|
|
|
|
if (NumNegativeBits) {
|
|
// If there is a negative value, figure out the smallest integer type (of
|
|
// int/long/longlong) that fits.
|
|
if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
|
|
BestType = Context.IntTy;
|
|
BestWidth = IntWidth;
|
|
} else {
|
|
BestWidth = Context.Target.getLongWidth();
|
|
|
|
if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
|
|
BestType = Context.LongTy;
|
|
else {
|
|
BestWidth = Context.Target.getLongLongWidth();
|
|
|
|
if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
|
|
Diag(Enum->getLocation(), diag::warn_enum_too_large);
|
|
BestType = Context.LongLongTy;
|
|
}
|
|
}
|
|
} else {
|
|
// If there is no negative value, figure out which of uint, ulong, ulonglong
|
|
// fits.
|
|
if (NumPositiveBits <= IntWidth) {
|
|
BestType = Context.UnsignedIntTy;
|
|
BestWidth = IntWidth;
|
|
} else if (NumPositiveBits <=
|
|
(BestWidth = Context.Target.getLongWidth())) {
|
|
BestType = Context.UnsignedLongTy;
|
|
} else {
|
|
BestWidth = Context.Target.getLongLongWidth();
|
|
assert(NumPositiveBits <= BestWidth &&
|
|
"How could an initializer get larger than ULL?");
|
|
BestType = Context.UnsignedLongLongTy;
|
|
}
|
|
}
|
|
|
|
// Loop over all of the enumerator constants, changing their types to match
|
|
// the type of the enum if needed.
|
|
for (unsigned i = 0; i != NumElements; ++i) {
|
|
EnumConstantDecl *ECD =
|
|
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
|
|
if (!ECD) continue; // Already issued a diagnostic.
|
|
|
|
// Standard C says the enumerators have int type, but we allow, as an
|
|
// extension, the enumerators to be larger than int size. If each
|
|
// enumerator value fits in an int, type it as an int, otherwise type it the
|
|
// same as the enumerator decl itself. This means that in "enum { X = 1U }"
|
|
// that X has type 'int', not 'unsigned'.
|
|
if (ECD->getType() == Context.IntTy) {
|
|
// Make sure the init value is signed.
|
|
llvm::APSInt IV = ECD->getInitVal();
|
|
IV.setIsSigned(true);
|
|
ECD->setInitVal(IV);
|
|
continue; // Already int type.
|
|
}
|
|
|
|
// Determine whether the value fits into an int.
|
|
llvm::APSInt InitVal = ECD->getInitVal();
|
|
bool FitsInInt;
|
|
if (InitVal.isUnsigned() || !InitVal.isNegative())
|
|
FitsInInt = InitVal.getActiveBits() < IntWidth;
|
|
else
|
|
FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
|
|
|
|
// If it fits into an integer type, force it. Otherwise force it to match
|
|
// the enum decl type.
|
|
QualType NewTy;
|
|
unsigned NewWidth;
|
|
bool NewSign;
|
|
if (FitsInInt) {
|
|
NewTy = Context.IntTy;
|
|
NewWidth = IntWidth;
|
|
NewSign = true;
|
|
} else if (ECD->getType() == BestType) {
|
|
// Already the right type!
|
|
continue;
|
|
} else {
|
|
NewTy = BestType;
|
|
NewWidth = BestWidth;
|
|
NewSign = BestType->isSignedIntegerType();
|
|
}
|
|
|
|
// Adjust the APSInt value.
|
|
InitVal.extOrTrunc(NewWidth);
|
|
InitVal.setIsSigned(NewSign);
|
|
ECD->setInitVal(InitVal);
|
|
|
|
// Adjust the Expr initializer and type.
|
|
ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
|
|
ECD->setType(NewTy);
|
|
}
|
|
|
|
Enum->defineElements(EltList, BestType);
|
|
Consumer.HandleTagDeclDefinition(Enum);
|
|
}
|
|
|
|
Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
|
|
ExprTy *expr) {
|
|
StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
|
|
|
|
return new FileScopeAsmDecl(Loc, AsmString);
|
|
}
|
|
|
|
Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
|
|
SourceLocation LBrace,
|
|
SourceLocation RBrace,
|
|
const char *Lang,
|
|
unsigned StrSize,
|
|
DeclTy *D) {
|
|
LinkageSpecDecl::LanguageIDs Language;
|
|
Decl *dcl = static_cast<Decl *>(D);
|
|
if (strncmp(Lang, "\"C\"", StrSize) == 0)
|
|
Language = LinkageSpecDecl::lang_c;
|
|
else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
|
|
Language = LinkageSpecDecl::lang_cxx;
|
|
else {
|
|
Diag(Loc, diag::err_bad_language);
|
|
return 0;
|
|
}
|
|
|
|
// FIXME: Add all the various semantics of linkage specifications
|
|
return new LinkageSpecDecl(Loc, Language, dcl);
|
|
}
|
|
|
|
void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
|
|
|
|
switch (Attr->getKind()) {
|
|
case AttributeList::AT_vector_size:
|
|
if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
|
|
QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
|
|
if (!newType.isNull()) // install the new vector type into the decl
|
|
vDecl->setType(newType);
|
|
}
|
|
if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
|
|
QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
|
|
Attr);
|
|
if (!newType.isNull()) // install the new vector type into the decl
|
|
tDecl->setUnderlyingType(newType);
|
|
}
|
|
break;
|
|
case AttributeList::AT_ocu_vector_type:
|
|
if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
|
|
HandleOCUVectorTypeAttribute(tDecl, Attr);
|
|
else
|
|
Diag(Attr->getLoc(),
|
|
diag::err_typecheck_ocu_vector_not_typedef);
|
|
break;
|
|
case AttributeList::AT_address_space:
|
|
if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
|
|
QualType newType = HandleAddressSpaceTypeAttribute(
|
|
tDecl->getUnderlyingType(),
|
|
Attr);
|
|
tDecl->setUnderlyingType(newType);
|
|
} else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
|
|
QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
|
|
Attr);
|
|
// install the new addr spaced type into the decl
|
|
vDecl->setType(newType);
|
|
}
|
|
break;
|
|
case AttributeList::AT_deprecated:
|
|
HandleDeprecatedAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_visibility:
|
|
HandleVisibilityAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_weak:
|
|
HandleWeakAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_dllimport:
|
|
HandleDLLImportAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_dllexport:
|
|
HandleDLLExportAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_nothrow:
|
|
HandleNothrowAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_stdcall:
|
|
HandleStdCallAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_fastcall:
|
|
HandleFastCallAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_aligned:
|
|
HandleAlignedAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_packed:
|
|
HandlePackedAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_annotate:
|
|
HandleAnnotateAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_noreturn:
|
|
HandleNoReturnAttribute(New, Attr);
|
|
break;
|
|
case AttributeList::AT_format:
|
|
HandleFormatAttribute(New, Attr);
|
|
break;
|
|
default:
|
|
#if 0
|
|
// TODO: when we have the full set of attributes, warn about unknown ones.
|
|
Diag(Attr->getLoc(), diag::warn_attribute_ignored,
|
|
Attr->getName()->getName());
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
|
|
AttributeList *declarator_postfix) {
|
|
while (declspec_prefix) {
|
|
HandleDeclAttribute(New, declspec_prefix);
|
|
declspec_prefix = declspec_prefix->getNext();
|
|
}
|
|
while (declarator_postfix) {
|
|
HandleDeclAttribute(New, declarator_postfix);
|
|
declarator_postfix = declarator_postfix->getNext();
|
|
}
|
|
}
|
|
|
|
void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl,
|
|
AttributeList *rawAttr) {
|
|
QualType curType = tDecl->getUnderlyingType();
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() != 1) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("1"));
|
|
return;
|
|
}
|
|
Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
|
|
llvm::APSInt vecSize(32);
|
|
if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
|
|
"ocu_vector_type", sizeExpr->getSourceRange());
|
|
return;
|
|
}
|
|
// unlike gcc's vector_size attribute, we do not allow vectors to be defined
|
|
// in conjunction with complex types (pointers, arrays, functions, etc.).
|
|
Type *canonType = curType.getCanonicalType().getTypePtr();
|
|
if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
|
|
curType.getCanonicalType().getAsString());
|
|
return;
|
|
}
|
|
// unlike gcc's vector_size attribute, the size is specified as the
|
|
// number of elements, not the number of bytes.
|
|
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
|
|
|
|
if (vectorSize == 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
|
|
sizeExpr->getSourceRange());
|
|
return;
|
|
}
|
|
// Instantiate/Install the vector type, the number of elements is > 0.
|
|
tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize));
|
|
// Remember this typedef decl, we will need it later for diagnostics.
|
|
OCUVectorDecls.push_back(tDecl);
|
|
}
|
|
|
|
QualType Sema::HandleVectorTypeAttribute(QualType curType,
|
|
AttributeList *rawAttr) {
|
|
// check the attribute arugments.
|
|
if (rawAttr->getNumArgs() != 1) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("1"));
|
|
return QualType();
|
|
}
|
|
Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
|
|
llvm::APSInt vecSize(32);
|
|
if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
|
|
"vector_size", sizeExpr->getSourceRange());
|
|
return QualType();
|
|
}
|
|
// navigate to the base type - we need to provide for vector pointers,
|
|
// vector arrays, and functions returning vectors.
|
|
Type *canonType = curType.getCanonicalType().getTypePtr();
|
|
|
|
if (canonType->isPointerType() || canonType->isArrayType() ||
|
|
canonType->isFunctionType()) {
|
|
assert(0 && "HandleVector(): Complex type construction unimplemented");
|
|
/* FIXME: rebuild the type from the inside out, vectorizing the inner type.
|
|
do {
|
|
if (PointerType *PT = dyn_cast<PointerType>(canonType))
|
|
canonType = PT->getPointeeType().getTypePtr();
|
|
else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
|
|
canonType = AT->getElementType().getTypePtr();
|
|
else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
|
|
canonType = FT->getResultType().getTypePtr();
|
|
} while (canonType->isPointerType() || canonType->isArrayType() ||
|
|
canonType->isFunctionType());
|
|
*/
|
|
}
|
|
// the base type must be integer or float.
|
|
if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
|
|
curType.getCanonicalType().getAsString());
|
|
return QualType();
|
|
}
|
|
unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
|
|
// vecSize is specified in bytes - convert to bits.
|
|
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
|
|
|
|
// the vector size needs to be an integral multiple of the type size.
|
|
if (vectorSize % typeSize) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
|
|
sizeExpr->getSourceRange());
|
|
return QualType();
|
|
}
|
|
if (vectorSize == 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
|
|
sizeExpr->getSourceRange());
|
|
return QualType();
|
|
}
|
|
// Instantiate the vector type, the number of elements is > 0, and not
|
|
// required to be a power of 2, unlike GCC.
|
|
return Context.getVectorType(curType, vectorSize/typeSize);
|
|
}
|
|
|
|
void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() > 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("0"));
|
|
return;
|
|
}
|
|
|
|
if (TagDecl *TD = dyn_cast<TagDecl>(d))
|
|
TD->addAttr(new PackedAttr);
|
|
else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
|
|
// If the alignment is less than or equal to 8 bits, the packed attribute
|
|
// has no effect.
|
|
if (Context.getTypeAlign(FD->getType()) <= 8)
|
|
Diag(rawAttr->getLoc(),
|
|
diag::warn_attribute_ignored_for_field_of_type,
|
|
rawAttr->getName()->getName(), FD->getType().getAsString());
|
|
else
|
|
FD->addAttr(new PackedAttr);
|
|
} else
|
|
Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
|
|
rawAttr->getName()->getName());
|
|
}
|
|
|
|
void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() != 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("0"));
|
|
return;
|
|
}
|
|
|
|
FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
|
|
|
|
if (!Fn) {
|
|
Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
|
|
"noreturn", "function");
|
|
return;
|
|
}
|
|
|
|
d->addAttr(new NoReturnAttr());
|
|
}
|
|
|
|
void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() != 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("0"));
|
|
return;
|
|
}
|
|
|
|
d->addAttr(new DeprecatedAttr());
|
|
}
|
|
|
|
void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() != 1) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("1"));
|
|
return;
|
|
}
|
|
|
|
Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
|
|
Arg = Arg->IgnoreParenCasts();
|
|
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
|
|
|
|
if (Str == 0 || Str->isWide()) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
|
|
"visibility", std::string("1"));
|
|
return;
|
|
}
|
|
|
|
const char *TypeStr = Str->getStrData();
|
|
unsigned TypeLen = Str->getByteLength();
|
|
llvm::GlobalValue::VisibilityTypes type;
|
|
|
|
if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
|
|
type = llvm::GlobalValue::DefaultVisibility;
|
|
else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
|
|
type = llvm::GlobalValue::HiddenVisibility;
|
|
else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
|
|
type = llvm::GlobalValue::HiddenVisibility; // FIXME
|
|
else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
|
|
type = llvm::GlobalValue::ProtectedVisibility;
|
|
else {
|
|
Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
|
|
"visibility", TypeStr);
|
|
return;
|
|
}
|
|
|
|
d->addAttr(new VisibilityAttr(type));
|
|
}
|
|
|
|
void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() != 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("0"));
|
|
return;
|
|
}
|
|
|
|
d->addAttr(new WeakAttr());
|
|
}
|
|
|
|
void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() != 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("0"));
|
|
return;
|
|
}
|
|
|
|
d->addAttr(new DLLImportAttr());
|
|
}
|
|
|
|
void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() != 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("0"));
|
|
return;
|
|
}
|
|
|
|
d->addAttr(new DLLExportAttr());
|
|
}
|
|
|
|
void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() != 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("0"));
|
|
return;
|
|
}
|
|
|
|
d->addAttr(new StdCallAttr());
|
|
}
|
|
|
|
void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() != 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("0"));
|
|
return;
|
|
}
|
|
|
|
d->addAttr(new FastCallAttr());
|
|
}
|
|
|
|
void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() != 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("0"));
|
|
return;
|
|
}
|
|
|
|
d->addAttr(new NoThrowAttr());
|
|
}
|
|
|
|
/// Handle __attribute__((format(type,idx,firstarg))) attributes
|
|
/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
|
|
void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
|
|
|
|
if (!rawAttr->getParameterName()) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
|
|
"format", std::string("1"));
|
|
return;
|
|
}
|
|
|
|
if (rawAttr->getNumArgs() != 2) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("3"));
|
|
return;
|
|
}
|
|
|
|
FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
|
|
if (!Fn) {
|
|
Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
|
|
"format", "function");
|
|
return;
|
|
}
|
|
|
|
const FunctionTypeProto *proto =
|
|
dyn_cast<FunctionTypeProto>(Fn->getType()->getAsFunctionType());
|
|
if (!proto)
|
|
return;
|
|
|
|
// FIXME: in C++ the implicit 'this' function parameter also counts.
|
|
// this is needed in order to be compatible with GCC
|
|
// the index must start in 1 and the limit is numargs+1
|
|
unsigned NumArgs = Fn->getNumParams();
|
|
unsigned FirstIdx = 1;
|
|
|
|
const char *Format = rawAttr->getParameterName()->getName();
|
|
unsigned FormatLen = rawAttr->getParameterName()->getLength();
|
|
|
|
// Normalize the argument, __foo__ becomes foo.
|
|
if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
|
|
Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
|
|
Format += 2;
|
|
FormatLen -= 4;
|
|
}
|
|
|
|
if (!((FormatLen == 5 && !memcmp(Format, "scanf", 5))
|
|
|| (FormatLen == 6 && !memcmp(Format, "printf", 6))
|
|
|| (FormatLen == 7 && !memcmp(Format, "strfmon", 7))
|
|
|| (FormatLen == 8 && !memcmp(Format, "strftime", 8)))) {
|
|
Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
|
|
"format", rawAttr->getParameterName()->getName());
|
|
return;
|
|
}
|
|
|
|
// checks for the 2nd argument
|
|
Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
|
|
llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
|
|
if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
|
|
"format", std::string("2"), IdxExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
|
|
"format", std::string("2"), IdxExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
// make sure the format string is really a string
|
|
QualType Ty = proto->getArgType(Idx.getZExtValue()-1);
|
|
if (!Ty->isPointerType() ||
|
|
!Ty->getAsPointerType()->getPointeeType()->isCharType()) {
|
|
Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
|
|
IdxExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
|
|
// check the 3rd argument
|
|
Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
|
|
llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
|
|
if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
|
|
"format", std::string("3"), FirstArgExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
// check if the function is variadic if the 3rd argument non-zero
|
|
if (FirstArg != 0) {
|
|
if (proto->isVariadic()) {
|
|
++NumArgs; // +1 for ...
|
|
} else {
|
|
Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// strftime requires FirstArg to be 0 because it doesn't read from any variable
|
|
// the input is just the current time + the format string
|
|
if (FormatLen == 8 && !memcmp(Format, "strftime", 8)) {
|
|
if (FirstArg != 0) {
|
|
Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
|
|
FirstArgExpr->getSourceRange());
|
|
return;
|
|
}
|
|
// if 0 it disables parameter checking (to use with e.g. va_list)
|
|
} else if (FirstArg != 0 && FirstArg != NumArgs) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
|
|
"format", std::string("3"), FirstArgExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
d->addAttr(new FormatAttr(std::string(Format, FormatLen),
|
|
Idx.getZExtValue(), FirstArg.getZExtValue()));
|
|
}
|
|
|
|
void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() != 1) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("1"));
|
|
return;
|
|
}
|
|
Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
|
|
StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
|
|
|
|
// Make sure that there is a string literal as the annotation's single
|
|
// argument.
|
|
if (!SE) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
|
|
return;
|
|
}
|
|
d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
|
|
SE->getByteLength())));
|
|
}
|
|
|
|
void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
|
|
{
|
|
// check the attribute arguments.
|
|
if (rawAttr->getNumArgs() > 1) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
|
|
std::string("1"));
|
|
return;
|
|
}
|
|
|
|
unsigned Align = 0;
|
|
|
|
if (rawAttr->getNumArgs() == 0) {
|
|
// FIXME: This should be the target specific maximum alignment.
|
|
// (For now we just use 128 bits which is the maximum on X86.
|
|
Align = 128;
|
|
return;
|
|
} else {
|
|
Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
|
|
llvm::APSInt alignment(32);
|
|
if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
|
|
Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
|
|
"aligned", alignmentExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
Align = alignment.getZExtValue() * 8;
|
|
}
|
|
|
|
d->addAttr(new AlignedAttr(Align));
|
|
}
|