forked from OSchip/llvm-project
626 lines
19 KiB
C++
626 lines
19 KiB
C++
//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief Insert wait instructions for memory reads and writes.
|
|
///
|
|
/// Memory reads and writes are issued asynchronously, so we need to insert
|
|
/// S_WAITCNT instructions when we want to access any of their results or
|
|
/// overwrite any register that's used asynchronously.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIDefines.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
|
|
#define DEBUG_TYPE "si-insert-waits"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
/// \brief One variable for each of the hardware counters
|
|
typedef union {
|
|
struct {
|
|
unsigned VM;
|
|
unsigned EXP;
|
|
unsigned LGKM;
|
|
} Named;
|
|
unsigned Array[3];
|
|
|
|
} Counters;
|
|
|
|
typedef enum {
|
|
OTHER,
|
|
SMEM,
|
|
VMEM
|
|
} InstType;
|
|
|
|
typedef Counters RegCounters[512];
|
|
typedef std::pair<unsigned, unsigned> RegInterval;
|
|
|
|
class SIInsertWaits : public MachineFunctionPass {
|
|
|
|
private:
|
|
const SIInstrInfo *TII;
|
|
const SIRegisterInfo *TRI;
|
|
const MachineRegisterInfo *MRI;
|
|
|
|
/// \brief Constant hardware limits
|
|
static const Counters WaitCounts;
|
|
|
|
/// \brief Constant zero value
|
|
static const Counters ZeroCounts;
|
|
|
|
/// \brief Counter values we have already waited on.
|
|
Counters WaitedOn;
|
|
|
|
/// \brief Counter values for last instruction issued.
|
|
Counters LastIssued;
|
|
|
|
/// \brief Registers used by async instructions.
|
|
RegCounters UsedRegs;
|
|
|
|
/// \brief Registers defined by async instructions.
|
|
RegCounters DefinedRegs;
|
|
|
|
/// \brief Different export instruction types seen since last wait.
|
|
unsigned ExpInstrTypesSeen;
|
|
|
|
/// \brief Type of the last opcode.
|
|
InstType LastOpcodeType;
|
|
|
|
bool LastInstWritesM0;
|
|
|
|
/// \brief Whether the machine function returns void
|
|
bool ReturnsVoid;
|
|
|
|
/// Whether the VCCZ bit is possibly corrupt
|
|
bool VCCZCorrupt;
|
|
|
|
/// \brief Get increment/decrement amount for this instruction.
|
|
Counters getHwCounts(MachineInstr &MI);
|
|
|
|
/// \brief Is operand relevant for async execution?
|
|
bool isOpRelevant(MachineOperand &Op);
|
|
|
|
/// \brief Get register interval an operand affects.
|
|
RegInterval getRegInterval(const TargetRegisterClass *RC,
|
|
const MachineOperand &Reg) const;
|
|
|
|
/// \brief Handle instructions async components
|
|
void pushInstruction(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I);
|
|
|
|
/// \brief Insert the actual wait instruction
|
|
bool insertWait(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const Counters &Counts);
|
|
|
|
/// \brief Do we need def2def checks?
|
|
bool unorderedDefines(MachineInstr &MI);
|
|
|
|
/// \brief Resolve all operand dependencies to counter requirements
|
|
Counters handleOperands(MachineInstr &MI);
|
|
|
|
/// \brief Insert S_NOP between an instruction writing M0 and S_SENDMSG.
|
|
void handleSendMsg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I);
|
|
|
|
/// \param DPP The DPP instruction
|
|
/// \param SearchI The iterator to start look for hazards.
|
|
/// \param SearchMBB The basic block we are operating on.
|
|
/// \param WaitStates Then number of wait states that need to be inserted
|
|
/// When a hazard is detected.
|
|
void insertDPPWaitStates(MachineBasicBlock::iterator DPP,
|
|
MachineBasicBlock::reverse_iterator SearchI,
|
|
MachineBasicBlock *SearchMBB,
|
|
unsigned WaitStates);
|
|
|
|
void insertDPPWaitStates(MachineBasicBlock::iterator DPP);
|
|
|
|
/// Return true if there are LGKM instrucitons that haven't been waited on
|
|
/// yet.
|
|
bool hasOutstandingLGKM() const;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
SIInsertWaits() :
|
|
MachineFunctionPass(ID),
|
|
TII(nullptr),
|
|
TRI(nullptr),
|
|
ExpInstrTypesSeen(0),
|
|
VCCZCorrupt(false) { }
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
const char *getPassName() const override {
|
|
return "SI insert wait instructions";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // End anonymous namespace
|
|
|
|
INITIALIZE_PASS_BEGIN(SIInsertWaits, DEBUG_TYPE,
|
|
"SI Insert Waits", false, false)
|
|
INITIALIZE_PASS_END(SIInsertWaits, DEBUG_TYPE,
|
|
"SI Insert Waits", false, false)
|
|
|
|
char SIInsertWaits::ID = 0;
|
|
|
|
char &llvm::SIInsertWaitsID = SIInsertWaits::ID;
|
|
|
|
FunctionPass *llvm::createSIInsertWaitsPass() {
|
|
return new SIInsertWaits();
|
|
}
|
|
|
|
const Counters SIInsertWaits::WaitCounts = { { 15, 7, 15 } };
|
|
const Counters SIInsertWaits::ZeroCounts = { { 0, 0, 0 } };
|
|
|
|
static bool readsVCCZ(unsigned Opcode) {
|
|
return Opcode == AMDGPU::S_CBRANCH_VCCNZ || Opcode == AMDGPU::S_CBRANCH_VCCZ;
|
|
}
|
|
|
|
bool SIInsertWaits::hasOutstandingLGKM() const {
|
|
return WaitedOn.Named.LGKM != LastIssued.Named.LGKM;
|
|
}
|
|
|
|
Counters SIInsertWaits::getHwCounts(MachineInstr &MI) {
|
|
uint64_t TSFlags = MI.getDesc().TSFlags;
|
|
Counters Result = { { 0, 0, 0 } };
|
|
|
|
Result.Named.VM = !!(TSFlags & SIInstrFlags::VM_CNT);
|
|
|
|
// Only consider stores or EXP for EXP_CNT
|
|
Result.Named.EXP = !!(TSFlags & SIInstrFlags::EXP_CNT &&
|
|
(MI.getOpcode() == AMDGPU::EXP || MI.getDesc().mayStore()));
|
|
|
|
// LGKM may uses larger values
|
|
if (TSFlags & SIInstrFlags::LGKM_CNT) {
|
|
|
|
if (TII->isSMRD(MI)) {
|
|
|
|
if (MI.getNumOperands() != 0) {
|
|
assert(MI.getOperand(0).isReg() &&
|
|
"First LGKM operand must be a register!");
|
|
|
|
// XXX - What if this is a write into a super register?
|
|
const TargetRegisterClass *RC = TII->getOpRegClass(MI, 0);
|
|
unsigned Size = RC->getSize();
|
|
Result.Named.LGKM = Size > 4 ? 2 : 1;
|
|
} else {
|
|
// s_dcache_inv etc. do not have a a destination register. Assume we
|
|
// want a wait on these.
|
|
// XXX - What is the right value?
|
|
Result.Named.LGKM = 1;
|
|
}
|
|
} else {
|
|
// DS
|
|
Result.Named.LGKM = 1;
|
|
}
|
|
|
|
} else {
|
|
Result.Named.LGKM = 0;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
bool SIInsertWaits::isOpRelevant(MachineOperand &Op) {
|
|
// Constants are always irrelevant
|
|
if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()))
|
|
return false;
|
|
|
|
// Defines are always relevant
|
|
if (Op.isDef())
|
|
return true;
|
|
|
|
// For exports all registers are relevant
|
|
MachineInstr &MI = *Op.getParent();
|
|
if (MI.getOpcode() == AMDGPU::EXP)
|
|
return true;
|
|
|
|
// For stores the stored value is also relevant
|
|
if (!MI.getDesc().mayStore())
|
|
return false;
|
|
|
|
// Check if this operand is the value being stored.
|
|
// Special case for DS/FLAT instructions, since the address
|
|
// operand comes before the value operand and it may have
|
|
// multiple data operands.
|
|
|
|
if (TII->isDS(MI) || TII->isFLAT(MI)) {
|
|
MachineOperand *Data = TII->getNamedOperand(MI, AMDGPU::OpName::data);
|
|
if (Data && Op.isIdenticalTo(*Data))
|
|
return true;
|
|
}
|
|
|
|
if (TII->isDS(MI)) {
|
|
MachineOperand *Data0 = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
|
|
if (Data0 && Op.isIdenticalTo(*Data0))
|
|
return true;
|
|
|
|
MachineOperand *Data1 = TII->getNamedOperand(MI, AMDGPU::OpName::data1);
|
|
return Data1 && Op.isIdenticalTo(*Data1);
|
|
}
|
|
|
|
// NOTE: This assumes that the value operand is before the
|
|
// address operand, and that there is only one value operand.
|
|
for (MachineInstr::mop_iterator I = MI.operands_begin(),
|
|
E = MI.operands_end(); I != E; ++I) {
|
|
|
|
if (I->isReg() && I->isUse())
|
|
return Op.isIdenticalTo(*I);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
RegInterval SIInsertWaits::getRegInterval(const TargetRegisterClass *RC,
|
|
const MachineOperand &Reg) const {
|
|
unsigned Size = RC->getSize();
|
|
assert(Size >= 4);
|
|
|
|
RegInterval Result;
|
|
Result.first = TRI->getEncodingValue(Reg.getReg());
|
|
Result.second = Result.first + Size / 4;
|
|
|
|
return Result;
|
|
}
|
|
|
|
void SIInsertWaits::pushInstruction(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) {
|
|
|
|
// Get the hardware counter increments and sum them up
|
|
Counters Increment = getHwCounts(*I);
|
|
Counters Limit = ZeroCounts;
|
|
unsigned Sum = 0;
|
|
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
LastIssued.Array[i] += Increment.Array[i];
|
|
if (Increment.Array[i])
|
|
Limit.Array[i] = LastIssued.Array[i];
|
|
Sum += Increment.Array[i];
|
|
}
|
|
|
|
// If we don't increase anything then that's it
|
|
if (Sum == 0) {
|
|
LastOpcodeType = OTHER;
|
|
return;
|
|
}
|
|
|
|
if (MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() >=
|
|
AMDGPUSubtarget::VOLCANIC_ISLANDS) {
|
|
// Any occurrence of consecutive VMEM or SMEM instructions forms a VMEM
|
|
// or SMEM clause, respectively.
|
|
//
|
|
// The temporary workaround is to break the clauses with S_NOP.
|
|
//
|
|
// The proper solution would be to allocate registers such that all source
|
|
// and destination registers don't overlap, e.g. this is illegal:
|
|
// r0 = load r2
|
|
// r2 = load r0
|
|
if ((LastOpcodeType == SMEM && TII->isSMRD(*I)) ||
|
|
(LastOpcodeType == VMEM && Increment.Named.VM)) {
|
|
// Insert a NOP to break the clause.
|
|
BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP))
|
|
.addImm(0);
|
|
LastInstWritesM0 = false;
|
|
}
|
|
|
|
if (TII->isSMRD(*I))
|
|
LastOpcodeType = SMEM;
|
|
else if (Increment.Named.VM)
|
|
LastOpcodeType = VMEM;
|
|
}
|
|
|
|
// Remember which export instructions we have seen
|
|
if (Increment.Named.EXP) {
|
|
ExpInstrTypesSeen |= I->getOpcode() == AMDGPU::EXP ? 1 : 2;
|
|
}
|
|
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &Op = I->getOperand(i);
|
|
if (!isOpRelevant(Op))
|
|
continue;
|
|
|
|
const TargetRegisterClass *RC = TII->getOpRegClass(*I, i);
|
|
RegInterval Interval = getRegInterval(RC, Op);
|
|
for (unsigned j = Interval.first; j < Interval.second; ++j) {
|
|
|
|
// Remember which registers we define
|
|
if (Op.isDef())
|
|
DefinedRegs[j] = Limit;
|
|
|
|
// and which one we are using
|
|
if (Op.isUse())
|
|
UsedRegs[j] = Limit;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SIInsertWaits::insertWait(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const Counters &Required) {
|
|
|
|
// End of program? No need to wait on anything
|
|
// A function not returning void needs to wait, because other bytecode will
|
|
// be appended after it and we don't know what it will be.
|
|
if (I != MBB.end() && I->getOpcode() == AMDGPU::S_ENDPGM && ReturnsVoid)
|
|
return false;
|
|
|
|
// Figure out if the async instructions execute in order
|
|
bool Ordered[3];
|
|
|
|
// VM_CNT is always ordered
|
|
Ordered[0] = true;
|
|
|
|
// EXP_CNT is unordered if we have both EXP & VM-writes
|
|
Ordered[1] = ExpInstrTypesSeen == 3;
|
|
|
|
// LGKM_CNT is handled as always unordered. TODO: Handle LDS and GDS
|
|
Ordered[2] = false;
|
|
|
|
// The values we are going to put into the S_WAITCNT instruction
|
|
Counters Counts = WaitCounts;
|
|
|
|
// Do we really need to wait?
|
|
bool NeedWait = false;
|
|
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
|
|
if (Required.Array[i] <= WaitedOn.Array[i])
|
|
continue;
|
|
|
|
NeedWait = true;
|
|
|
|
if (Ordered[i]) {
|
|
unsigned Value = LastIssued.Array[i] - Required.Array[i];
|
|
|
|
// Adjust the value to the real hardware possibilities.
|
|
Counts.Array[i] = std::min(Value, WaitCounts.Array[i]);
|
|
|
|
} else
|
|
Counts.Array[i] = 0;
|
|
|
|
// Remember on what we have waited on.
|
|
WaitedOn.Array[i] = LastIssued.Array[i] - Counts.Array[i];
|
|
}
|
|
|
|
if (!NeedWait)
|
|
return false;
|
|
|
|
// Reset EXP_CNT instruction types
|
|
if (Counts.Named.EXP == 0)
|
|
ExpInstrTypesSeen = 0;
|
|
|
|
// Build the wait instruction
|
|
BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
|
|
.addImm((Counts.Named.VM & 0xF) |
|
|
((Counts.Named.EXP & 0x7) << 4) |
|
|
((Counts.Named.LGKM & 0xF) << 8));
|
|
|
|
LastOpcodeType = OTHER;
|
|
LastInstWritesM0 = false;
|
|
return true;
|
|
}
|
|
|
|
/// \brief helper function for handleOperands
|
|
static void increaseCounters(Counters &Dst, const Counters &Src) {
|
|
|
|
for (unsigned i = 0; i < 3; ++i)
|
|
Dst.Array[i] = std::max(Dst.Array[i], Src.Array[i]);
|
|
}
|
|
|
|
Counters SIInsertWaits::handleOperands(MachineInstr &MI) {
|
|
|
|
Counters Result = ZeroCounts;
|
|
|
|
// S_SENDMSG implicitly waits for all outstanding LGKM transfers to finish,
|
|
// but we also want to wait for any other outstanding transfers before
|
|
// signalling other hardware blocks
|
|
if (MI.getOpcode() == AMDGPU::S_SENDMSG)
|
|
return LastIssued;
|
|
|
|
// For each register affected by this instruction increase the result
|
|
// sequence.
|
|
//
|
|
// TODO: We could probably just look at explicit operands if we removed VCC /
|
|
// EXEC from SMRD dest reg classes.
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &Op = MI.getOperand(i);
|
|
if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()))
|
|
continue;
|
|
|
|
const TargetRegisterClass *RC = TII->getOpRegClass(MI, i);
|
|
RegInterval Interval = getRegInterval(RC, Op);
|
|
for (unsigned j = Interval.first; j < Interval.second; ++j) {
|
|
|
|
if (Op.isDef()) {
|
|
increaseCounters(Result, UsedRegs[j]);
|
|
increaseCounters(Result, DefinedRegs[j]);
|
|
}
|
|
|
|
if (Op.isUse())
|
|
increaseCounters(Result, DefinedRegs[j]);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
void SIInsertWaits::handleSendMsg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) {
|
|
if (MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() <
|
|
AMDGPUSubtarget::VOLCANIC_ISLANDS)
|
|
return;
|
|
|
|
// There must be "S_NOP 0" between an instruction writing M0 and S_SENDMSG.
|
|
if (LastInstWritesM0 && I->getOpcode() == AMDGPU::S_SENDMSG) {
|
|
BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0);
|
|
LastInstWritesM0 = false;
|
|
return;
|
|
}
|
|
|
|
// Set whether this instruction sets M0
|
|
LastInstWritesM0 = false;
|
|
|
|
unsigned NumOperands = I->getNumOperands();
|
|
for (unsigned i = 0; i < NumOperands; i++) {
|
|
const MachineOperand &Op = I->getOperand(i);
|
|
|
|
if (Op.isReg() && Op.isDef() && Op.getReg() == AMDGPU::M0)
|
|
LastInstWritesM0 = true;
|
|
}
|
|
}
|
|
|
|
void SIInsertWaits::insertDPPWaitStates(MachineBasicBlock::iterator DPP,
|
|
MachineBasicBlock::reverse_iterator SearchI,
|
|
MachineBasicBlock *SearchMBB,
|
|
unsigned WaitStates) {
|
|
|
|
MachineBasicBlock::reverse_iterator E = SearchMBB->rend();
|
|
|
|
for (; WaitStates > 0; --WaitStates, ++SearchI) {
|
|
|
|
// If we have reached the start of the block, we need to check predecessors.
|
|
if (SearchI == E) {
|
|
for (MachineBasicBlock *Pred : SearchMBB->predecessors()) {
|
|
// We only need to check fall-through blocks. Branch instructions
|
|
// give us enough wait states.
|
|
if (Pred->getFirstTerminator() == Pred->end()) {
|
|
insertDPPWaitStates(DPP, Pred->rbegin(), Pred, WaitStates);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (MachineOperand &Op : SearchI->operands()) {
|
|
if (!Op.isReg() || !Op.isDef())
|
|
continue;
|
|
|
|
if (DPP->readsRegister(Op.getReg(), TRI)) {
|
|
TII->insertWaitStates(*DPP->getParent(), DPP, WaitStates);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SIInsertWaits::insertDPPWaitStates(MachineBasicBlock::iterator DPP) {
|
|
MachineBasicBlock::reverse_iterator I(DPP);
|
|
insertDPPWaitStates(DPP, I, DPP->getParent(), 2);
|
|
}
|
|
|
|
// FIXME: Insert waits listed in Table 4.2 "Required User-Inserted Wait States"
|
|
// around other non-memory instructions.
|
|
bool SIInsertWaits::runOnMachineFunction(MachineFunction &MF) {
|
|
bool Changes = false;
|
|
|
|
TII = static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
|
|
TRI =
|
|
static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
|
|
|
|
const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
|
|
MRI = &MF.getRegInfo();
|
|
|
|
WaitedOn = ZeroCounts;
|
|
LastIssued = ZeroCounts;
|
|
LastOpcodeType = OTHER;
|
|
LastInstWritesM0 = false;
|
|
ReturnsVoid = MF.getInfo<SIMachineFunctionInfo>()->returnsVoid();
|
|
|
|
memset(&UsedRegs, 0, sizeof(UsedRegs));
|
|
memset(&DefinedRegs, 0, sizeof(DefinedRegs));
|
|
|
|
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
|
|
BI != BE; ++BI) {
|
|
|
|
MachineBasicBlock &MBB = *BI;
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
|
|
I != E; ++I) {
|
|
|
|
if (ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) {
|
|
// There is a hardware bug on CI/SI where SMRD instruction may corrupt
|
|
// vccz bit, so when we detect that an instruction may read from a
|
|
// corrupt vccz bit, we need to:
|
|
// 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD operations to
|
|
// complete.
|
|
// 2. Restore the correct value of vccz by writing the current value
|
|
// of vcc back to vcc.
|
|
|
|
if (TII->isSMRD(I->getOpcode())) {
|
|
VCCZCorrupt = true;
|
|
} else if (!hasOutstandingLGKM() && I->modifiesRegister(AMDGPU::VCC, TRI)) {
|
|
// FIXME: We only care about SMRD instructions here, not LDS or GDS.
|
|
// Whenever we store a value in vcc, the correct value of vccz is
|
|
// restored.
|
|
VCCZCorrupt = false;
|
|
}
|
|
|
|
// Check if we need to apply the bug work-around
|
|
if (readsVCCZ(I->getOpcode()) && VCCZCorrupt) {
|
|
DEBUG(dbgs() << "Inserting vccz bug work-around before: " << *I << '\n');
|
|
|
|
// Wait on everything, not just LGKM. vccz reads usually come from
|
|
// terminators, and we always wait on everything at the end of the
|
|
// block, so if we only wait on LGKM here, we might end up with
|
|
// another s_waitcnt inserted right after this if there are non-LGKM
|
|
// instructions still outstanding.
|
|
insertWait(MBB, I, LastIssued);
|
|
|
|
// Restore the vccz bit. Any time a value is written to vcc, the vcc
|
|
// bit is updated, so we can restore the bit by reading the value of
|
|
// vcc and then writing it back to the register.
|
|
BuildMI(MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
|
|
AMDGPU::VCC)
|
|
.addReg(AMDGPU::VCC);
|
|
}
|
|
}
|
|
|
|
if (TII->isDPP(*I)) {
|
|
insertDPPWaitStates(I);
|
|
}
|
|
|
|
// Insert required wait states for SMRD reading an SGPR written by a VALU
|
|
// instruction.
|
|
if (ST.getGeneration() <= AMDGPUSubtarget::SOUTHERN_ISLANDS &&
|
|
I->getOpcode() == AMDGPU::V_READFIRSTLANE_B32)
|
|
TII->insertWaitStates(MBB, std::next(I), 4);
|
|
|
|
// Wait for everything before a barrier.
|
|
if (I->getOpcode() == AMDGPU::S_BARRIER)
|
|
Changes |= insertWait(MBB, I, LastIssued);
|
|
else
|
|
Changes |= insertWait(MBB, I, handleOperands(*I));
|
|
|
|
pushInstruction(MBB, I);
|
|
handleSendMsg(MBB, I);
|
|
}
|
|
|
|
// Wait for everything at the end of the MBB
|
|
Changes |= insertWait(MBB, MBB.getFirstTerminator(), LastIssued);
|
|
}
|
|
|
|
return Changes;
|
|
}
|