forked from OSchip/llvm-project
10864 lines
455 KiB
C++
10864 lines
455 KiB
C++
//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This provides a class for OpenMP runtime code generation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGCXXABI.h"
|
|
#include "CGCleanup.h"
|
|
#include "CGOpenMPRuntime.h"
|
|
#include "CGRecordLayout.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "clang/CodeGen/ConstantInitBuilder.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/StmtOpenMP.h"
|
|
#include "clang/Basic/BitmaskEnum.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/Bitcode/BitcodeReader.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
/// Base class for handling code generation inside OpenMP regions.
|
|
class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
|
|
public:
|
|
/// Kinds of OpenMP regions used in codegen.
|
|
enum CGOpenMPRegionKind {
|
|
/// Region with outlined function for standalone 'parallel'
|
|
/// directive.
|
|
ParallelOutlinedRegion,
|
|
/// Region with outlined function for standalone 'task' directive.
|
|
TaskOutlinedRegion,
|
|
/// Region for constructs that do not require function outlining,
|
|
/// like 'for', 'sections', 'atomic' etc. directives.
|
|
InlinedRegion,
|
|
/// Region with outlined function for standalone 'target' directive.
|
|
TargetRegion,
|
|
};
|
|
|
|
CGOpenMPRegionInfo(const CapturedStmt &CS,
|
|
const CGOpenMPRegionKind RegionKind,
|
|
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
|
|
bool HasCancel)
|
|
: CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
|
|
CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
|
|
|
|
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
|
|
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
|
|
bool HasCancel)
|
|
: CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
|
|
Kind(Kind), HasCancel(HasCancel) {}
|
|
|
|
/// Get a variable or parameter for storing global thread id
|
|
/// inside OpenMP construct.
|
|
virtual const VarDecl *getThreadIDVariable() const = 0;
|
|
|
|
/// Emit the captured statement body.
|
|
void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
|
|
|
|
/// Get an LValue for the current ThreadID variable.
|
|
/// \return LValue for thread id variable. This LValue always has type int32*.
|
|
virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
|
|
|
|
virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
|
|
|
|
CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
|
|
|
|
OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
|
|
|
|
bool hasCancel() const { return HasCancel; }
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) {
|
|
return Info->getKind() == CR_OpenMP;
|
|
}
|
|
|
|
~CGOpenMPRegionInfo() override = default;
|
|
|
|
protected:
|
|
CGOpenMPRegionKind RegionKind;
|
|
RegionCodeGenTy CodeGen;
|
|
OpenMPDirectiveKind Kind;
|
|
bool HasCancel;
|
|
};
|
|
|
|
/// API for captured statement code generation in OpenMP constructs.
|
|
class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
|
|
public:
|
|
CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
|
|
const RegionCodeGenTy &CodeGen,
|
|
OpenMPDirectiveKind Kind, bool HasCancel,
|
|
StringRef HelperName)
|
|
: CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
|
|
HasCancel),
|
|
ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
|
|
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
|
|
}
|
|
|
|
/// Get a variable or parameter for storing global thread id
|
|
/// inside OpenMP construct.
|
|
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
|
|
|
|
/// Get the name of the capture helper.
|
|
StringRef getHelperName() const override { return HelperName; }
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) {
|
|
return CGOpenMPRegionInfo::classof(Info) &&
|
|
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
|
|
ParallelOutlinedRegion;
|
|
}
|
|
|
|
private:
|
|
/// A variable or parameter storing global thread id for OpenMP
|
|
/// constructs.
|
|
const VarDecl *ThreadIDVar;
|
|
StringRef HelperName;
|
|
};
|
|
|
|
/// API for captured statement code generation in OpenMP constructs.
|
|
class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
|
|
public:
|
|
class UntiedTaskActionTy final : public PrePostActionTy {
|
|
bool Untied;
|
|
const VarDecl *PartIDVar;
|
|
const RegionCodeGenTy UntiedCodeGen;
|
|
llvm::SwitchInst *UntiedSwitch = nullptr;
|
|
|
|
public:
|
|
UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
|
|
const RegionCodeGenTy &UntiedCodeGen)
|
|
: Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
if (Untied) {
|
|
// Emit task switching point.
|
|
LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(PartIDVar),
|
|
PartIDVar->getType()->castAs<PointerType>());
|
|
llvm::Value *Res =
|
|
CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
|
|
llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
|
|
UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
|
|
CGF.EmitBlock(DoneBB);
|
|
CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
|
|
CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
|
|
UntiedSwitch->addCase(CGF.Builder.getInt32(0),
|
|
CGF.Builder.GetInsertBlock());
|
|
emitUntiedSwitch(CGF);
|
|
}
|
|
}
|
|
void emitUntiedSwitch(CodeGenFunction &CGF) const {
|
|
if (Untied) {
|
|
LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(PartIDVar),
|
|
PartIDVar->getType()->castAs<PointerType>());
|
|
CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
|
|
PartIdLVal);
|
|
UntiedCodeGen(CGF);
|
|
CodeGenFunction::JumpDest CurPoint =
|
|
CGF.getJumpDestInCurrentScope(".untied.next.");
|
|
CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
|
|
CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
|
|
UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
|
|
CGF.Builder.GetInsertBlock());
|
|
CGF.EmitBranchThroughCleanup(CurPoint);
|
|
CGF.EmitBlock(CurPoint.getBlock());
|
|
}
|
|
}
|
|
unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
|
|
};
|
|
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
|
|
const VarDecl *ThreadIDVar,
|
|
const RegionCodeGenTy &CodeGen,
|
|
OpenMPDirectiveKind Kind, bool HasCancel,
|
|
const UntiedTaskActionTy &Action)
|
|
: CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
|
|
ThreadIDVar(ThreadIDVar), Action(Action) {
|
|
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
|
|
}
|
|
|
|
/// Get a variable or parameter for storing global thread id
|
|
/// inside OpenMP construct.
|
|
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
|
|
|
|
/// Get an LValue for the current ThreadID variable.
|
|
LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
|
|
|
|
/// Get the name of the capture helper.
|
|
StringRef getHelperName() const override { return ".omp_outlined."; }
|
|
|
|
void emitUntiedSwitch(CodeGenFunction &CGF) override {
|
|
Action.emitUntiedSwitch(CGF);
|
|
}
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) {
|
|
return CGOpenMPRegionInfo::classof(Info) &&
|
|
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
|
|
TaskOutlinedRegion;
|
|
}
|
|
|
|
private:
|
|
/// A variable or parameter storing global thread id for OpenMP
|
|
/// constructs.
|
|
const VarDecl *ThreadIDVar;
|
|
/// Action for emitting code for untied tasks.
|
|
const UntiedTaskActionTy &Action;
|
|
};
|
|
|
|
/// API for inlined captured statement code generation in OpenMP
|
|
/// constructs.
|
|
class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
|
|
public:
|
|
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
|
|
const RegionCodeGenTy &CodeGen,
|
|
OpenMPDirectiveKind Kind, bool HasCancel)
|
|
: CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
|
|
OldCSI(OldCSI),
|
|
OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
|
|
|
|
// Retrieve the value of the context parameter.
|
|
llvm::Value *getContextValue() const override {
|
|
if (OuterRegionInfo)
|
|
return OuterRegionInfo->getContextValue();
|
|
llvm_unreachable("No context value for inlined OpenMP region");
|
|
}
|
|
|
|
void setContextValue(llvm::Value *V) override {
|
|
if (OuterRegionInfo) {
|
|
OuterRegionInfo->setContextValue(V);
|
|
return;
|
|
}
|
|
llvm_unreachable("No context value for inlined OpenMP region");
|
|
}
|
|
|
|
/// Lookup the captured field decl for a variable.
|
|
const FieldDecl *lookup(const VarDecl *VD) const override {
|
|
if (OuterRegionInfo)
|
|
return OuterRegionInfo->lookup(VD);
|
|
// If there is no outer outlined region,no need to lookup in a list of
|
|
// captured variables, we can use the original one.
|
|
return nullptr;
|
|
}
|
|
|
|
FieldDecl *getThisFieldDecl() const override {
|
|
if (OuterRegionInfo)
|
|
return OuterRegionInfo->getThisFieldDecl();
|
|
return nullptr;
|
|
}
|
|
|
|
/// Get a variable or parameter for storing global thread id
|
|
/// inside OpenMP construct.
|
|
const VarDecl *getThreadIDVariable() const override {
|
|
if (OuterRegionInfo)
|
|
return OuterRegionInfo->getThreadIDVariable();
|
|
return nullptr;
|
|
}
|
|
|
|
/// Get an LValue for the current ThreadID variable.
|
|
LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
|
|
if (OuterRegionInfo)
|
|
return OuterRegionInfo->getThreadIDVariableLValue(CGF);
|
|
llvm_unreachable("No LValue for inlined OpenMP construct");
|
|
}
|
|
|
|
/// Get the name of the capture helper.
|
|
StringRef getHelperName() const override {
|
|
if (auto *OuterRegionInfo = getOldCSI())
|
|
return OuterRegionInfo->getHelperName();
|
|
llvm_unreachable("No helper name for inlined OpenMP construct");
|
|
}
|
|
|
|
void emitUntiedSwitch(CodeGenFunction &CGF) override {
|
|
if (OuterRegionInfo)
|
|
OuterRegionInfo->emitUntiedSwitch(CGF);
|
|
}
|
|
|
|
CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) {
|
|
return CGOpenMPRegionInfo::classof(Info) &&
|
|
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
|
|
}
|
|
|
|
~CGOpenMPInlinedRegionInfo() override = default;
|
|
|
|
private:
|
|
/// CodeGen info about outer OpenMP region.
|
|
CodeGenFunction::CGCapturedStmtInfo *OldCSI;
|
|
CGOpenMPRegionInfo *OuterRegionInfo;
|
|
};
|
|
|
|
/// API for captured statement code generation in OpenMP target
|
|
/// constructs. For this captures, implicit parameters are used instead of the
|
|
/// captured fields. The name of the target region has to be unique in a given
|
|
/// application so it is provided by the client, because only the client has
|
|
/// the information to generate that.
|
|
class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
|
|
public:
|
|
CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
|
|
const RegionCodeGenTy &CodeGen, StringRef HelperName)
|
|
: CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
|
|
/*HasCancel=*/false),
|
|
HelperName(HelperName) {}
|
|
|
|
/// This is unused for target regions because each starts executing
|
|
/// with a single thread.
|
|
const VarDecl *getThreadIDVariable() const override { return nullptr; }
|
|
|
|
/// Get the name of the capture helper.
|
|
StringRef getHelperName() const override { return HelperName; }
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) {
|
|
return CGOpenMPRegionInfo::classof(Info) &&
|
|
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
|
|
}
|
|
|
|
private:
|
|
StringRef HelperName;
|
|
};
|
|
|
|
static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
|
|
llvm_unreachable("No codegen for expressions");
|
|
}
|
|
/// API for generation of expressions captured in a innermost OpenMP
|
|
/// region.
|
|
class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
|
|
public:
|
|
CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
|
|
: CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
|
|
OMPD_unknown,
|
|
/*HasCancel=*/false),
|
|
PrivScope(CGF) {
|
|
// Make sure the globals captured in the provided statement are local by
|
|
// using the privatization logic. We assume the same variable is not
|
|
// captured more than once.
|
|
for (const auto &C : CS.captures()) {
|
|
if (!C.capturesVariable() && !C.capturesVariableByCopy())
|
|
continue;
|
|
|
|
const VarDecl *VD = C.getCapturedVar();
|
|
if (VD->isLocalVarDeclOrParm())
|
|
continue;
|
|
|
|
DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
|
|
/*RefersToEnclosingVariableOrCapture=*/false,
|
|
VD->getType().getNonReferenceType(), VK_LValue,
|
|
C.getLocation());
|
|
PrivScope.addPrivate(
|
|
VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(); });
|
|
}
|
|
(void)PrivScope.Privatize();
|
|
}
|
|
|
|
/// Lookup the captured field decl for a variable.
|
|
const FieldDecl *lookup(const VarDecl *VD) const override {
|
|
if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
|
|
return FD;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Emit the captured statement body.
|
|
void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
|
|
llvm_unreachable("No body for expressions");
|
|
}
|
|
|
|
/// Get a variable or parameter for storing global thread id
|
|
/// inside OpenMP construct.
|
|
const VarDecl *getThreadIDVariable() const override {
|
|
llvm_unreachable("No thread id for expressions");
|
|
}
|
|
|
|
/// Get the name of the capture helper.
|
|
StringRef getHelperName() const override {
|
|
llvm_unreachable("No helper name for expressions");
|
|
}
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) { return false; }
|
|
|
|
private:
|
|
/// Private scope to capture global variables.
|
|
CodeGenFunction::OMPPrivateScope PrivScope;
|
|
};
|
|
|
|
/// RAII for emitting code of OpenMP constructs.
|
|
class InlinedOpenMPRegionRAII {
|
|
CodeGenFunction &CGF;
|
|
llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
|
|
FieldDecl *LambdaThisCaptureField = nullptr;
|
|
const CodeGen::CGBlockInfo *BlockInfo = nullptr;
|
|
|
|
public:
|
|
/// Constructs region for combined constructs.
|
|
/// \param CodeGen Code generation sequence for combined directives. Includes
|
|
/// a list of functions used for code generation of implicitly inlined
|
|
/// regions.
|
|
InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
|
|
OpenMPDirectiveKind Kind, bool HasCancel)
|
|
: CGF(CGF) {
|
|
// Start emission for the construct.
|
|
CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
|
|
CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
|
|
std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
|
|
LambdaThisCaptureField = CGF.LambdaThisCaptureField;
|
|
CGF.LambdaThisCaptureField = nullptr;
|
|
BlockInfo = CGF.BlockInfo;
|
|
CGF.BlockInfo = nullptr;
|
|
}
|
|
|
|
~InlinedOpenMPRegionRAII() {
|
|
// Restore original CapturedStmtInfo only if we're done with code emission.
|
|
auto *OldCSI =
|
|
cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
|
|
delete CGF.CapturedStmtInfo;
|
|
CGF.CapturedStmtInfo = OldCSI;
|
|
std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
|
|
CGF.LambdaThisCaptureField = LambdaThisCaptureField;
|
|
CGF.BlockInfo = BlockInfo;
|
|
}
|
|
};
|
|
|
|
/// Values for bit flags used in the ident_t to describe the fields.
|
|
/// All enumeric elements are named and described in accordance with the code
|
|
/// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
|
|
enum OpenMPLocationFlags : unsigned {
|
|
/// Use trampoline for internal microtask.
|
|
OMP_IDENT_IMD = 0x01,
|
|
/// Use c-style ident structure.
|
|
OMP_IDENT_KMPC = 0x02,
|
|
/// Atomic reduction option for kmpc_reduce.
|
|
OMP_ATOMIC_REDUCE = 0x10,
|
|
/// Explicit 'barrier' directive.
|
|
OMP_IDENT_BARRIER_EXPL = 0x20,
|
|
/// Implicit barrier in code.
|
|
OMP_IDENT_BARRIER_IMPL = 0x40,
|
|
/// Implicit barrier in 'for' directive.
|
|
OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
|
|
/// Implicit barrier in 'sections' directive.
|
|
OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
|
|
/// Implicit barrier in 'single' directive.
|
|
OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
|
|
/// Call of __kmp_for_static_init for static loop.
|
|
OMP_IDENT_WORK_LOOP = 0x200,
|
|
/// Call of __kmp_for_static_init for sections.
|
|
OMP_IDENT_WORK_SECTIONS = 0x400,
|
|
/// Call of __kmp_for_static_init for distribute.
|
|
OMP_IDENT_WORK_DISTRIBUTE = 0x800,
|
|
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
|
|
};
|
|
|
|
namespace {
|
|
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
|
|
/// Values for bit flags for marking which requires clauses have been used.
|
|
enum OpenMPOffloadingRequiresDirFlags : int64_t {
|
|
/// flag undefined.
|
|
OMP_REQ_UNDEFINED = 0x000,
|
|
/// no requires clause present.
|
|
OMP_REQ_NONE = 0x001,
|
|
/// reverse_offload clause.
|
|
OMP_REQ_REVERSE_OFFLOAD = 0x002,
|
|
/// unified_address clause.
|
|
OMP_REQ_UNIFIED_ADDRESS = 0x004,
|
|
/// unified_shared_memory clause.
|
|
OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008,
|
|
/// dynamic_allocators clause.
|
|
OMP_REQ_DYNAMIC_ALLOCATORS = 0x010,
|
|
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
|
|
};
|
|
|
|
enum OpenMPOffloadingReservedDeviceIDs {
|
|
/// Device ID if the device was not defined, runtime should get it
|
|
/// from environment variables in the spec.
|
|
OMP_DEVICEID_UNDEF = -1,
|
|
};
|
|
} // anonymous namespace
|
|
|
|
/// Describes ident structure that describes a source location.
|
|
/// All descriptions are taken from
|
|
/// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
|
|
/// Original structure:
|
|
/// typedef struct ident {
|
|
/// kmp_int32 reserved_1; /**< might be used in Fortran;
|
|
/// see above */
|
|
/// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags;
|
|
/// KMP_IDENT_KMPC identifies this union
|
|
/// member */
|
|
/// kmp_int32 reserved_2; /**< not really used in Fortran any more;
|
|
/// see above */
|
|
///#if USE_ITT_BUILD
|
|
/// /* but currently used for storing
|
|
/// region-specific ITT */
|
|
/// /* contextual information. */
|
|
///#endif /* USE_ITT_BUILD */
|
|
/// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for
|
|
/// C++ */
|
|
/// char const *psource; /**< String describing the source location.
|
|
/// The string is composed of semi-colon separated
|
|
// fields which describe the source file,
|
|
/// the function and a pair of line numbers that
|
|
/// delimit the construct.
|
|
/// */
|
|
/// } ident_t;
|
|
enum IdentFieldIndex {
|
|
/// might be used in Fortran
|
|
IdentField_Reserved_1,
|
|
/// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
|
|
IdentField_Flags,
|
|
/// Not really used in Fortran any more
|
|
IdentField_Reserved_2,
|
|
/// Source[4] in Fortran, do not use for C++
|
|
IdentField_Reserved_3,
|
|
/// String describing the source location. The string is composed of
|
|
/// semi-colon separated fields which describe the source file, the function
|
|
/// and a pair of line numbers that delimit the construct.
|
|
IdentField_PSource
|
|
};
|
|
|
|
/// Schedule types for 'omp for' loops (these enumerators are taken from
|
|
/// the enum sched_type in kmp.h).
|
|
enum OpenMPSchedType {
|
|
/// Lower bound for default (unordered) versions.
|
|
OMP_sch_lower = 32,
|
|
OMP_sch_static_chunked = 33,
|
|
OMP_sch_static = 34,
|
|
OMP_sch_dynamic_chunked = 35,
|
|
OMP_sch_guided_chunked = 36,
|
|
OMP_sch_runtime = 37,
|
|
OMP_sch_auto = 38,
|
|
/// static with chunk adjustment (e.g., simd)
|
|
OMP_sch_static_balanced_chunked = 45,
|
|
/// Lower bound for 'ordered' versions.
|
|
OMP_ord_lower = 64,
|
|
OMP_ord_static_chunked = 65,
|
|
OMP_ord_static = 66,
|
|
OMP_ord_dynamic_chunked = 67,
|
|
OMP_ord_guided_chunked = 68,
|
|
OMP_ord_runtime = 69,
|
|
OMP_ord_auto = 70,
|
|
OMP_sch_default = OMP_sch_static,
|
|
/// dist_schedule types
|
|
OMP_dist_sch_static_chunked = 91,
|
|
OMP_dist_sch_static = 92,
|
|
/// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
|
|
/// Set if the monotonic schedule modifier was present.
|
|
OMP_sch_modifier_monotonic = (1 << 29),
|
|
/// Set if the nonmonotonic schedule modifier was present.
|
|
OMP_sch_modifier_nonmonotonic = (1 << 30),
|
|
};
|
|
|
|
enum OpenMPRTLFunction {
|
|
/// Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
|
|
/// kmpc_micro microtask, ...);
|
|
OMPRTL__kmpc_fork_call,
|
|
/// Call to void *__kmpc_threadprivate_cached(ident_t *loc,
|
|
/// kmp_int32 global_tid, void *data, size_t size, void ***cache);
|
|
OMPRTL__kmpc_threadprivate_cached,
|
|
/// Call to void __kmpc_threadprivate_register( ident_t *,
|
|
/// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
|
|
OMPRTL__kmpc_threadprivate_register,
|
|
// Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
|
|
OMPRTL__kmpc_global_thread_num,
|
|
// Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *crit);
|
|
OMPRTL__kmpc_critical,
|
|
// Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_critical_name *crit, uintptr_t hint);
|
|
OMPRTL__kmpc_critical_with_hint,
|
|
// Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *crit);
|
|
OMPRTL__kmpc_end_critical,
|
|
// Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
OMPRTL__kmpc_cancel_barrier,
|
|
// Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_barrier,
|
|
// Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_for_static_fini,
|
|
// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
OMPRTL__kmpc_serialized_parallel,
|
|
// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
OMPRTL__kmpc_end_serialized_parallel,
|
|
// Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_threads);
|
|
OMPRTL__kmpc_push_num_threads,
|
|
// Call to void __kmpc_flush(ident_t *loc);
|
|
OMPRTL__kmpc_flush,
|
|
// Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_master,
|
|
// Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_end_master,
|
|
// Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
|
|
// int end_part);
|
|
OMPRTL__kmpc_omp_taskyield,
|
|
// Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_single,
|
|
// Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_end_single,
|
|
// Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
|
|
// kmp_routine_entry_t *task_entry);
|
|
OMPRTL__kmpc_omp_task_alloc,
|
|
// Call to kmp_task_t * __kmpc_omp_target_task_alloc(ident_t *,
|
|
// kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
|
|
// size_t sizeof_shareds, kmp_routine_entry_t *task_entry,
|
|
// kmp_int64 device_id);
|
|
OMPRTL__kmpc_omp_target_task_alloc,
|
|
// Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
|
|
// new_task);
|
|
OMPRTL__kmpc_omp_task,
|
|
// Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
|
|
// size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
|
|
// kmp_int32 didit);
|
|
OMPRTL__kmpc_copyprivate,
|
|
// Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
|
|
// (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
|
|
OMPRTL__kmpc_reduce,
|
|
// Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
|
|
// void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
|
|
// *lck);
|
|
OMPRTL__kmpc_reduce_nowait,
|
|
// Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *lck);
|
|
OMPRTL__kmpc_end_reduce,
|
|
// Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *lck);
|
|
OMPRTL__kmpc_end_reduce_nowait,
|
|
// Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t * new_task);
|
|
OMPRTL__kmpc_omp_task_begin_if0,
|
|
// Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t * new_task);
|
|
OMPRTL__kmpc_omp_task_complete_if0,
|
|
// Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_ordered,
|
|
// Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_end_ordered,
|
|
// Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
OMPRTL__kmpc_omp_taskwait,
|
|
// Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_taskgroup,
|
|
// Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_end_taskgroup,
|
|
// Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
|
|
// int proc_bind);
|
|
OMPRTL__kmpc_push_proc_bind,
|
|
// Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
|
|
// gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
|
|
// *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
|
|
OMPRTL__kmpc_omp_task_with_deps,
|
|
// Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
|
|
// gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
|
|
// ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
|
|
OMPRTL__kmpc_omp_wait_deps,
|
|
// Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_int32 cncl_kind);
|
|
OMPRTL__kmpc_cancellationpoint,
|
|
// Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 cncl_kind);
|
|
OMPRTL__kmpc_cancel,
|
|
// Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_teams, kmp_int32 thread_limit);
|
|
OMPRTL__kmpc_push_num_teams,
|
|
// Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
|
|
// microtask, ...);
|
|
OMPRTL__kmpc_fork_teams,
|
|
// Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
|
|
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
|
|
// sched, kmp_uint64 grainsize, void *task_dup);
|
|
OMPRTL__kmpc_taskloop,
|
|
// Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
|
|
// num_dims, struct kmp_dim *dims);
|
|
OMPRTL__kmpc_doacross_init,
|
|
// Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
|
|
OMPRTL__kmpc_doacross_fini,
|
|
// Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
|
|
// *vec);
|
|
OMPRTL__kmpc_doacross_post,
|
|
// Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
|
|
// *vec);
|
|
OMPRTL__kmpc_doacross_wait,
|
|
// Call to void *__kmpc_task_reduction_init(int gtid, int num_data, void
|
|
// *data);
|
|
OMPRTL__kmpc_task_reduction_init,
|
|
// Call to void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
|
|
// *d);
|
|
OMPRTL__kmpc_task_reduction_get_th_data,
|
|
// Call to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
|
|
OMPRTL__kmpc_alloc,
|
|
// Call to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
|
|
OMPRTL__kmpc_free,
|
|
|
|
//
|
|
// Offloading related calls
|
|
//
|
|
// Call to void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
|
|
// size);
|
|
OMPRTL__kmpc_push_target_tripcount,
|
|
// Call to int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
OMPRTL__tgt_target,
|
|
// Call to int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
|
|
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
OMPRTL__tgt_target_nowait,
|
|
// Call to int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
|
|
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types, int32_t num_teams, int32_t thread_limit);
|
|
OMPRTL__tgt_target_teams,
|
|
// Call to int32_t __tgt_target_teams_nowait(int64_t device_id, void
|
|
// *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
|
|
// *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
|
|
OMPRTL__tgt_target_teams_nowait,
|
|
// Call to void __tgt_register_requires(int64_t flags);
|
|
OMPRTL__tgt_register_requires,
|
|
// Call to void __tgt_register_lib(__tgt_bin_desc *desc);
|
|
OMPRTL__tgt_register_lib,
|
|
// Call to void __tgt_unregister_lib(__tgt_bin_desc *desc);
|
|
OMPRTL__tgt_unregister_lib,
|
|
// Call to void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
|
|
OMPRTL__tgt_target_data_begin,
|
|
// Call to void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
OMPRTL__tgt_target_data_begin_nowait,
|
|
// Call to void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
|
|
OMPRTL__tgt_target_data_end,
|
|
// Call to void __tgt_target_data_end_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
OMPRTL__tgt_target_data_end_nowait,
|
|
// Call to void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
|
|
OMPRTL__tgt_target_data_update,
|
|
// Call to void __tgt_target_data_update_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
OMPRTL__tgt_target_data_update_nowait,
|
|
};
|
|
|
|
/// A basic class for pre|post-action for advanced codegen sequence for OpenMP
|
|
/// region.
|
|
class CleanupTy final : public EHScopeStack::Cleanup {
|
|
PrePostActionTy *Action;
|
|
|
|
public:
|
|
explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
|
|
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
Action->Exit(CGF);
|
|
}
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
if (PrePostAction) {
|
|
CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
|
|
Callback(CodeGen, CGF, *PrePostAction);
|
|
} else {
|
|
PrePostActionTy Action;
|
|
Callback(CodeGen, CGF, Action);
|
|
}
|
|
}
|
|
|
|
/// Check if the combiner is a call to UDR combiner and if it is so return the
|
|
/// UDR decl used for reduction.
|
|
static const OMPDeclareReductionDecl *
|
|
getReductionInit(const Expr *ReductionOp) {
|
|
if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
|
|
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
|
|
if (const auto *DRE =
|
|
dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
|
|
if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
|
|
return DRD;
|
|
return nullptr;
|
|
}
|
|
|
|
static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
|
|
const OMPDeclareReductionDecl *DRD,
|
|
const Expr *InitOp,
|
|
Address Private, Address Original,
|
|
QualType Ty) {
|
|
if (DRD->getInitializer()) {
|
|
std::pair<llvm::Function *, llvm::Function *> Reduction =
|
|
CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
|
|
const auto *CE = cast<CallExpr>(InitOp);
|
|
const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
|
|
const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
|
|
const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
|
|
const auto *LHSDRE =
|
|
cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
|
|
const auto *RHSDRE =
|
|
cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
|
|
[=]() { return Private; });
|
|
PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
|
|
[=]() { return Original; });
|
|
(void)PrivateScope.Privatize();
|
|
RValue Func = RValue::get(Reduction.second);
|
|
CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
|
|
CGF.EmitIgnoredExpr(InitOp);
|
|
} else {
|
|
llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
|
|
std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
|
|
auto *GV = new llvm::GlobalVariable(
|
|
CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
|
|
llvm::GlobalValue::PrivateLinkage, Init, Name);
|
|
LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
|
|
RValue InitRVal;
|
|
switch (CGF.getEvaluationKind(Ty)) {
|
|
case TEK_Scalar:
|
|
InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
|
|
break;
|
|
case TEK_Complex:
|
|
InitRVal =
|
|
RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
|
|
break;
|
|
case TEK_Aggregate:
|
|
InitRVal = RValue::getAggregate(LV.getAddress());
|
|
break;
|
|
}
|
|
OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
|
|
CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
|
|
CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
|
|
/*IsInitializer=*/false);
|
|
}
|
|
}
|
|
|
|
/// Emit initialization of arrays of complex types.
|
|
/// \param DestAddr Address of the array.
|
|
/// \param Type Type of array.
|
|
/// \param Init Initial expression of array.
|
|
/// \param SrcAddr Address of the original array.
|
|
static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
|
|
QualType Type, bool EmitDeclareReductionInit,
|
|
const Expr *Init,
|
|
const OMPDeclareReductionDecl *DRD,
|
|
Address SrcAddr = Address::invalid()) {
|
|
// Perform element-by-element initialization.
|
|
QualType ElementTy;
|
|
|
|
// Drill down to the base element type on both arrays.
|
|
const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
|
|
llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
|
|
DestAddr =
|
|
CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
|
|
if (DRD)
|
|
SrcAddr =
|
|
CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
|
|
|
|
llvm::Value *SrcBegin = nullptr;
|
|
if (DRD)
|
|
SrcBegin = SrcAddr.getPointer();
|
|
llvm::Value *DestBegin = DestAddr.getPointer();
|
|
// Cast from pointer to array type to pointer to single element.
|
|
llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
|
|
// The basic structure here is a while-do loop.
|
|
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
|
|
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
|
|
llvm::Value *IsEmpty =
|
|
CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
|
|
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
|
|
|
|
// Enter the loop body, making that address the current address.
|
|
llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
|
|
CGF.EmitBlock(BodyBB);
|
|
|
|
CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
|
|
|
|
llvm::PHINode *SrcElementPHI = nullptr;
|
|
Address SrcElementCurrent = Address::invalid();
|
|
if (DRD) {
|
|
SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
|
|
"omp.arraycpy.srcElementPast");
|
|
SrcElementPHI->addIncoming(SrcBegin, EntryBB);
|
|
SrcElementCurrent =
|
|
Address(SrcElementPHI,
|
|
SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
|
|
}
|
|
llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
|
|
DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
|
|
DestElementPHI->addIncoming(DestBegin, EntryBB);
|
|
Address DestElementCurrent =
|
|
Address(DestElementPHI,
|
|
DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
|
|
|
|
// Emit copy.
|
|
{
|
|
CodeGenFunction::RunCleanupsScope InitScope(CGF);
|
|
if (EmitDeclareReductionInit) {
|
|
emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
|
|
SrcElementCurrent, ElementTy);
|
|
} else
|
|
CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
|
|
/*IsInitializer=*/false);
|
|
}
|
|
|
|
if (DRD) {
|
|
// Shift the address forward by one element.
|
|
llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
|
|
SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
|
|
SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
|
|
}
|
|
|
|
// Shift the address forward by one element.
|
|
llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
|
|
DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
|
|
// Check whether we've reached the end.
|
|
llvm::Value *Done =
|
|
CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
|
|
CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
|
|
DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
|
|
|
|
// Done.
|
|
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
|
|
return CGF.EmitOMPSharedLValue(E);
|
|
}
|
|
|
|
LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
|
|
const Expr *E) {
|
|
if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
|
|
return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
|
|
return LValue();
|
|
}
|
|
|
|
void ReductionCodeGen::emitAggregateInitialization(
|
|
CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
|
|
const OMPDeclareReductionDecl *DRD) {
|
|
// Emit VarDecl with copy init for arrays.
|
|
// Get the address of the original variable captured in current
|
|
// captured region.
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
bool EmitDeclareReductionInit =
|
|
DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
|
|
EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
|
|
EmitDeclareReductionInit,
|
|
EmitDeclareReductionInit ? ClausesData[N].ReductionOp
|
|
: PrivateVD->getInit(),
|
|
DRD, SharedLVal.getAddress());
|
|
}
|
|
|
|
ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
|
|
ArrayRef<const Expr *> Privates,
|
|
ArrayRef<const Expr *> ReductionOps) {
|
|
ClausesData.reserve(Shareds.size());
|
|
SharedAddresses.reserve(Shareds.size());
|
|
Sizes.reserve(Shareds.size());
|
|
BaseDecls.reserve(Shareds.size());
|
|
auto IPriv = Privates.begin();
|
|
auto IRed = ReductionOps.begin();
|
|
for (const Expr *Ref : Shareds) {
|
|
ClausesData.emplace_back(Ref, *IPriv, *IRed);
|
|
std::advance(IPriv, 1);
|
|
std::advance(IRed, 1);
|
|
}
|
|
}
|
|
|
|
void ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, unsigned N) {
|
|
assert(SharedAddresses.size() == N &&
|
|
"Number of generated lvalues must be exactly N.");
|
|
LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
|
|
LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
|
|
SharedAddresses.emplace_back(First, Second);
|
|
}
|
|
|
|
void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
QualType PrivateType = PrivateVD->getType();
|
|
bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
|
|
if (!PrivateType->isVariablyModifiedType()) {
|
|
Sizes.emplace_back(
|
|
CGF.getTypeSize(
|
|
SharedAddresses[N].first.getType().getNonReferenceType()),
|
|
nullptr);
|
|
return;
|
|
}
|
|
llvm::Value *Size;
|
|
llvm::Value *SizeInChars;
|
|
auto *ElemType =
|
|
cast<llvm::PointerType>(SharedAddresses[N].first.getPointer()->getType())
|
|
->getElementType();
|
|
auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
|
|
if (AsArraySection) {
|
|
Size = CGF.Builder.CreatePtrDiff(SharedAddresses[N].second.getPointer(),
|
|
SharedAddresses[N].first.getPointer());
|
|
Size = CGF.Builder.CreateNUWAdd(
|
|
Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
|
|
SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
|
|
} else {
|
|
SizeInChars = CGF.getTypeSize(
|
|
SharedAddresses[N].first.getType().getNonReferenceType());
|
|
Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
|
|
}
|
|
Sizes.emplace_back(SizeInChars, Size);
|
|
CodeGenFunction::OpaqueValueMapping OpaqueMap(
|
|
CGF,
|
|
cast<OpaqueValueExpr>(
|
|
CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
|
|
RValue::get(Size));
|
|
CGF.EmitVariablyModifiedType(PrivateType);
|
|
}
|
|
|
|
void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
|
|
llvm::Value *Size) {
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
QualType PrivateType = PrivateVD->getType();
|
|
if (!PrivateType->isVariablyModifiedType()) {
|
|
assert(!Size && !Sizes[N].second &&
|
|
"Size should be nullptr for non-variably modified reduction "
|
|
"items.");
|
|
return;
|
|
}
|
|
CodeGenFunction::OpaqueValueMapping OpaqueMap(
|
|
CGF,
|
|
cast<OpaqueValueExpr>(
|
|
CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
|
|
RValue::get(Size));
|
|
CGF.EmitVariablyModifiedType(PrivateType);
|
|
}
|
|
|
|
void ReductionCodeGen::emitInitialization(
|
|
CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
|
|
llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
|
|
assert(SharedAddresses.size() > N && "No variable was generated");
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
const OMPDeclareReductionDecl *DRD =
|
|
getReductionInit(ClausesData[N].ReductionOp);
|
|
QualType PrivateType = PrivateVD->getType();
|
|
PrivateAddr = CGF.Builder.CreateElementBitCast(
|
|
PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
|
|
QualType SharedType = SharedAddresses[N].first.getType();
|
|
SharedLVal = CGF.MakeAddrLValue(
|
|
CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(),
|
|
CGF.ConvertTypeForMem(SharedType)),
|
|
SharedType, SharedAddresses[N].first.getBaseInfo(),
|
|
CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
|
|
if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
|
|
emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
|
|
} else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
|
|
emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
|
|
PrivateAddr, SharedLVal.getAddress(),
|
|
SharedLVal.getType());
|
|
} else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
|
|
!CGF.isTrivialInitializer(PrivateVD->getInit())) {
|
|
CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
|
|
PrivateVD->getType().getQualifiers(),
|
|
/*IsInitializer=*/false);
|
|
}
|
|
}
|
|
|
|
bool ReductionCodeGen::needCleanups(unsigned N) {
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
QualType PrivateType = PrivateVD->getType();
|
|
QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
|
|
return DTorKind != QualType::DK_none;
|
|
}
|
|
|
|
void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
|
|
Address PrivateAddr) {
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
QualType PrivateType = PrivateVD->getType();
|
|
QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
|
|
if (needCleanups(N)) {
|
|
PrivateAddr = CGF.Builder.CreateElementBitCast(
|
|
PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
|
|
CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
|
|
}
|
|
}
|
|
|
|
static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
|
|
LValue BaseLV) {
|
|
BaseTy = BaseTy.getNonReferenceType();
|
|
while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
|
|
!CGF.getContext().hasSameType(BaseTy, ElTy)) {
|
|
if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
|
|
BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
|
|
} else {
|
|
LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(), BaseTy);
|
|
BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
|
|
}
|
|
BaseTy = BaseTy->getPointeeType();
|
|
}
|
|
return CGF.MakeAddrLValue(
|
|
CGF.Builder.CreateElementBitCast(BaseLV.getAddress(),
|
|
CGF.ConvertTypeForMem(ElTy)),
|
|
BaseLV.getType(), BaseLV.getBaseInfo(),
|
|
CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
|
|
}
|
|
|
|
static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
|
|
llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
|
|
llvm::Value *Addr) {
|
|
Address Tmp = Address::invalid();
|
|
Address TopTmp = Address::invalid();
|
|
Address MostTopTmp = Address::invalid();
|
|
BaseTy = BaseTy.getNonReferenceType();
|
|
while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
|
|
!CGF.getContext().hasSameType(BaseTy, ElTy)) {
|
|
Tmp = CGF.CreateMemTemp(BaseTy);
|
|
if (TopTmp.isValid())
|
|
CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
|
|
else
|
|
MostTopTmp = Tmp;
|
|
TopTmp = Tmp;
|
|
BaseTy = BaseTy->getPointeeType();
|
|
}
|
|
llvm::Type *Ty = BaseLVType;
|
|
if (Tmp.isValid())
|
|
Ty = Tmp.getElementType();
|
|
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
|
|
if (Tmp.isValid()) {
|
|
CGF.Builder.CreateStore(Addr, Tmp);
|
|
return MostTopTmp;
|
|
}
|
|
return Address(Addr, BaseLVAlignment);
|
|
}
|
|
|
|
static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
|
|
const VarDecl *OrigVD = nullptr;
|
|
if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
|
|
const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
|
|
while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
|
|
Base = TempOASE->getBase()->IgnoreParenImpCasts();
|
|
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
|
|
Base = TempASE->getBase()->IgnoreParenImpCasts();
|
|
DE = cast<DeclRefExpr>(Base);
|
|
OrigVD = cast<VarDecl>(DE->getDecl());
|
|
} else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
|
|
const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
|
|
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
|
|
Base = TempASE->getBase()->IgnoreParenImpCasts();
|
|
DE = cast<DeclRefExpr>(Base);
|
|
OrigVD = cast<VarDecl>(DE->getDecl());
|
|
}
|
|
return OrigVD;
|
|
}
|
|
|
|
Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
|
|
Address PrivateAddr) {
|
|
const DeclRefExpr *DE;
|
|
if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
|
|
BaseDecls.emplace_back(OrigVD);
|
|
LValue OriginalBaseLValue = CGF.EmitLValue(DE);
|
|
LValue BaseLValue =
|
|
loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
|
|
OriginalBaseLValue);
|
|
llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
|
|
BaseLValue.getPointer(), SharedAddresses[N].first.getPointer());
|
|
llvm::Value *PrivatePointer =
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
PrivateAddr.getPointer(),
|
|
SharedAddresses[N].first.getAddress().getType());
|
|
llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
|
|
return castToBase(CGF, OrigVD->getType(),
|
|
SharedAddresses[N].first.getType(),
|
|
OriginalBaseLValue.getAddress().getType(),
|
|
OriginalBaseLValue.getAlignment(), Ptr);
|
|
}
|
|
BaseDecls.emplace_back(
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
|
|
return PrivateAddr;
|
|
}
|
|
|
|
bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
|
|
const OMPDeclareReductionDecl *DRD =
|
|
getReductionInit(ClausesData[N].ReductionOp);
|
|
return DRD && DRD->getInitializer();
|
|
}
|
|
|
|
LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
|
|
return CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(getThreadIDVariable()),
|
|
getThreadIDVariable()->getType()->castAs<PointerType>());
|
|
}
|
|
|
|
void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// 1.2.2 OpenMP Language Terminology
|
|
// Structured block - An executable statement with a single entry at the
|
|
// top and a single exit at the bottom.
|
|
// The point of exit cannot be a branch out of the structured block.
|
|
// longjmp() and throw() must not violate the entry/exit criteria.
|
|
CGF.EHStack.pushTerminate();
|
|
CodeGen(CGF);
|
|
CGF.EHStack.popTerminate();
|
|
}
|
|
|
|
LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
|
|
CodeGenFunction &CGF) {
|
|
return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
|
|
getThreadIDVariable()->getType(),
|
|
AlignmentSource::Decl);
|
|
}
|
|
|
|
static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
|
|
QualType FieldTy) {
|
|
auto *Field = FieldDecl::Create(
|
|
C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
|
|
C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
|
|
/*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
DC->addDecl(Field);
|
|
return Field;
|
|
}
|
|
|
|
CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
|
|
StringRef Separator)
|
|
: CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
|
|
OffloadEntriesInfoManager(CGM) {
|
|
ASTContext &C = CGM.getContext();
|
|
RecordDecl *RD = C.buildImplicitRecord("ident_t");
|
|
QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
|
|
RD->startDefinition();
|
|
// reserved_1
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
// flags
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
// reserved_2
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
// reserved_3
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
// psource
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
RD->completeDefinition();
|
|
IdentQTy = C.getRecordType(RD);
|
|
IdentTy = CGM.getTypes().ConvertRecordDeclType(RD);
|
|
KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
|
|
|
|
loadOffloadInfoMetadata();
|
|
}
|
|
|
|
void CGOpenMPRuntime::clear() {
|
|
InternalVars.clear();
|
|
// Clean non-target variable declarations possibly used only in debug info.
|
|
for (const auto &Data : EmittedNonTargetVariables) {
|
|
if (!Data.getValue().pointsToAliveValue())
|
|
continue;
|
|
auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
|
|
if (!GV)
|
|
continue;
|
|
if (!GV->isDeclaration() || GV->getNumUses() > 0)
|
|
continue;
|
|
GV->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
|
|
SmallString<128> Buffer;
|
|
llvm::raw_svector_ostream OS(Buffer);
|
|
StringRef Sep = FirstSeparator;
|
|
for (StringRef Part : Parts) {
|
|
OS << Sep << Part;
|
|
Sep = Separator;
|
|
}
|
|
return OS.str();
|
|
}
|
|
|
|
static llvm::Function *
|
|
emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
|
|
const Expr *CombinerInitializer, const VarDecl *In,
|
|
const VarDecl *Out, bool IsCombiner) {
|
|
// void .omp_combiner.(Ty *in, Ty *out);
|
|
ASTContext &C = CGM.getContext();
|
|
QualType PtrTy = C.getPointerType(Ty).withRestrict();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
|
|
/*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
|
|
ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
|
|
/*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
|
|
Args.push_back(&OmpOutParm);
|
|
Args.push_back(&OmpInParm);
|
|
const CGFunctionInfo &FnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName(
|
|
{IsCombiner ? "omp_combiner" : "omp_initializer", ""});
|
|
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
|
|
Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
|
|
if (CGM.getLangOpts().Optimize) {
|
|
Fn->removeFnAttr(llvm::Attribute::NoInline);
|
|
Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
|
|
Fn->addFnAttr(llvm::Attribute::AlwaysInline);
|
|
}
|
|
CodeGenFunction CGF(CGM);
|
|
// Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
|
|
// Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
|
|
Out->getLocation());
|
|
CodeGenFunction::OMPPrivateScope Scope(CGF);
|
|
Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
|
|
Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
|
|
return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
|
|
.getAddress();
|
|
});
|
|
Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
|
|
Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
|
|
return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
|
|
.getAddress();
|
|
});
|
|
(void)Scope.Privatize();
|
|
if (!IsCombiner && Out->hasInit() &&
|
|
!CGF.isTrivialInitializer(Out->getInit())) {
|
|
CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
|
|
Out->getType().getQualifiers(),
|
|
/*IsInitializer=*/true);
|
|
}
|
|
if (CombinerInitializer)
|
|
CGF.EmitIgnoredExpr(CombinerInitializer);
|
|
Scope.ForceCleanup();
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitUserDefinedReduction(
|
|
CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
|
|
if (UDRMap.count(D) > 0)
|
|
return;
|
|
llvm::Function *Combiner = emitCombinerOrInitializer(
|
|
CGM, D->getType(), D->getCombiner(),
|
|
cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
|
|
cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
|
|
/*IsCombiner=*/true);
|
|
llvm::Function *Initializer = nullptr;
|
|
if (const Expr *Init = D->getInitializer()) {
|
|
Initializer = emitCombinerOrInitializer(
|
|
CGM, D->getType(),
|
|
D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
|
|
: nullptr,
|
|
cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
|
|
cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
|
|
/*IsCombiner=*/false);
|
|
}
|
|
UDRMap.try_emplace(D, Combiner, Initializer);
|
|
if (CGF) {
|
|
auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
|
|
Decls.second.push_back(D);
|
|
}
|
|
}
|
|
|
|
std::pair<llvm::Function *, llvm::Function *>
|
|
CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
|
|
auto I = UDRMap.find(D);
|
|
if (I != UDRMap.end())
|
|
return I->second;
|
|
emitUserDefinedReduction(/*CGF=*/nullptr, D);
|
|
return UDRMap.lookup(D);
|
|
}
|
|
|
|
static llvm::Function *emitParallelOrTeamsOutlinedFunction(
|
|
CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
|
|
const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
|
|
const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
|
|
assert(ThreadIDVar->getType()->isPointerType() &&
|
|
"thread id variable must be of type kmp_int32 *");
|
|
CodeGenFunction CGF(CGM, true);
|
|
bool HasCancel = false;
|
|
if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
|
|
HasCancel = OPD->hasCancel();
|
|
else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
|
|
HasCancel = OPSD->hasCancel();
|
|
else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
|
|
HasCancel = OPFD->hasCancel();
|
|
else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
|
|
HasCancel = OPFD->hasCancel();
|
|
else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
|
|
HasCancel = OPFD->hasCancel();
|
|
else if (const auto *OPFD =
|
|
dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
|
|
HasCancel = OPFD->hasCancel();
|
|
else if (const auto *OPFD =
|
|
dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
|
|
HasCancel = OPFD->hasCancel();
|
|
CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
|
|
HasCancel, OutlinedHelperName);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
|
|
return emitParallelOrTeamsOutlinedFunction(
|
|
CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
|
|
return emitParallelOrTeamsOutlinedFunction(
|
|
CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
const VarDecl *PartIDVar, const VarDecl *TaskTVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
|
|
bool Tied, unsigned &NumberOfParts) {
|
|
auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
|
|
llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
|
|
llvm::Value *TaskArgs[] = {
|
|
UpLoc, ThreadID,
|
|
CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
|
|
TaskTVar->getType()->castAs<PointerType>())
|
|
.getPointer()};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
|
|
};
|
|
CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
|
|
UntiedCodeGen);
|
|
CodeGen.setAction(Action);
|
|
assert(!ThreadIDVar->getType()->isPointerType() &&
|
|
"thread id variable must be of type kmp_int32 for tasks");
|
|
const OpenMPDirectiveKind Region =
|
|
isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
|
|
: OMPD_task;
|
|
const CapturedStmt *CS = D.getCapturedStmt(Region);
|
|
const auto *TD = dyn_cast<OMPTaskDirective>(&D);
|
|
CodeGenFunction CGF(CGM, true);
|
|
CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
|
|
InnermostKind,
|
|
TD ? TD->hasCancel() : false, Action);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
|
|
if (!Tied)
|
|
NumberOfParts = Action.getNumberOfParts();
|
|
return Res;
|
|
}
|
|
|
|
static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
|
|
const RecordDecl *RD, const CGRecordLayout &RL,
|
|
ArrayRef<llvm::Constant *> Data) {
|
|
llvm::StructType *StructTy = RL.getLLVMType();
|
|
unsigned PrevIdx = 0;
|
|
ConstantInitBuilder CIBuilder(CGM);
|
|
auto DI = Data.begin();
|
|
for (const FieldDecl *FD : RD->fields()) {
|
|
unsigned Idx = RL.getLLVMFieldNo(FD);
|
|
// Fill the alignment.
|
|
for (unsigned I = PrevIdx; I < Idx; ++I)
|
|
Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
|
|
PrevIdx = Idx + 1;
|
|
Fields.add(*DI);
|
|
++DI;
|
|
}
|
|
}
|
|
|
|
template <class... As>
|
|
static llvm::GlobalVariable *
|
|
createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
|
|
ArrayRef<llvm::Constant *> Data, const Twine &Name,
|
|
As &&... Args) {
|
|
const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
|
|
const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
|
|
ConstantInitBuilder CIBuilder(CGM);
|
|
ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
|
|
buildStructValue(Fields, CGM, RD, RL, Data);
|
|
return Fields.finishAndCreateGlobal(
|
|
Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
|
|
std::forward<As>(Args)...);
|
|
}
|
|
|
|
template <typename T>
|
|
static void
|
|
createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
|
|
ArrayRef<llvm::Constant *> Data,
|
|
T &Parent) {
|
|
const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
|
|
const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
|
|
ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
|
|
buildStructValue(Fields, CGM, RD, RL, Data);
|
|
Fields.finishAndAddTo(Parent);
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
|
|
CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
|
|
unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
|
|
FlagsTy FlagsKey(Flags, Reserved2Flags);
|
|
llvm::Value *Entry = OpenMPDefaultLocMap.lookup(FlagsKey);
|
|
if (!Entry) {
|
|
if (!DefaultOpenMPPSource) {
|
|
// Initialize default location for psource field of ident_t structure of
|
|
// all ident_t objects. Format is ";file;function;line;column;;".
|
|
// Taken from
|
|
// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp_str.cpp
|
|
DefaultOpenMPPSource =
|
|
CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
|
|
DefaultOpenMPPSource =
|
|
llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
|
|
}
|
|
|
|
llvm::Constant *Data[] = {
|
|
llvm::ConstantInt::getNullValue(CGM.Int32Ty),
|
|
llvm::ConstantInt::get(CGM.Int32Ty, Flags),
|
|
llvm::ConstantInt::get(CGM.Int32Ty, Reserved2Flags),
|
|
llvm::ConstantInt::getNullValue(CGM.Int32Ty), DefaultOpenMPPSource};
|
|
llvm::GlobalValue *DefaultOpenMPLocation =
|
|
createGlobalStruct(CGM, IdentQTy, isDefaultLocationConstant(), Data, "",
|
|
llvm::GlobalValue::PrivateLinkage);
|
|
DefaultOpenMPLocation->setUnnamedAddr(
|
|
llvm::GlobalValue::UnnamedAddr::Global);
|
|
|
|
OpenMPDefaultLocMap[FlagsKey] = Entry = DefaultOpenMPLocation;
|
|
}
|
|
return Address(Entry, Align);
|
|
}
|
|
|
|
void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
|
|
bool AtCurrentPoint) {
|
|
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
|
|
assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
|
|
|
|
llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
|
|
if (AtCurrentPoint) {
|
|
Elem.second.ServiceInsertPt = new llvm::BitCastInst(
|
|
Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
|
|
} else {
|
|
Elem.second.ServiceInsertPt =
|
|
new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
|
|
Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
|
|
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
|
|
if (Elem.second.ServiceInsertPt) {
|
|
llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
|
|
Elem.second.ServiceInsertPt = nullptr;
|
|
Ptr->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
unsigned Flags) {
|
|
Flags |= OMP_IDENT_KMPC;
|
|
// If no debug info is generated - return global default location.
|
|
if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
|
|
Loc.isInvalid())
|
|
return getOrCreateDefaultLocation(Flags).getPointer();
|
|
|
|
assert(CGF.CurFn && "No function in current CodeGenFunction.");
|
|
|
|
CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
|
|
Address LocValue = Address::invalid();
|
|
auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
|
|
if (I != OpenMPLocThreadIDMap.end())
|
|
LocValue = Address(I->second.DebugLoc, Align);
|
|
|
|
// OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
|
|
// GetOpenMPThreadID was called before this routine.
|
|
if (!LocValue.isValid()) {
|
|
// Generate "ident_t .kmpc_loc.addr;"
|
|
Address AI = CGF.CreateMemTemp(IdentQTy, ".kmpc_loc.addr");
|
|
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
|
|
Elem.second.DebugLoc = AI.getPointer();
|
|
LocValue = AI;
|
|
|
|
if (!Elem.second.ServiceInsertPt)
|
|
setLocThreadIdInsertPt(CGF);
|
|
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
|
|
CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
|
|
CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
|
|
CGF.getTypeSize(IdentQTy));
|
|
}
|
|
|
|
// char **psource = &.kmpc_loc_<flags>.addr.psource;
|
|
LValue Base = CGF.MakeAddrLValue(LocValue, IdentQTy);
|
|
auto Fields = cast<RecordDecl>(IdentQTy->getAsTagDecl())->field_begin();
|
|
LValue PSource =
|
|
CGF.EmitLValueForField(Base, *std::next(Fields, IdentField_PSource));
|
|
|
|
llvm::Value *OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
|
|
if (OMPDebugLoc == nullptr) {
|
|
SmallString<128> Buffer2;
|
|
llvm::raw_svector_ostream OS2(Buffer2);
|
|
// Build debug location
|
|
PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
|
|
OS2 << ";" << PLoc.getFilename() << ";";
|
|
if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
|
|
OS2 << FD->getQualifiedNameAsString();
|
|
OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
|
|
OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
|
|
OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
|
|
}
|
|
// *psource = ";<File>;<Function>;<Line>;<Column>;;";
|
|
CGF.EmitStoreOfScalar(OMPDebugLoc, PSource);
|
|
|
|
// Our callers always pass this to a runtime function, so for
|
|
// convenience, go ahead and return a naked pointer.
|
|
return LocValue.getPointer();
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
assert(CGF.CurFn && "No function in current CodeGenFunction.");
|
|
|
|
llvm::Value *ThreadID = nullptr;
|
|
// Check whether we've already cached a load of the thread id in this
|
|
// function.
|
|
auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
|
|
if (I != OpenMPLocThreadIDMap.end()) {
|
|
ThreadID = I->second.ThreadID;
|
|
if (ThreadID != nullptr)
|
|
return ThreadID;
|
|
}
|
|
// If exceptions are enabled, do not use parameter to avoid possible crash.
|
|
if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
|
|
!CGF.getLangOpts().CXXExceptions ||
|
|
CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
|
|
if (auto *OMPRegionInfo =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
|
|
if (OMPRegionInfo->getThreadIDVariable()) {
|
|
// Check if this an outlined function with thread id passed as argument.
|
|
LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
|
|
ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
|
|
// If value loaded in entry block, cache it and use it everywhere in
|
|
// function.
|
|
if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
|
|
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
|
|
Elem.second.ThreadID = ThreadID;
|
|
}
|
|
return ThreadID;
|
|
}
|
|
}
|
|
}
|
|
|
|
// This is not an outlined function region - need to call __kmpc_int32
|
|
// kmpc_global_thread_num(ident_t *loc).
|
|
// Generate thread id value and cache this value for use across the
|
|
// function.
|
|
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
|
|
if (!Elem.second.ServiceInsertPt)
|
|
setLocThreadIdInsertPt(CGF);
|
|
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
|
|
CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
|
|
llvm::CallInst *Call = CGF.Builder.CreateCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
|
|
emitUpdateLocation(CGF, Loc));
|
|
Call->setCallingConv(CGF.getRuntimeCC());
|
|
Elem.second.ThreadID = Call;
|
|
return Call;
|
|
}
|
|
|
|
void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
|
|
assert(CGF.CurFn && "No function in current CodeGenFunction.");
|
|
if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
|
|
clearLocThreadIdInsertPt(CGF);
|
|
OpenMPLocThreadIDMap.erase(CGF.CurFn);
|
|
}
|
|
if (FunctionUDRMap.count(CGF.CurFn) > 0) {
|
|
for(auto *D : FunctionUDRMap[CGF.CurFn])
|
|
UDRMap.erase(D);
|
|
FunctionUDRMap.erase(CGF.CurFn);
|
|
}
|
|
}
|
|
|
|
llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
|
|
return IdentTy->getPointerTo();
|
|
}
|
|
|
|
llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
|
|
if (!Kmpc_MicroTy) {
|
|
// Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
|
|
llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
|
|
llvm::PointerType::getUnqual(CGM.Int32Ty)};
|
|
Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
|
|
}
|
|
return llvm::PointerType::getUnqual(Kmpc_MicroTy);
|
|
}
|
|
|
|
llvm::FunctionCallee CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
|
|
llvm::FunctionCallee RTLFn = nullptr;
|
|
switch (static_cast<OpenMPRTLFunction>(Function)) {
|
|
case OMPRTL__kmpc_fork_call: {
|
|
// Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
|
|
// microtask, ...);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
getKmpc_MicroPointerTy()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
|
|
if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
|
|
if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
|
|
llvm::LLVMContext &Ctx = F->getContext();
|
|
llvm::MDBuilder MDB(Ctx);
|
|
// Annotate the callback behavior of the __kmpc_fork_call:
|
|
// - The callback callee is argument number 2 (microtask).
|
|
// - The first two arguments of the callback callee are unknown (-1).
|
|
// - All variadic arguments to the __kmpc_fork_call are passed to the
|
|
// callback callee.
|
|
F->addMetadata(
|
|
llvm::LLVMContext::MD_callback,
|
|
*llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
|
|
2, {-1, -1},
|
|
/* VarArgsArePassed */ true)}));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_global_thread_num: {
|
|
// Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_threadprivate_cached: {
|
|
// Build void *__kmpc_threadprivate_cached(ident_t *loc,
|
|
// kmp_int32 global_tid, void *data, size_t size, void ***cache);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.VoidPtrTy, CGM.SizeTy,
|
|
CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_critical: {
|
|
// Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *crit);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty,
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_critical_with_hint: {
|
|
// Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *crit, uintptr_t hint);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy),
|
|
CGM.IntPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_threadprivate_register: {
|
|
// Build void __kmpc_threadprivate_register(ident_t *, void *data,
|
|
// kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
|
|
// typedef void *(*kmpc_ctor)(void *);
|
|
auto *KmpcCtorTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
|
|
/*isVarArg*/ false)->getPointerTo();
|
|
// typedef void *(*kmpc_cctor)(void *, void *);
|
|
llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *KmpcCopyCtorTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
|
|
/*isVarArg*/ false)
|
|
->getPointerTo();
|
|
// typedef void (*kmpc_dtor)(void *);
|
|
auto *KmpcDtorTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
|
|
->getPointerTo();
|
|
llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
|
|
KmpcCopyCtorTy, KmpcDtorTy};
|
|
auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
|
|
/*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_critical: {
|
|
// Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *crit);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty,
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_cancel_barrier: {
|
|
// Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_barrier: {
|
|
// Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_for_static_fini: {
|
|
// Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_push_num_threads: {
|
|
// Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_threads)
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_serialized_parallel: {
|
|
// Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_serialized_parallel: {
|
|
// Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_flush: {
|
|
// Build void __kmpc_flush(ident_t *loc);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_master: {
|
|
// Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_master: {
|
|
// Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_taskyield: {
|
|
// Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
|
|
// int end_part);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_single: {
|
|
// Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_single: {
|
|
// Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_task_alloc: {
|
|
// Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
|
|
// kmp_routine_entry_t *task_entry);
|
|
assert(KmpRoutineEntryPtrTy != nullptr &&
|
|
"Type kmp_routine_entry_t must be created.");
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
|
|
CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
|
|
// Return void * and then cast to particular kmp_task_t type.
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_target_task_alloc: {
|
|
// Build kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
|
|
// kmp_routine_entry_t *task_entry, kmp_int64 device_id);
|
|
assert(KmpRoutineEntryPtrTy != nullptr &&
|
|
"Type kmp_routine_entry_t must be created.");
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
|
|
CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy,
|
|
CGM.Int64Ty};
|
|
// Return void * and then cast to particular kmp_task_t type.
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_target_task_alloc");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_task: {
|
|
// Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
|
|
// *new_task);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_copyprivate: {
|
|
// Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
|
|
// size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
|
|
// kmp_int32 didit);
|
|
llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *CpyFnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
|
|
CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
|
|
CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_reduce: {
|
|
// Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
|
|
// (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
|
|
llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
|
|
/*isVarArg=*/false);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
|
|
CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_reduce_nowait: {
|
|
// Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
|
|
// void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
|
|
// *lck);
|
|
llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
|
|
/*isVarArg=*/false);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
|
|
CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_reduce: {
|
|
// Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *lck);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty,
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_reduce_nowait: {
|
|
// Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *lck);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty,
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn =
|
|
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_task_begin_if0: {
|
|
// Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
|
|
// *new_task);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn =
|
|
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_task_complete_if0: {
|
|
// Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
|
|
// *new_task);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy,
|
|
/*Name=*/"__kmpc_omp_task_complete_if0");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_ordered: {
|
|
// Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_ordered: {
|
|
// Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_taskwait: {
|
|
// Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_taskgroup: {
|
|
// Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_taskgroup: {
|
|
// Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_push_proc_bind: {
|
|
// Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
|
|
// int proc_bind)
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_task_with_deps: {
|
|
// Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
|
|
// kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
|
|
CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn =
|
|
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_wait_deps: {
|
|
// Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
|
|
// kmp_depend_info_t *noalias_dep_list);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.Int32Ty, CGM.VoidPtrTy,
|
|
CGM.Int32Ty, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_cancellationpoint: {
|
|
// Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_int32 cncl_kind)
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_cancel: {
|
|
// Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 cncl_kind)
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_push_num_teams: {
|
|
// Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_teams, kmp_int32 num_threads)
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
|
|
CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_fork_teams: {
|
|
// Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
|
|
// microtask, ...);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
getKmpc_MicroPointerTy()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
|
|
if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
|
|
if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
|
|
llvm::LLVMContext &Ctx = F->getContext();
|
|
llvm::MDBuilder MDB(Ctx);
|
|
// Annotate the callback behavior of the __kmpc_fork_teams:
|
|
// - The callback callee is argument number 2 (microtask).
|
|
// - The first two arguments of the callback callee are unknown (-1).
|
|
// - All variadic arguments to the __kmpc_fork_teams are passed to the
|
|
// callback callee.
|
|
F->addMetadata(
|
|
llvm::LLVMContext::MD_callback,
|
|
*llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
|
|
2, {-1, -1},
|
|
/* VarArgsArePassed */ true)}));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_taskloop: {
|
|
// Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
|
|
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
|
|
// sched, kmp_uint64 grainsize, void *task_dup);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
|
|
CGM.IntTy,
|
|
CGM.VoidPtrTy,
|
|
CGM.IntTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty,
|
|
CGM.IntTy,
|
|
CGM.IntTy,
|
|
CGM.Int64Ty,
|
|
CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_doacross_init: {
|
|
// Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
|
|
// num_dims, struct kmp_dim *dims);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
|
|
CGM.Int32Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_doacross_fini: {
|
|
// Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_doacross_post: {
|
|
// Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
|
|
// *vec);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_doacross_wait: {
|
|
// Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
|
|
// *vec);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_task_reduction_init: {
|
|
// Build void *__kmpc_task_reduction_init(int gtid, int num_data, void
|
|
// *data);
|
|
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.IntTy, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn =
|
|
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_task_reduction_init");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_task_reduction_get_th_data: {
|
|
// Build void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
|
|
// *d);
|
|
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(
|
|
FnTy, /*Name=*/"__kmpc_task_reduction_get_th_data");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_alloc: {
|
|
// Build to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t
|
|
// al); omp_allocator_handle_t type is void *.
|
|
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.SizeTy, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_alloc");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_free: {
|
|
// Build to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t
|
|
// al); omp_allocator_handle_t type is void *.
|
|
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_free");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_push_target_tripcount: {
|
|
// Build void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
|
|
// size);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int64Ty};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_target_tripcount");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target: {
|
|
// Build int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.VoidPtrTy,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_nowait: {
|
|
// Build int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
|
|
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
|
|
// int64_t *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.VoidPtrTy,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_teams: {
|
|
// Build int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
|
|
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
|
|
// int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.VoidPtrTy,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int32Ty,
|
|
CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_teams_nowait: {
|
|
// Build int32_t __tgt_target_teams_nowait(int64_t device_id, void
|
|
// *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
|
|
// *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.VoidPtrTy,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int32Ty,
|
|
CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_register_requires: {
|
|
// Build void __tgt_register_requires(int64_t flags);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_requires");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_register_lib: {
|
|
// Build void __tgt_register_lib(__tgt_bin_desc *desc);
|
|
QualType ParamTy =
|
|
CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
|
|
llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_unregister_lib: {
|
|
// Build void __tgt_unregister_lib(__tgt_bin_desc *desc);
|
|
QualType ParamTy =
|
|
CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
|
|
llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_begin: {
|
|
// Build void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_begin_nowait: {
|
|
// Build void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_end: {
|
|
// Build void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_end_nowait: {
|
|
// Build void __tgt_target_data_end_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_update: {
|
|
// Build void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_update_nowait: {
|
|
// Build void __tgt_target_data_update_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update_nowait");
|
|
break;
|
|
}
|
|
}
|
|
assert(RTLFn && "Unable to find OpenMP runtime function");
|
|
return RTLFn;
|
|
}
|
|
|
|
llvm::FunctionCallee
|
|
CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
|
|
assert((IVSize == 32 || IVSize == 64) &&
|
|
"IV size is not compatible with the omp runtime");
|
|
StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
|
|
: "__kmpc_for_static_init_4u")
|
|
: (IVSigned ? "__kmpc_for_static_init_8"
|
|
: "__kmpc_for_static_init_8u");
|
|
llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
|
|
auto *PtrTy = llvm::PointerType::getUnqual(ITy);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), // loc
|
|
CGM.Int32Ty, // tid
|
|
CGM.Int32Ty, // schedtype
|
|
llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
|
|
PtrTy, // p_lower
|
|
PtrTy, // p_upper
|
|
PtrTy, // p_stride
|
|
ITy, // incr
|
|
ITy // chunk
|
|
};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
return CGM.CreateRuntimeFunction(FnTy, Name);
|
|
}
|
|
|
|
llvm::FunctionCallee
|
|
CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
|
|
assert((IVSize == 32 || IVSize == 64) &&
|
|
"IV size is not compatible with the omp runtime");
|
|
StringRef Name =
|
|
IVSize == 32
|
|
? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
|
|
: (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
|
|
llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
|
|
llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
|
|
CGM.Int32Ty, // tid
|
|
CGM.Int32Ty, // schedtype
|
|
ITy, // lower
|
|
ITy, // upper
|
|
ITy, // stride
|
|
ITy // chunk
|
|
};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
return CGM.CreateRuntimeFunction(FnTy, Name);
|
|
}
|
|
|
|
llvm::FunctionCallee
|
|
CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
|
|
assert((IVSize == 32 || IVSize == 64) &&
|
|
"IV size is not compatible with the omp runtime");
|
|
StringRef Name =
|
|
IVSize == 32
|
|
? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
|
|
: (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), // loc
|
|
CGM.Int32Ty, // tid
|
|
};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
return CGM.CreateRuntimeFunction(FnTy, Name);
|
|
}
|
|
|
|
llvm::FunctionCallee
|
|
CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
|
|
assert((IVSize == 32 || IVSize == 64) &&
|
|
"IV size is not compatible with the omp runtime");
|
|
StringRef Name =
|
|
IVSize == 32
|
|
? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
|
|
: (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
|
|
llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
|
|
auto *PtrTy = llvm::PointerType::getUnqual(ITy);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), // loc
|
|
CGM.Int32Ty, // tid
|
|
llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
|
|
PtrTy, // p_lower
|
|
PtrTy, // p_upper
|
|
PtrTy // p_stride
|
|
};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
return CGM.CreateRuntimeFunction(FnTy, Name);
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
|
|
if (CGM.getLangOpts().OpenMPSimd)
|
|
return Address::invalid();
|
|
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
|
|
if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
HasRequiresUnifiedSharedMemory))) {
|
|
SmallString<64> PtrName;
|
|
{
|
|
llvm::raw_svector_ostream OS(PtrName);
|
|
OS << CGM.getMangledName(GlobalDecl(VD)) << "_decl_tgt_ref_ptr";
|
|
}
|
|
llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
|
|
if (!Ptr) {
|
|
QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
|
|
Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
|
|
PtrName);
|
|
if (!CGM.getLangOpts().OpenMPIsDevice) {
|
|
auto *GV = cast<llvm::GlobalVariable>(Ptr);
|
|
GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
|
|
GV->setInitializer(CGM.GetAddrOfGlobal(VD));
|
|
}
|
|
CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ptr));
|
|
registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
|
|
}
|
|
return Address(Ptr, CGM.getContext().getDeclAlign(VD));
|
|
}
|
|
return Address::invalid();
|
|
}
|
|
|
|
llvm::Constant *
|
|
CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
|
|
assert(!CGM.getLangOpts().OpenMPUseTLS ||
|
|
!CGM.getContext().getTargetInfo().isTLSSupported());
|
|
// Lookup the entry, lazily creating it if necessary.
|
|
std::string Suffix = getName({"cache", ""});
|
|
return getOrCreateInternalVariable(
|
|
CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
|
|
const VarDecl *VD,
|
|
Address VDAddr,
|
|
SourceLocation Loc) {
|
|
if (CGM.getLangOpts().OpenMPUseTLS &&
|
|
CGM.getContext().getTargetInfo().isTLSSupported())
|
|
return VDAddr;
|
|
|
|
llvm::Type *VarTy = VDAddr.getElementType();
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
|
|
CGM.Int8PtrTy),
|
|
CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
|
|
getOrCreateThreadPrivateCache(VD)};
|
|
return Address(CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
|
|
VDAddr.getAlignment());
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitThreadPrivateVarInit(
|
|
CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
|
|
llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
|
|
// Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
|
|
// library.
|
|
llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
|
|
OMPLoc);
|
|
// Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
|
|
// to register constructor/destructor for variable.
|
|
llvm::Value *Args[] = {
|
|
OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
|
|
Ctor, CopyCtor, Dtor};
|
|
CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
|
|
const VarDecl *VD, Address VDAddr, SourceLocation Loc,
|
|
bool PerformInit, CodeGenFunction *CGF) {
|
|
if (CGM.getLangOpts().OpenMPUseTLS &&
|
|
CGM.getContext().getTargetInfo().isTLSSupported())
|
|
return nullptr;
|
|
|
|
VD = VD->getDefinition(CGM.getContext());
|
|
if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
|
|
QualType ASTTy = VD->getType();
|
|
|
|
llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
|
|
const Expr *Init = VD->getAnyInitializer();
|
|
if (CGM.getLangOpts().CPlusPlus && PerformInit) {
|
|
// Generate function that re-emits the declaration's initializer into the
|
|
// threadprivate copy of the variable VD
|
|
CodeGenFunction CtorCGF(CGM);
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
|
|
/*Id=*/nullptr, CGM.getContext().VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&Dst);
|
|
|
|
const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
|
|
CGM.getContext().VoidPtrTy, Args);
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
std::string Name = getName({"__kmpc_global_ctor_", ""});
|
|
llvm::Function *Fn =
|
|
CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
|
|
CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
|
|
Args, Loc, Loc);
|
|
llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
|
|
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
|
|
CGM.getContext().VoidPtrTy, Dst.getLocation());
|
|
Address Arg = Address(ArgVal, VDAddr.getAlignment());
|
|
Arg = CtorCGF.Builder.CreateElementBitCast(
|
|
Arg, CtorCGF.ConvertTypeForMem(ASTTy));
|
|
CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
|
|
/*IsInitializer=*/true);
|
|
ArgVal = CtorCGF.EmitLoadOfScalar(
|
|
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
|
|
CGM.getContext().VoidPtrTy, Dst.getLocation());
|
|
CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
|
|
CtorCGF.FinishFunction();
|
|
Ctor = Fn;
|
|
}
|
|
if (VD->getType().isDestructedType() != QualType::DK_none) {
|
|
// Generate function that emits destructor call for the threadprivate copy
|
|
// of the variable VD
|
|
CodeGenFunction DtorCGF(CGM);
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
|
|
/*Id=*/nullptr, CGM.getContext().VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&Dst);
|
|
|
|
const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
|
|
CGM.getContext().VoidTy, Args);
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
std::string Name = getName({"__kmpc_global_dtor_", ""});
|
|
llvm::Function *Fn =
|
|
CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
|
|
auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
|
|
DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
|
|
Loc, Loc);
|
|
// Create a scope with an artificial location for the body of this function.
|
|
auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
|
|
llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
|
|
DtorCGF.GetAddrOfLocalVar(&Dst),
|
|
/*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
|
|
DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
|
|
DtorCGF.getDestroyer(ASTTy.isDestructedType()),
|
|
DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
|
|
DtorCGF.FinishFunction();
|
|
Dtor = Fn;
|
|
}
|
|
// Do not emit init function if it is not required.
|
|
if (!Ctor && !Dtor)
|
|
return nullptr;
|
|
|
|
llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
|
|
/*isVarArg=*/false)
|
|
->getPointerTo();
|
|
// Copying constructor for the threadprivate variable.
|
|
// Must be NULL - reserved by runtime, but currently it requires that this
|
|
// parameter is always NULL. Otherwise it fires assertion.
|
|
CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
|
|
if (Ctor == nullptr) {
|
|
auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
|
|
/*isVarArg=*/false)
|
|
->getPointerTo();
|
|
Ctor = llvm::Constant::getNullValue(CtorTy);
|
|
}
|
|
if (Dtor == nullptr) {
|
|
auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
|
|
/*isVarArg=*/false)
|
|
->getPointerTo();
|
|
Dtor = llvm::Constant::getNullValue(DtorTy);
|
|
}
|
|
if (!CGF) {
|
|
auto *InitFunctionTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
|
|
std::string Name = getName({"__omp_threadprivate_init_", ""});
|
|
llvm::Function *InitFunction = CGM.CreateGlobalInitOrDestructFunction(
|
|
InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
|
|
CodeGenFunction InitCGF(CGM);
|
|
FunctionArgList ArgList;
|
|
InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
|
|
CGM.getTypes().arrangeNullaryFunction(), ArgList,
|
|
Loc, Loc);
|
|
emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
|
|
InitCGF.FinishFunction();
|
|
return InitFunction;
|
|
}
|
|
emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Obtain information that uniquely identifies a target entry. This
|
|
/// consists of the file and device IDs as well as line number associated with
|
|
/// the relevant entry source location.
|
|
static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
|
|
unsigned &DeviceID, unsigned &FileID,
|
|
unsigned &LineNum) {
|
|
SourceManager &SM = C.getSourceManager();
|
|
|
|
// The loc should be always valid and have a file ID (the user cannot use
|
|
// #pragma directives in macros)
|
|
|
|
assert(Loc.isValid() && "Source location is expected to be always valid.");
|
|
|
|
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
|
|
assert(PLoc.isValid() && "Source location is expected to be always valid.");
|
|
|
|
llvm::sys::fs::UniqueID ID;
|
|
if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
|
|
SM.getDiagnostics().Report(diag::err_cannot_open_file)
|
|
<< PLoc.getFilename() << EC.message();
|
|
|
|
DeviceID = ID.getDevice();
|
|
FileID = ID.getFile();
|
|
LineNum = PLoc.getLine();
|
|
}
|
|
|
|
bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
|
|
llvm::GlobalVariable *Addr,
|
|
bool PerformInit) {
|
|
Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
|
|
if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
HasRequiresUnifiedSharedMemory))
|
|
return CGM.getLangOpts().OpenMPIsDevice;
|
|
VD = VD->getDefinition(CGM.getContext());
|
|
if (VD && !DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
|
|
return CGM.getLangOpts().OpenMPIsDevice;
|
|
|
|
QualType ASTTy = VD->getType();
|
|
|
|
SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
|
|
// Produce the unique prefix to identify the new target regions. We use
|
|
// the source location of the variable declaration which we know to not
|
|
// conflict with any target region.
|
|
unsigned DeviceID;
|
|
unsigned FileID;
|
|
unsigned Line;
|
|
getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
|
|
SmallString<128> Buffer, Out;
|
|
{
|
|
llvm::raw_svector_ostream OS(Buffer);
|
|
OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
|
|
<< llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
|
|
}
|
|
|
|
const Expr *Init = VD->getAnyInitializer();
|
|
if (CGM.getLangOpts().CPlusPlus && PerformInit) {
|
|
llvm::Constant *Ctor;
|
|
llvm::Constant *ID;
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
// Generate function that re-emits the declaration's initializer into
|
|
// the threadprivate copy of the variable VD
|
|
CodeGenFunction CtorCGF(CGM);
|
|
|
|
const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
|
|
FTy, Twine(Buffer, "_ctor"), FI, Loc);
|
|
auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
|
|
CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
|
|
FunctionArgList(), Loc, Loc);
|
|
auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
|
|
CtorCGF.EmitAnyExprToMem(Init,
|
|
Address(Addr, CGM.getContext().getDeclAlign(VD)),
|
|
Init->getType().getQualifiers(),
|
|
/*IsInitializer=*/true);
|
|
CtorCGF.FinishFunction();
|
|
Ctor = Fn;
|
|
ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
|
|
CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
|
|
} else {
|
|
Ctor = new llvm::GlobalVariable(
|
|
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
|
|
ID = Ctor;
|
|
}
|
|
|
|
// Register the information for the entry associated with the constructor.
|
|
Out.clear();
|
|
OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
|
|
DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
|
|
ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
|
|
}
|
|
if (VD->getType().isDestructedType() != QualType::DK_none) {
|
|
llvm::Constant *Dtor;
|
|
llvm::Constant *ID;
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
// Generate function that emits destructor call for the threadprivate
|
|
// copy of the variable VD
|
|
CodeGenFunction DtorCGF(CGM);
|
|
|
|
const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
|
|
FTy, Twine(Buffer, "_dtor"), FI, Loc);
|
|
auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
|
|
DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
|
|
FunctionArgList(), Loc, Loc);
|
|
// Create a scope with an artificial location for the body of this
|
|
// function.
|
|
auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
|
|
DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
|
|
ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
|
|
DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
|
|
DtorCGF.FinishFunction();
|
|
Dtor = Fn;
|
|
ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
|
|
CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
|
|
} else {
|
|
Dtor = new llvm::GlobalVariable(
|
|
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
|
|
ID = Dtor;
|
|
}
|
|
// Register the information for the entry associated with the destructor.
|
|
Out.clear();
|
|
OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
|
|
DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
|
|
ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
|
|
}
|
|
return CGM.getLangOpts().OpenMPIsDevice;
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
|
|
QualType VarType,
|
|
StringRef Name) {
|
|
std::string Suffix = getName({"artificial", ""});
|
|
std::string CacheSuffix = getName({"cache", ""});
|
|
llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
|
|
llvm::Value *GAddr =
|
|
getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, SourceLocation()),
|
|
getThreadID(CGF, SourceLocation()),
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
|
|
CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
|
|
/*isSigned=*/false),
|
|
getOrCreateInternalVariable(
|
|
CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
|
|
return Address(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
|
|
VarLVType->getPointerTo(/*AddrSpace=*/0)),
|
|
CGM.getPointerAlign());
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
|
|
const RegionCodeGenTy &ThenGen,
|
|
const RegionCodeGenTy &ElseGen) {
|
|
CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
|
|
|
|
// If the condition constant folds and can be elided, try to avoid emitting
|
|
// the condition and the dead arm of the if/else.
|
|
bool CondConstant;
|
|
if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
|
|
if (CondConstant)
|
|
ThenGen(CGF);
|
|
else
|
|
ElseGen(CGF);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the condition did not fold, or we couldn't elide it. Just
|
|
// emit the conditional branch.
|
|
llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
|
|
llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
|
|
CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
|
|
|
|
// Emit the 'then' code.
|
|
CGF.EmitBlock(ThenBlock);
|
|
ThenGen(CGF);
|
|
CGF.EmitBranch(ContBlock);
|
|
// Emit the 'else' code if present.
|
|
// There is no need to emit line number for unconditional branch.
|
|
(void)ApplyDebugLocation::CreateEmpty(CGF);
|
|
CGF.EmitBlock(ElseBlock);
|
|
ElseGen(CGF);
|
|
// There is no need to emit line number for unconditional branch.
|
|
(void)ApplyDebugLocation::CreateEmpty(CGF);
|
|
CGF.EmitBranch(ContBlock);
|
|
// Emit the continuation block for code after the if.
|
|
CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
llvm::Function *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars,
|
|
const Expr *IfCond) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
|
|
auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
// Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
llvm::Value *Args[] = {
|
|
RTLoc,
|
|
CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
|
|
CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
|
|
llvm::SmallVector<llvm::Value *, 16> RealArgs;
|
|
RealArgs.append(std::begin(Args), std::end(Args));
|
|
RealArgs.append(CapturedVars.begin(), CapturedVars.end());
|
|
|
|
llvm::FunctionCallee RTLFn =
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
|
|
CGF.EmitRuntimeCall(RTLFn, RealArgs);
|
|
};
|
|
auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
|
|
// Build calls:
|
|
// __kmpc_serialized_parallel(&Loc, GTid);
|
|
llvm::Value *Args[] = {RTLoc, ThreadID};
|
|
CGF.EmitRuntimeCall(
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
|
|
|
|
// OutlinedFn(>id, &zero, CapturedStruct);
|
|
Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
|
|
/*Name*/ ".zero.addr");
|
|
CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
|
|
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
|
|
// ThreadId for serialized parallels is 0.
|
|
OutlinedFnArgs.push_back(ZeroAddr.getPointer());
|
|
OutlinedFnArgs.push_back(ZeroAddr.getPointer());
|
|
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
|
|
RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
|
|
|
|
// __kmpc_end_serialized_parallel(&Loc, GTid);
|
|
llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
|
|
CGF.EmitRuntimeCall(
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
|
|
EndArgs);
|
|
};
|
|
if (IfCond) {
|
|
emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
|
|
} else {
|
|
RegionCodeGenTy ThenRCG(ThenGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
}
|
|
|
|
// If we're inside an (outlined) parallel region, use the region info's
|
|
// thread-ID variable (it is passed in a first argument of the outlined function
|
|
// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
|
|
// regular serial code region, get thread ID by calling kmp_int32
|
|
// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
|
|
// return the address of that temp.
|
|
Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
if (auto *OMPRegionInfo =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
|
|
if (OMPRegionInfo->getThreadIDVariable())
|
|
return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
|
|
|
|
llvm::Value *ThreadID = getThreadID(CGF, Loc);
|
|
QualType Int32Ty =
|
|
CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
|
|
Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
|
|
CGF.EmitStoreOfScalar(ThreadID,
|
|
CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
|
|
|
|
return ThreadIDTemp;
|
|
}
|
|
|
|
llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
|
|
llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
Out << Name;
|
|
StringRef RuntimeName = Out.str();
|
|
auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
|
|
if (Elem.second) {
|
|
assert(Elem.second->getType()->getPointerElementType() == Ty &&
|
|
"OMP internal variable has different type than requested");
|
|
return &*Elem.second;
|
|
}
|
|
|
|
return Elem.second = new llvm::GlobalVariable(
|
|
CGM.getModule(), Ty, /*IsConstant*/ false,
|
|
llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
|
|
Elem.first(), /*InsertBefore=*/nullptr,
|
|
llvm::GlobalValue::NotThreadLocal, AddressSpace);
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
|
|
std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
|
|
std::string Name = getName({Prefix, "var"});
|
|
return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
|
|
}
|
|
|
|
namespace {
|
|
/// Common pre(post)-action for different OpenMP constructs.
|
|
class CommonActionTy final : public PrePostActionTy {
|
|
llvm::FunctionCallee EnterCallee;
|
|
ArrayRef<llvm::Value *> EnterArgs;
|
|
llvm::FunctionCallee ExitCallee;
|
|
ArrayRef<llvm::Value *> ExitArgs;
|
|
bool Conditional;
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
|
|
public:
|
|
CommonActionTy(llvm::FunctionCallee EnterCallee,
|
|
ArrayRef<llvm::Value *> EnterArgs,
|
|
llvm::FunctionCallee ExitCallee,
|
|
ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
|
|
: EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
|
|
ExitArgs(ExitArgs), Conditional(Conditional) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
|
|
if (Conditional) {
|
|
llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
|
|
auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
|
|
ContBlock = CGF.createBasicBlock("omp_if.end");
|
|
// Generate the branch (If-stmt)
|
|
CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
|
|
CGF.EmitBlock(ThenBlock);
|
|
}
|
|
}
|
|
void Done(CodeGenFunction &CGF) {
|
|
// Emit the rest of blocks/branches
|
|
CGF.EmitBranch(ContBlock);
|
|
CGF.EmitBlock(ContBlock, true);
|
|
}
|
|
void Exit(CodeGenFunction &CGF) override {
|
|
CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
|
|
StringRef CriticalName,
|
|
const RegionCodeGenTy &CriticalOpGen,
|
|
SourceLocation Loc, const Expr *Hint) {
|
|
// __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
|
|
// CriticalOpGen();
|
|
// __kmpc_end_critical(ident_t *, gtid, Lock);
|
|
// Prepare arguments and build a call to __kmpc_critical
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
getCriticalRegionLock(CriticalName)};
|
|
llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
|
|
std::end(Args));
|
|
if (Hint) {
|
|
EnterArgs.push_back(CGF.Builder.CreateIntCast(
|
|
CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
|
|
}
|
|
CommonActionTy Action(
|
|
createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
|
|
: OMPRTL__kmpc_critical),
|
|
EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
|
|
CriticalOpGen.setAction(Action);
|
|
emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &MasterOpGen,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// if(__kmpc_master(ident_t *, gtid)) {
|
|
// MasterOpGen();
|
|
// __kmpc_end_master(ident_t *, gtid);
|
|
// }
|
|
// Prepare arguments and build a call to __kmpc_master
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
|
|
createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
|
|
/*Conditional=*/true);
|
|
MasterOpGen.setAction(Action);
|
|
emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
|
|
Action.Done(CGF);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call __kmpc_omp_taskyield(loc, thread_id, 0);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
|
|
if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
|
|
Region->emitUntiedSwitch(CGF);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &TaskgroupOpGen,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// __kmpc_taskgroup(ident_t *, gtid);
|
|
// TaskgroupOpGen();
|
|
// __kmpc_end_taskgroup(ident_t *, gtid);
|
|
// Prepare arguments and build a call to __kmpc_taskgroup
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
|
|
createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
|
|
Args);
|
|
TaskgroupOpGen.setAction(Action);
|
|
emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
|
|
}
|
|
|
|
/// Given an array of pointers to variables, project the address of a
|
|
/// given variable.
|
|
static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
|
|
unsigned Index, const VarDecl *Var) {
|
|
// Pull out the pointer to the variable.
|
|
Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
|
|
llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
|
|
|
|
Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
|
|
Addr = CGF.Builder.CreateElementBitCast(
|
|
Addr, CGF.ConvertTypeForMem(Var->getType()));
|
|
return Addr;
|
|
}
|
|
|
|
static llvm::Value *emitCopyprivateCopyFunction(
|
|
CodeGenModule &CGM, llvm::Type *ArgsType,
|
|
ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
|
|
ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
|
|
SourceLocation Loc) {
|
|
ASTContext &C = CGM.getContext();
|
|
// void copy_func(void *LHSArg, void *RHSArg);
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&LHSArg);
|
|
Args.push_back(&RHSArg);
|
|
const auto &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
std::string Name =
|
|
CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
|
|
auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
|
|
llvm::GlobalValue::InternalLinkage, Name,
|
|
&CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
// Dest = (void*[n])(LHSArg);
|
|
// Src = (void*[n])(RHSArg);
|
|
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
|
|
ArgsType), CGF.getPointerAlign());
|
|
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
|
|
ArgsType), CGF.getPointerAlign());
|
|
// *(Type0*)Dst[0] = *(Type0*)Src[0];
|
|
// *(Type1*)Dst[1] = *(Type1*)Src[1];
|
|
// ...
|
|
// *(Typen*)Dst[n] = *(Typen*)Src[n];
|
|
for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
|
|
const auto *DestVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
|
|
Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
|
|
|
|
const auto *SrcVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
|
|
Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
|
|
|
|
const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
|
|
QualType Type = VD->getType();
|
|
CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
|
|
}
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &SingleOpGen,
|
|
SourceLocation Loc,
|
|
ArrayRef<const Expr *> CopyprivateVars,
|
|
ArrayRef<const Expr *> SrcExprs,
|
|
ArrayRef<const Expr *> DstExprs,
|
|
ArrayRef<const Expr *> AssignmentOps) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
assert(CopyprivateVars.size() == SrcExprs.size() &&
|
|
CopyprivateVars.size() == DstExprs.size() &&
|
|
CopyprivateVars.size() == AssignmentOps.size());
|
|
ASTContext &C = CGM.getContext();
|
|
// int32 did_it = 0;
|
|
// if(__kmpc_single(ident_t *, gtid)) {
|
|
// SingleOpGen();
|
|
// __kmpc_end_single(ident_t *, gtid);
|
|
// did_it = 1;
|
|
// }
|
|
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
|
|
// <copy_func>, did_it);
|
|
|
|
Address DidIt = Address::invalid();
|
|
if (!CopyprivateVars.empty()) {
|
|
// int32 did_it = 0;
|
|
QualType KmpInt32Ty =
|
|
C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
|
|
DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
|
|
CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
|
|
}
|
|
// Prepare arguments and build a call to __kmpc_single
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
|
|
createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
|
|
/*Conditional=*/true);
|
|
SingleOpGen.setAction(Action);
|
|
emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
|
|
if (DidIt.isValid()) {
|
|
// did_it = 1;
|
|
CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
|
|
}
|
|
Action.Done(CGF);
|
|
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
|
|
// <copy_func>, did_it);
|
|
if (DidIt.isValid()) {
|
|
llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
|
|
QualType CopyprivateArrayTy =
|
|
C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
// Create a list of all private variables for copyprivate.
|
|
Address CopyprivateList =
|
|
CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
|
|
for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
|
|
Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
|
|
CGF.Builder.CreateStore(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy),
|
|
Elem);
|
|
}
|
|
// Build function that copies private values from single region to all other
|
|
// threads in the corresponding parallel region.
|
|
llvm::Value *CpyFn = emitCopyprivateCopyFunction(
|
|
CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
|
|
CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
|
|
llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
|
|
Address CL =
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
|
|
CGF.VoidPtrTy);
|
|
llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc), // ident_t *<loc>
|
|
getThreadID(CGF, Loc), // i32 <gtid>
|
|
BufSize, // size_t <buf_size>
|
|
CL.getPointer(), // void *<copyprivate list>
|
|
CpyFn, // void (*) (void *, void *) <copy_func>
|
|
DidItVal // i32 did_it
|
|
};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &OrderedOpGen,
|
|
SourceLocation Loc, bool IsThreads) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// __kmpc_ordered(ident_t *, gtid);
|
|
// OrderedOpGen();
|
|
// __kmpc_end_ordered(ident_t *, gtid);
|
|
// Prepare arguments and build a call to __kmpc_ordered
|
|
if (IsThreads) {
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
|
|
createRuntimeFunction(OMPRTL__kmpc_end_ordered),
|
|
Args);
|
|
OrderedOpGen.setAction(Action);
|
|
emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
|
|
return;
|
|
}
|
|
emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
|
|
}
|
|
|
|
unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
|
|
unsigned Flags;
|
|
if (Kind == OMPD_for)
|
|
Flags = OMP_IDENT_BARRIER_IMPL_FOR;
|
|
else if (Kind == OMPD_sections)
|
|
Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
|
|
else if (Kind == OMPD_single)
|
|
Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
|
|
else if (Kind == OMPD_barrier)
|
|
Flags = OMP_IDENT_BARRIER_EXPL;
|
|
else
|
|
Flags = OMP_IDENT_BARRIER_IMPL;
|
|
return Flags;
|
|
}
|
|
|
|
void CGOpenMPRuntime::getDefaultScheduleAndChunk(
|
|
CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
|
|
// Check if the loop directive is actually a doacross loop directive. In this
|
|
// case choose static, 1 schedule.
|
|
if (llvm::any_of(
|
|
S.getClausesOfKind<OMPOrderedClause>(),
|
|
[](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
|
|
ScheduleKind = OMPC_SCHEDULE_static;
|
|
// Chunk size is 1 in this case.
|
|
llvm::APInt ChunkSize(32, 1);
|
|
ChunkExpr = IntegerLiteral::Create(
|
|
CGF.getContext(), ChunkSize,
|
|
CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
|
|
SourceLocation());
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
OpenMPDirectiveKind Kind, bool EmitChecks,
|
|
bool ForceSimpleCall) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call __kmpc_cancel_barrier(loc, thread_id);
|
|
// Build call __kmpc_barrier(loc, thread_id);
|
|
unsigned Flags = getDefaultFlagsForBarriers(Kind);
|
|
// Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
|
|
// thread_id);
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
|
|
getThreadID(CGF, Loc)};
|
|
if (auto *OMPRegionInfo =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
|
|
if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
|
|
llvm::Value *Result = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
|
|
if (EmitChecks) {
|
|
// if (__kmpc_cancel_barrier()) {
|
|
// exit from construct;
|
|
// }
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
|
|
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
|
|
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
|
|
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
|
|
CGF.EmitBlock(ExitBB);
|
|
// exit from construct;
|
|
CodeGenFunction::JumpDest CancelDestination =
|
|
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
|
|
CGF.EmitBranchThroughCleanup(CancelDestination);
|
|
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
|
|
}
|
|
|
|
/// Map the OpenMP loop schedule to the runtime enumeration.
|
|
static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
|
|
bool Chunked, bool Ordered) {
|
|
switch (ScheduleKind) {
|
|
case OMPC_SCHEDULE_static:
|
|
return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
|
|
: (Ordered ? OMP_ord_static : OMP_sch_static);
|
|
case OMPC_SCHEDULE_dynamic:
|
|
return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
|
|
case OMPC_SCHEDULE_guided:
|
|
return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
|
|
case OMPC_SCHEDULE_runtime:
|
|
return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
|
|
case OMPC_SCHEDULE_auto:
|
|
return Ordered ? OMP_ord_auto : OMP_sch_auto;
|
|
case OMPC_SCHEDULE_unknown:
|
|
assert(!Chunked && "chunk was specified but schedule kind not known");
|
|
return Ordered ? OMP_ord_static : OMP_sch_static;
|
|
}
|
|
llvm_unreachable("Unexpected runtime schedule");
|
|
}
|
|
|
|
/// Map the OpenMP distribute schedule to the runtime enumeration.
|
|
static OpenMPSchedType
|
|
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
|
|
// only static is allowed for dist_schedule
|
|
return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
|
|
bool Chunked) const {
|
|
OpenMPSchedType Schedule =
|
|
getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
|
|
return Schedule == OMP_sch_static;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::isStaticNonchunked(
|
|
OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
|
|
OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
|
|
return Schedule == OMP_dist_sch_static;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
|
|
bool Chunked) const {
|
|
OpenMPSchedType Schedule =
|
|
getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
|
|
return Schedule == OMP_sch_static_chunked;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::isStaticChunked(
|
|
OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
|
|
OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
|
|
return Schedule == OMP_dist_sch_static_chunked;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
|
|
OpenMPSchedType Schedule =
|
|
getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
|
|
assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
|
|
return Schedule != OMP_sch_static;
|
|
}
|
|
|
|
static int addMonoNonMonoModifier(OpenMPSchedType Schedule,
|
|
OpenMPScheduleClauseModifier M1,
|
|
OpenMPScheduleClauseModifier M2) {
|
|
int Modifier = 0;
|
|
switch (M1) {
|
|
case OMPC_SCHEDULE_MODIFIER_monotonic:
|
|
Modifier = OMP_sch_modifier_monotonic;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
|
|
Modifier = OMP_sch_modifier_nonmonotonic;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_simd:
|
|
if (Schedule == OMP_sch_static_chunked)
|
|
Schedule = OMP_sch_static_balanced_chunked;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_last:
|
|
case OMPC_SCHEDULE_MODIFIER_unknown:
|
|
break;
|
|
}
|
|
switch (M2) {
|
|
case OMPC_SCHEDULE_MODIFIER_monotonic:
|
|
Modifier = OMP_sch_modifier_monotonic;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
|
|
Modifier = OMP_sch_modifier_nonmonotonic;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_simd:
|
|
if (Schedule == OMP_sch_static_chunked)
|
|
Schedule = OMP_sch_static_balanced_chunked;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_last:
|
|
case OMPC_SCHEDULE_MODIFIER_unknown:
|
|
break;
|
|
}
|
|
return Schedule | Modifier;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitForDispatchInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
|
|
bool Ordered, const DispatchRTInput &DispatchValues) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
OpenMPSchedType Schedule = getRuntimeSchedule(
|
|
ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
|
|
assert(Ordered ||
|
|
(Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
|
|
Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
|
|
Schedule != OMP_sch_static_balanced_chunked));
|
|
// Call __kmpc_dispatch_init(
|
|
// ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
|
|
// kmp_int[32|64] lower, kmp_int[32|64] upper,
|
|
// kmp_int[32|64] stride, kmp_int[32|64] chunk);
|
|
|
|
// If the Chunk was not specified in the clause - use default value 1.
|
|
llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
|
|
: CGF.Builder.getIntN(IVSize, 1);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
CGF.Builder.getInt32(addMonoNonMonoModifier(
|
|
Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
|
|
DispatchValues.LB, // Lower
|
|
DispatchValues.UB, // Upper
|
|
CGF.Builder.getIntN(IVSize, 1), // Stride
|
|
Chunk // Chunk
|
|
};
|
|
CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
|
|
}
|
|
|
|
static void emitForStaticInitCall(
|
|
CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
|
|
llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
|
|
OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
|
|
const CGOpenMPRuntime::StaticRTInput &Values) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
assert(!Values.Ordered);
|
|
assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
|
|
Schedule == OMP_sch_static_balanced_chunked ||
|
|
Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
|
|
Schedule == OMP_dist_sch_static ||
|
|
Schedule == OMP_dist_sch_static_chunked);
|
|
|
|
// Call __kmpc_for_static_init(
|
|
// ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
|
|
// kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
|
|
// kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
|
|
// kmp_int[32|64] incr, kmp_int[32|64] chunk);
|
|
llvm::Value *Chunk = Values.Chunk;
|
|
if (Chunk == nullptr) {
|
|
assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
|
|
Schedule == OMP_dist_sch_static) &&
|
|
"expected static non-chunked schedule");
|
|
// If the Chunk was not specified in the clause - use default value 1.
|
|
Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
|
|
} else {
|
|
assert((Schedule == OMP_sch_static_chunked ||
|
|
Schedule == OMP_sch_static_balanced_chunked ||
|
|
Schedule == OMP_ord_static_chunked ||
|
|
Schedule == OMP_dist_sch_static_chunked) &&
|
|
"expected static chunked schedule");
|
|
}
|
|
llvm::Value *Args[] = {
|
|
UpdateLocation,
|
|
ThreadId,
|
|
CGF.Builder.getInt32(addMonoNonMonoModifier(Schedule, M1,
|
|
M2)), // Schedule type
|
|
Values.IL.getPointer(), // &isLastIter
|
|
Values.LB.getPointer(), // &LB
|
|
Values.UB.getPointer(), // &UB
|
|
Values.ST.getPointer(), // &Stride
|
|
CGF.Builder.getIntN(Values.IVSize, 1), // Incr
|
|
Chunk // Chunk
|
|
};
|
|
CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
OpenMPDirectiveKind DKind,
|
|
const OpenMPScheduleTy &ScheduleKind,
|
|
const StaticRTInput &Values) {
|
|
OpenMPSchedType ScheduleNum = getRuntimeSchedule(
|
|
ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
|
|
assert(isOpenMPWorksharingDirective(DKind) &&
|
|
"Expected loop-based or sections-based directive.");
|
|
llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
|
|
isOpenMPLoopDirective(DKind)
|
|
? OMP_IDENT_WORK_LOOP
|
|
: OMP_IDENT_WORK_SECTIONS);
|
|
llvm::Value *ThreadId = getThreadID(CGF, Loc);
|
|
llvm::FunctionCallee StaticInitFunction =
|
|
createForStaticInitFunction(Values.IVSize, Values.IVSigned);
|
|
emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
|
|
ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitDistributeStaticInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
OpenMPDistScheduleClauseKind SchedKind,
|
|
const CGOpenMPRuntime::StaticRTInput &Values) {
|
|
OpenMPSchedType ScheduleNum =
|
|
getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
|
|
llvm::Value *UpdatedLocation =
|
|
emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
|
|
llvm::Value *ThreadId = getThreadID(CGF, Loc);
|
|
llvm::FunctionCallee StaticInitFunction =
|
|
createForStaticInitFunction(Values.IVSize, Values.IVSigned);
|
|
emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
|
|
ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
|
|
OMPC_SCHEDULE_MODIFIER_unknown, Values);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
OpenMPDirectiveKind DKind) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc,
|
|
isOpenMPDistributeDirective(DKind)
|
|
? OMP_IDENT_WORK_DISTRIBUTE
|
|
: isOpenMPLoopDirective(DKind)
|
|
? OMP_IDENT_WORK_LOOP
|
|
: OMP_IDENT_WORK_SECTIONS),
|
|
getThreadID(CGF, Loc)};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
|
|
Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
unsigned IVSize,
|
|
bool IVSigned) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
|
|
SourceLocation Loc, unsigned IVSize,
|
|
bool IVSigned, Address IL,
|
|
Address LB, Address UB,
|
|
Address ST) {
|
|
// Call __kmpc_dispatch_next(
|
|
// ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
|
|
// kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
|
|
// kmp_int[32|64] *p_stride);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc),
|
|
getThreadID(CGF, Loc),
|
|
IL.getPointer(), // &isLastIter
|
|
LB.getPointer(), // &Lower
|
|
UB.getPointer(), // &Upper
|
|
ST.getPointer() // &Stride
|
|
};
|
|
llvm::Value *Call =
|
|
CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
|
|
return CGF.EmitScalarConversion(
|
|
Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
|
|
CGF.getContext().BoolTy, Loc);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
|
|
llvm::Value *NumThreads,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
|
|
Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
|
|
OpenMPProcBindClauseKind ProcBind,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Constants for proc bind value accepted by the runtime.
|
|
enum ProcBindTy {
|
|
ProcBindFalse = 0,
|
|
ProcBindTrue,
|
|
ProcBindMaster,
|
|
ProcBindClose,
|
|
ProcBindSpread,
|
|
ProcBindIntel,
|
|
ProcBindDefault
|
|
} RuntimeProcBind;
|
|
switch (ProcBind) {
|
|
case OMPC_PROC_BIND_master:
|
|
RuntimeProcBind = ProcBindMaster;
|
|
break;
|
|
case OMPC_PROC_BIND_close:
|
|
RuntimeProcBind = ProcBindClose;
|
|
break;
|
|
case OMPC_PROC_BIND_spread:
|
|
RuntimeProcBind = ProcBindSpread;
|
|
break;
|
|
case OMPC_PROC_BIND_unknown:
|
|
llvm_unreachable("Unsupported proc_bind value.");
|
|
}
|
|
// Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call void __kmpc_flush(ident_t *loc)
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
|
|
emitUpdateLocation(CGF, Loc));
|
|
}
|
|
|
|
namespace {
|
|
/// Indexes of fields for type kmp_task_t.
|
|
enum KmpTaskTFields {
|
|
/// List of shared variables.
|
|
KmpTaskTShareds,
|
|
/// Task routine.
|
|
KmpTaskTRoutine,
|
|
/// Partition id for the untied tasks.
|
|
KmpTaskTPartId,
|
|
/// Function with call of destructors for private variables.
|
|
Data1,
|
|
/// Task priority.
|
|
Data2,
|
|
/// (Taskloops only) Lower bound.
|
|
KmpTaskTLowerBound,
|
|
/// (Taskloops only) Upper bound.
|
|
KmpTaskTUpperBound,
|
|
/// (Taskloops only) Stride.
|
|
KmpTaskTStride,
|
|
/// (Taskloops only) Is last iteration flag.
|
|
KmpTaskTLastIter,
|
|
/// (Taskloops only) Reduction data.
|
|
KmpTaskTReductions,
|
|
};
|
|
} // anonymous namespace
|
|
|
|
bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
|
|
return OffloadEntriesTargetRegion.empty() &&
|
|
OffloadEntriesDeviceGlobalVar.empty();
|
|
}
|
|
|
|
/// Initialize target region entry.
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
|
|
initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
|
|
StringRef ParentName, unsigned LineNum,
|
|
unsigned Order) {
|
|
assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
|
|
"only required for the device "
|
|
"code generation.");
|
|
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
|
|
OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
|
|
OMPTargetRegionEntryTargetRegion);
|
|
++OffloadingEntriesNum;
|
|
}
|
|
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
|
|
registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
|
|
StringRef ParentName, unsigned LineNum,
|
|
llvm::Constant *Addr, llvm::Constant *ID,
|
|
OMPTargetRegionEntryKind Flags) {
|
|
// If we are emitting code for a target, the entry is already initialized,
|
|
// only has to be registered.
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Error,
|
|
"Unable to find target region on line '%0' in the device code.");
|
|
CGM.getDiags().Report(DiagID) << LineNum;
|
|
return;
|
|
}
|
|
auto &Entry =
|
|
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
|
|
assert(Entry.isValid() && "Entry not initialized!");
|
|
Entry.setAddress(Addr);
|
|
Entry.setID(ID);
|
|
Entry.setFlags(Flags);
|
|
} else {
|
|
OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
|
|
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
|
|
++OffloadingEntriesNum;
|
|
}
|
|
}
|
|
|
|
bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
|
|
unsigned DeviceID, unsigned FileID, StringRef ParentName,
|
|
unsigned LineNum) const {
|
|
auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
|
|
if (PerDevice == OffloadEntriesTargetRegion.end())
|
|
return false;
|
|
auto PerFile = PerDevice->second.find(FileID);
|
|
if (PerFile == PerDevice->second.end())
|
|
return false;
|
|
auto PerParentName = PerFile->second.find(ParentName);
|
|
if (PerParentName == PerFile->second.end())
|
|
return false;
|
|
auto PerLine = PerParentName->second.find(LineNum);
|
|
if (PerLine == PerParentName->second.end())
|
|
return false;
|
|
// Fail if this entry is already registered.
|
|
if (PerLine->second.getAddress() || PerLine->second.getID())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
|
|
const OffloadTargetRegionEntryInfoActTy &Action) {
|
|
// Scan all target region entries and perform the provided action.
|
|
for (const auto &D : OffloadEntriesTargetRegion)
|
|
for (const auto &F : D.second)
|
|
for (const auto &P : F.second)
|
|
for (const auto &L : P.second)
|
|
Action(D.first, F.first, P.first(), L.first, L.second);
|
|
}
|
|
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
|
|
initializeDeviceGlobalVarEntryInfo(StringRef Name,
|
|
OMPTargetGlobalVarEntryKind Flags,
|
|
unsigned Order) {
|
|
assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
|
|
"only required for the device "
|
|
"code generation.");
|
|
OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
|
|
++OffloadingEntriesNum;
|
|
}
|
|
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
|
|
registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
|
|
CharUnits VarSize,
|
|
OMPTargetGlobalVarEntryKind Flags,
|
|
llvm::GlobalValue::LinkageTypes Linkage) {
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
|
|
assert(Entry.isValid() && Entry.getFlags() == Flags &&
|
|
"Entry not initialized!");
|
|
assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
|
|
"Resetting with the new address.");
|
|
if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
|
|
if (Entry.getVarSize().isZero()) {
|
|
Entry.setVarSize(VarSize);
|
|
Entry.setLinkage(Linkage);
|
|
}
|
|
return;
|
|
}
|
|
Entry.setVarSize(VarSize);
|
|
Entry.setLinkage(Linkage);
|
|
Entry.setAddress(Addr);
|
|
} else {
|
|
if (hasDeviceGlobalVarEntryInfo(VarName)) {
|
|
auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
|
|
assert(Entry.isValid() && Entry.getFlags() == Flags &&
|
|
"Entry not initialized!");
|
|
assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
|
|
"Resetting with the new address.");
|
|
if (Entry.getVarSize().isZero()) {
|
|
Entry.setVarSize(VarSize);
|
|
Entry.setLinkage(Linkage);
|
|
}
|
|
return;
|
|
}
|
|
OffloadEntriesDeviceGlobalVar.try_emplace(
|
|
VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
|
|
++OffloadingEntriesNum;
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
|
|
actOnDeviceGlobalVarEntriesInfo(
|
|
const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
|
|
// Scan all target region entries and perform the provided action.
|
|
for (const auto &E : OffloadEntriesDeviceGlobalVar)
|
|
Action(E.getKey(), E.getValue());
|
|
}
|
|
|
|
llvm::Function *
|
|
CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() {
|
|
// If we don't have entries or if we are emitting code for the device, we
|
|
// don't need to do anything.
|
|
if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty())
|
|
return nullptr;
|
|
|
|
llvm::Module &M = CGM.getModule();
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
// Get list of devices we care about
|
|
const std::vector<llvm::Triple> &Devices = CGM.getLangOpts().OMPTargetTriples;
|
|
|
|
// We should be creating an offloading descriptor only if there are devices
|
|
// specified.
|
|
assert(!Devices.empty() && "No OpenMP offloading devices??");
|
|
|
|
// Create the external variables that will point to the begin and end of the
|
|
// host entries section. These will be defined by the linker.
|
|
llvm::Type *OffloadEntryTy =
|
|
CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy());
|
|
std::string EntriesBeginName = getName({"omp_offloading", "entries_begin"});
|
|
auto *HostEntriesBegin = new llvm::GlobalVariable(
|
|
M, OffloadEntryTy, /*isConstant=*/true,
|
|
llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
|
|
EntriesBeginName);
|
|
std::string EntriesEndName = getName({"omp_offloading", "entries_end"});
|
|
auto *HostEntriesEnd =
|
|
new llvm::GlobalVariable(M, OffloadEntryTy, /*isConstant=*/true,
|
|
llvm::GlobalValue::ExternalLinkage,
|
|
/*Initializer=*/nullptr, EntriesEndName);
|
|
|
|
// Create all device images
|
|
auto *DeviceImageTy = cast<llvm::StructType>(
|
|
CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy()));
|
|
ConstantInitBuilder DeviceImagesBuilder(CGM);
|
|
ConstantArrayBuilder DeviceImagesEntries =
|
|
DeviceImagesBuilder.beginArray(DeviceImageTy);
|
|
|
|
for (const llvm::Triple &Device : Devices) {
|
|
StringRef T = Device.getTriple();
|
|
std::string BeginName = getName({"omp_offloading", "img_start", ""});
|
|
auto *ImgBegin = new llvm::GlobalVariable(
|
|
M, CGM.Int8Ty, /*isConstant=*/true,
|
|
llvm::GlobalValue::ExternalWeakLinkage,
|
|
/*Initializer=*/nullptr, Twine(BeginName).concat(T));
|
|
std::string EndName = getName({"omp_offloading", "img_end", ""});
|
|
auto *ImgEnd = new llvm::GlobalVariable(
|
|
M, CGM.Int8Ty, /*isConstant=*/true,
|
|
llvm::GlobalValue::ExternalWeakLinkage,
|
|
/*Initializer=*/nullptr, Twine(EndName).concat(T));
|
|
|
|
llvm::Constant *Data[] = {ImgBegin, ImgEnd, HostEntriesBegin,
|
|
HostEntriesEnd};
|
|
createConstantGlobalStructAndAddToParent(CGM, getTgtDeviceImageQTy(), Data,
|
|
DeviceImagesEntries);
|
|
}
|
|
|
|
// Create device images global array.
|
|
std::string ImagesName = getName({"omp_offloading", "device_images"});
|
|
llvm::GlobalVariable *DeviceImages =
|
|
DeviceImagesEntries.finishAndCreateGlobal(ImagesName,
|
|
CGM.getPointerAlign(),
|
|
/*isConstant=*/true);
|
|
DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
|
|
// This is a Zero array to be used in the creation of the constant expressions
|
|
llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty),
|
|
llvm::Constant::getNullValue(CGM.Int32Ty)};
|
|
|
|
// Create the target region descriptor.
|
|
llvm::Constant *Data[] = {
|
|
llvm::ConstantInt::get(CGM.Int32Ty, Devices.size()),
|
|
llvm::ConstantExpr::getGetElementPtr(DeviceImages->getValueType(),
|
|
DeviceImages, Index),
|
|
HostEntriesBegin, HostEntriesEnd};
|
|
std::string Descriptor = getName({"omp_offloading", "descriptor"});
|
|
llvm::GlobalVariable *Desc = createGlobalStruct(
|
|
CGM, getTgtBinaryDescriptorQTy(), /*IsConstant=*/true, Data, Descriptor);
|
|
|
|
// Emit code to register or unregister the descriptor at execution
|
|
// startup or closing, respectively.
|
|
|
|
llvm::Function *UnRegFn;
|
|
{
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl DummyPtr(C, C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
Args.push_back(&DummyPtr);
|
|
|
|
CodeGenFunction CGF(CGM);
|
|
// Disable debug info for global (de-)initializer because they are not part
|
|
// of some particular construct.
|
|
CGF.disableDebugInfo();
|
|
const auto &FI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
std::string UnregName = getName({"omp_offloading", "descriptor_unreg"});
|
|
UnRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, UnregName, FI);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, UnRegFn, FI, Args);
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_unregister_lib),
|
|
Desc);
|
|
CGF.FinishFunction();
|
|
}
|
|
llvm::Function *RegFn;
|
|
{
|
|
CodeGenFunction CGF(CGM);
|
|
// Disable debug info for global (de-)initializer because they are not part
|
|
// of some particular construct.
|
|
CGF.disableDebugInfo();
|
|
const auto &FI = CGM.getTypes().arrangeNullaryFunction();
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
|
|
// Encode offload target triples into the registration function name. It
|
|
// will serve as a comdat key for the registration/unregistration code for
|
|
// this particular combination of offloading targets.
|
|
SmallVector<StringRef, 4U> RegFnNameParts(Devices.size() + 2U);
|
|
RegFnNameParts[0] = "omp_offloading";
|
|
RegFnNameParts[1] = "descriptor_reg";
|
|
llvm::transform(Devices, std::next(RegFnNameParts.begin(), 2),
|
|
[](const llvm::Triple &T) -> const std::string& {
|
|
return T.getTriple();
|
|
});
|
|
llvm::sort(std::next(RegFnNameParts.begin(), 2), RegFnNameParts.end());
|
|
std::string Descriptor = getName(RegFnNameParts);
|
|
RegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, Descriptor, FI);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, RegFn, FI, FunctionArgList());
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_lib), Desc);
|
|
// Create a variable to drive the registration and unregistration of the
|
|
// descriptor, so we can reuse the logic that emits Ctors and Dtors.
|
|
ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(),
|
|
SourceLocation(), nullptr, C.CharTy,
|
|
ImplicitParamDecl::Other);
|
|
CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc);
|
|
CGF.FinishFunction();
|
|
}
|
|
if (CGM.supportsCOMDAT()) {
|
|
// It is sufficient to call registration function only once, so create a
|
|
// COMDAT group for registration/unregistration functions and associated
|
|
// data. That would reduce startup time and code size. Registration
|
|
// function serves as a COMDAT group key.
|
|
llvm::Comdat *ComdatKey = M.getOrInsertComdat(RegFn->getName());
|
|
RegFn->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
|
|
RegFn->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
RegFn->setComdat(ComdatKey);
|
|
UnRegFn->setComdat(ComdatKey);
|
|
DeviceImages->setComdat(ComdatKey);
|
|
Desc->setComdat(ComdatKey);
|
|
}
|
|
return RegFn;
|
|
}
|
|
|
|
void CGOpenMPRuntime::createOffloadEntry(
|
|
llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
|
|
llvm::GlobalValue::LinkageTypes Linkage) {
|
|
StringRef Name = Addr->getName();
|
|
llvm::Module &M = CGM.getModule();
|
|
llvm::LLVMContext &C = M.getContext();
|
|
|
|
// Create constant string with the name.
|
|
llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
|
|
|
|
std::string StringName = getName({"omp_offloading", "entry_name"});
|
|
auto *Str = new llvm::GlobalVariable(
|
|
M, StrPtrInit->getType(), /*isConstant=*/true,
|
|
llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
|
|
Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
|
|
llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy),
|
|
llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy),
|
|
llvm::ConstantInt::get(CGM.SizeTy, Size),
|
|
llvm::ConstantInt::get(CGM.Int32Ty, Flags),
|
|
llvm::ConstantInt::get(CGM.Int32Ty, 0)};
|
|
std::string EntryName = getName({"omp_offloading", "entry", ""});
|
|
llvm::GlobalVariable *Entry = createGlobalStruct(
|
|
CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
|
|
Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
|
|
|
|
// The entry has to be created in the section the linker expects it to be.
|
|
std::string Section = getName({"omp_offloading", "entries"});
|
|
Entry->setSection(Section);
|
|
}
|
|
|
|
void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
|
|
// Emit the offloading entries and metadata so that the device codegen side
|
|
// can easily figure out what to emit. The produced metadata looks like
|
|
// this:
|
|
//
|
|
// !omp_offload.info = !{!1, ...}
|
|
//
|
|
// Right now we only generate metadata for function that contain target
|
|
// regions.
|
|
|
|
// If we do not have entries, we don't need to do anything.
|
|
if (OffloadEntriesInfoManager.empty())
|
|
return;
|
|
|
|
llvm::Module &M = CGM.getModule();
|
|
llvm::LLVMContext &C = M.getContext();
|
|
SmallVector<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16>
|
|
OrderedEntries(OffloadEntriesInfoManager.size());
|
|
llvm::SmallVector<StringRef, 16> ParentFunctions(
|
|
OffloadEntriesInfoManager.size());
|
|
|
|
// Auxiliary methods to create metadata values and strings.
|
|
auto &&GetMDInt = [this](unsigned V) {
|
|
return llvm::ConstantAsMetadata::get(
|
|
llvm::ConstantInt::get(CGM.Int32Ty, V));
|
|
};
|
|
|
|
auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
|
|
|
|
// Create the offloading info metadata node.
|
|
llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
|
|
|
|
// Create function that emits metadata for each target region entry;
|
|
auto &&TargetRegionMetadataEmitter =
|
|
[&C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt, &GetMDString](
|
|
unsigned DeviceID, unsigned FileID, StringRef ParentName,
|
|
unsigned Line,
|
|
const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
|
|
// Generate metadata for target regions. Each entry of this metadata
|
|
// contains:
|
|
// - Entry 0 -> Kind of this type of metadata (0).
|
|
// - Entry 1 -> Device ID of the file where the entry was identified.
|
|
// - Entry 2 -> File ID of the file where the entry was identified.
|
|
// - Entry 3 -> Mangled name of the function where the entry was
|
|
// identified.
|
|
// - Entry 4 -> Line in the file where the entry was identified.
|
|
// - Entry 5 -> Order the entry was created.
|
|
// The first element of the metadata node is the kind.
|
|
llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
|
|
GetMDInt(FileID), GetMDString(ParentName),
|
|
GetMDInt(Line), GetMDInt(E.getOrder())};
|
|
|
|
// Save this entry in the right position of the ordered entries array.
|
|
OrderedEntries[E.getOrder()] = &E;
|
|
ParentFunctions[E.getOrder()] = ParentName;
|
|
|
|
// Add metadata to the named metadata node.
|
|
MD->addOperand(llvm::MDNode::get(C, Ops));
|
|
};
|
|
|
|
OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
|
|
TargetRegionMetadataEmitter);
|
|
|
|
// Create function that emits metadata for each device global variable entry;
|
|
auto &&DeviceGlobalVarMetadataEmitter =
|
|
[&C, &OrderedEntries, &GetMDInt, &GetMDString,
|
|
MD](StringRef MangledName,
|
|
const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
|
|
&E) {
|
|
// Generate metadata for global variables. Each entry of this metadata
|
|
// contains:
|
|
// - Entry 0 -> Kind of this type of metadata (1).
|
|
// - Entry 1 -> Mangled name of the variable.
|
|
// - Entry 2 -> Declare target kind.
|
|
// - Entry 3 -> Order the entry was created.
|
|
// The first element of the metadata node is the kind.
|
|
llvm::Metadata *Ops[] = {
|
|
GetMDInt(E.getKind()), GetMDString(MangledName),
|
|
GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
|
|
|
|
// Save this entry in the right position of the ordered entries array.
|
|
OrderedEntries[E.getOrder()] = &E;
|
|
|
|
// Add metadata to the named metadata node.
|
|
MD->addOperand(llvm::MDNode::get(C, Ops));
|
|
};
|
|
|
|
OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
|
|
DeviceGlobalVarMetadataEmitter);
|
|
|
|
for (const auto *E : OrderedEntries) {
|
|
assert(E && "All ordered entries must exist!");
|
|
if (const auto *CE =
|
|
dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
|
|
E)) {
|
|
if (!CE->getID() || !CE->getAddress()) {
|
|
// Do not blame the entry if the parent funtion is not emitted.
|
|
StringRef FnName = ParentFunctions[CE->getOrder()];
|
|
if (!CGM.GetGlobalValue(FnName))
|
|
continue;
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Error,
|
|
"Offloading entry for target region is incorrect: either the "
|
|
"address or the ID is invalid.");
|
|
CGM.getDiags().Report(DiagID);
|
|
continue;
|
|
}
|
|
createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
|
|
CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
|
|
} else if (const auto *CE =
|
|
dyn_cast<OffloadEntriesInfoManagerTy::
|
|
OffloadEntryInfoDeviceGlobalVar>(E)) {
|
|
OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
|
|
static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
|
|
CE->getFlags());
|
|
switch (Flags) {
|
|
case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
|
|
if (CGM.getLangOpts().OpenMPIsDevice &&
|
|
CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())
|
|
continue;
|
|
if (!CE->getAddress()) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Error,
|
|
"Offloading entry for declare target variable is incorrect: the "
|
|
"address is invalid.");
|
|
CGM.getDiags().Report(DiagID);
|
|
continue;
|
|
}
|
|
// The vaiable has no definition - no need to add the entry.
|
|
if (CE->getVarSize().isZero())
|
|
continue;
|
|
break;
|
|
}
|
|
case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
|
|
assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
|
|
(!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
|
|
"Declaret target link address is set.");
|
|
if (CGM.getLangOpts().OpenMPIsDevice)
|
|
continue;
|
|
if (!CE->getAddress()) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Error,
|
|
"Offloading entry for declare target variable is incorrect: the "
|
|
"address is invalid.");
|
|
CGM.getDiags().Report(DiagID);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
createOffloadEntry(CE->getAddress(), CE->getAddress(),
|
|
CE->getVarSize().getQuantity(), Flags,
|
|
CE->getLinkage());
|
|
} else {
|
|
llvm_unreachable("Unsupported entry kind.");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Loads all the offload entries information from the host IR
|
|
/// metadata.
|
|
void CGOpenMPRuntime::loadOffloadInfoMetadata() {
|
|
// If we are in target mode, load the metadata from the host IR. This code has
|
|
// to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
|
|
|
|
if (!CGM.getLangOpts().OpenMPIsDevice)
|
|
return;
|
|
|
|
if (CGM.getLangOpts().OMPHostIRFile.empty())
|
|
return;
|
|
|
|
auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
|
|
if (auto EC = Buf.getError()) {
|
|
CGM.getDiags().Report(diag::err_cannot_open_file)
|
|
<< CGM.getLangOpts().OMPHostIRFile << EC.message();
|
|
return;
|
|
}
|
|
|
|
llvm::LLVMContext C;
|
|
auto ME = expectedToErrorOrAndEmitErrors(
|
|
C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
|
|
|
|
if (auto EC = ME.getError()) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
|
|
CGM.getDiags().Report(DiagID)
|
|
<< CGM.getLangOpts().OMPHostIRFile << EC.message();
|
|
return;
|
|
}
|
|
|
|
llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
|
|
if (!MD)
|
|
return;
|
|
|
|
for (llvm::MDNode *MN : MD->operands()) {
|
|
auto &&GetMDInt = [MN](unsigned Idx) {
|
|
auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
|
|
return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
|
|
};
|
|
|
|
auto &&GetMDString = [MN](unsigned Idx) {
|
|
auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
|
|
return V->getString();
|
|
};
|
|
|
|
switch (GetMDInt(0)) {
|
|
default:
|
|
llvm_unreachable("Unexpected metadata!");
|
|
break;
|
|
case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
|
|
OffloadingEntryInfoTargetRegion:
|
|
OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
|
|
/*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
|
|
/*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
|
|
/*Order=*/GetMDInt(5));
|
|
break;
|
|
case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
|
|
OffloadingEntryInfoDeviceGlobalVar:
|
|
OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
|
|
/*MangledName=*/GetMDString(1),
|
|
static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
|
|
/*Flags=*/GetMDInt(2)),
|
|
/*Order=*/GetMDInt(3));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
|
|
if (!KmpRoutineEntryPtrTy) {
|
|
// Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
|
|
ASTContext &C = CGM.getContext();
|
|
QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
KmpRoutineEntryPtrQTy = C.getPointerType(
|
|
C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
|
|
KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
|
|
}
|
|
}
|
|
|
|
QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
|
|
// Make sure the type of the entry is already created. This is the type we
|
|
// have to create:
|
|
// struct __tgt_offload_entry{
|
|
// void *addr; // Pointer to the offload entry info.
|
|
// // (function or global)
|
|
// char *name; // Name of the function or global.
|
|
// size_t size; // Size of the entry info (0 if it a function).
|
|
// int32_t flags; // Flags associated with the entry, e.g. 'link'.
|
|
// int32_t reserved; // Reserved, to use by the runtime library.
|
|
// };
|
|
if (TgtOffloadEntryQTy.isNull()) {
|
|
ASTContext &C = CGM.getContext();
|
|
RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
|
|
addFieldToRecordDecl(C, RD, C.getSizeType());
|
|
addFieldToRecordDecl(
|
|
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
|
|
addFieldToRecordDecl(
|
|
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
|
|
RD->completeDefinition();
|
|
RD->addAttr(PackedAttr::CreateImplicit(C));
|
|
TgtOffloadEntryQTy = C.getRecordType(RD);
|
|
}
|
|
return TgtOffloadEntryQTy;
|
|
}
|
|
|
|
QualType CGOpenMPRuntime::getTgtDeviceImageQTy() {
|
|
// These are the types we need to build:
|
|
// struct __tgt_device_image{
|
|
// void *ImageStart; // Pointer to the target code start.
|
|
// void *ImageEnd; // Pointer to the target code end.
|
|
// // We also add the host entries to the device image, as it may be useful
|
|
// // for the target runtime to have access to that information.
|
|
// __tgt_offload_entry *EntriesBegin; // Begin of the table with all
|
|
// // the entries.
|
|
// __tgt_offload_entry *EntriesEnd; // End of the table with all the
|
|
// // entries (non inclusive).
|
|
// };
|
|
if (TgtDeviceImageQTy.isNull()) {
|
|
ASTContext &C = CGM.getContext();
|
|
RecordDecl *RD = C.buildImplicitRecord("__tgt_device_image");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
|
|
RD->completeDefinition();
|
|
TgtDeviceImageQTy = C.getRecordType(RD);
|
|
}
|
|
return TgtDeviceImageQTy;
|
|
}
|
|
|
|
QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() {
|
|
// struct __tgt_bin_desc{
|
|
// int32_t NumDevices; // Number of devices supported.
|
|
// __tgt_device_image *DeviceImages; // Arrays of device images
|
|
// // (one per device).
|
|
// __tgt_offload_entry *EntriesBegin; // Begin of the table with all the
|
|
// // entries.
|
|
// __tgt_offload_entry *EntriesEnd; // End of the table with all the
|
|
// // entries (non inclusive).
|
|
// };
|
|
if (TgtBinaryDescriptorQTy.isNull()) {
|
|
ASTContext &C = CGM.getContext();
|
|
RecordDecl *RD = C.buildImplicitRecord("__tgt_bin_desc");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(
|
|
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy()));
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
|
|
RD->completeDefinition();
|
|
TgtBinaryDescriptorQTy = C.getRecordType(RD);
|
|
}
|
|
return TgtBinaryDescriptorQTy;
|
|
}
|
|
|
|
namespace {
|
|
struct PrivateHelpersTy {
|
|
PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
|
|
const VarDecl *PrivateElemInit)
|
|
: Original(Original), PrivateCopy(PrivateCopy),
|
|
PrivateElemInit(PrivateElemInit) {}
|
|
const VarDecl *Original;
|
|
const VarDecl *PrivateCopy;
|
|
const VarDecl *PrivateElemInit;
|
|
};
|
|
typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
|
|
} // anonymous namespace
|
|
|
|
static RecordDecl *
|
|
createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
|
|
if (!Privates.empty()) {
|
|
ASTContext &C = CGM.getContext();
|
|
// Build struct .kmp_privates_t. {
|
|
// /* private vars */
|
|
// };
|
|
RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
|
|
RD->startDefinition();
|
|
for (const auto &Pair : Privates) {
|
|
const VarDecl *VD = Pair.second.Original;
|
|
QualType Type = VD->getType().getNonReferenceType();
|
|
FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
|
|
if (VD->hasAttrs()) {
|
|
for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
|
|
E(VD->getAttrs().end());
|
|
I != E; ++I)
|
|
FD->addAttr(*I);
|
|
}
|
|
}
|
|
RD->completeDefinition();
|
|
return RD;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static RecordDecl *
|
|
createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
|
|
QualType KmpInt32Ty,
|
|
QualType KmpRoutineEntryPointerQTy) {
|
|
ASTContext &C = CGM.getContext();
|
|
// Build struct kmp_task_t {
|
|
// void * shareds;
|
|
// kmp_routine_entry_t routine;
|
|
// kmp_int32 part_id;
|
|
// kmp_cmplrdata_t data1;
|
|
// kmp_cmplrdata_t data2;
|
|
// For taskloops additional fields:
|
|
// kmp_uint64 lb;
|
|
// kmp_uint64 ub;
|
|
// kmp_int64 st;
|
|
// kmp_int32 liter;
|
|
// void * reductions;
|
|
// };
|
|
RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
|
|
UD->startDefinition();
|
|
addFieldToRecordDecl(C, UD, KmpInt32Ty);
|
|
addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
|
|
UD->completeDefinition();
|
|
QualType KmpCmplrdataTy = C.getRecordType(UD);
|
|
RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
|
|
addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
|
|
if (isOpenMPTaskLoopDirective(Kind)) {
|
|
QualType KmpUInt64Ty =
|
|
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
|
|
QualType KmpInt64Ty =
|
|
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
|
|
addFieldToRecordDecl(C, RD, KmpUInt64Ty);
|
|
addFieldToRecordDecl(C, RD, KmpUInt64Ty);
|
|
addFieldToRecordDecl(C, RD, KmpInt64Ty);
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
}
|
|
RD->completeDefinition();
|
|
return RD;
|
|
}
|
|
|
|
static RecordDecl *
|
|
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
|
|
ArrayRef<PrivateDataTy> Privates) {
|
|
ASTContext &C = CGM.getContext();
|
|
// Build struct kmp_task_t_with_privates {
|
|
// kmp_task_t task_data;
|
|
// .kmp_privates_t. privates;
|
|
// };
|
|
RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(C, RD, KmpTaskTQTy);
|
|
if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
|
|
addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
|
|
RD->completeDefinition();
|
|
return RD;
|
|
}
|
|
|
|
/// Emit a proxy function which accepts kmp_task_t as the second
|
|
/// argument.
|
|
/// \code
|
|
/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
|
|
/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
|
|
/// For taskloops:
|
|
/// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
|
|
/// tt->reductions, tt->shareds);
|
|
/// return 0;
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Function *
|
|
emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
|
|
OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
|
|
QualType KmpTaskTWithPrivatesPtrQTy,
|
|
QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
|
|
QualType SharedsPtrTy, llvm::Function *TaskFunction,
|
|
llvm::Value *TaskPrivatesMap) {
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
KmpTaskTWithPrivatesPtrQTy.withRestrict(),
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&GtidArg);
|
|
Args.push_back(&TaskTypeArg);
|
|
const auto &TaskEntryFnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
|
|
llvm::FunctionType *TaskEntryTy =
|
|
CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
|
|
auto *TaskEntry = llvm::Function::Create(
|
|
TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
|
|
TaskEntry->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
|
|
Loc, Loc);
|
|
|
|
// TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
|
|
// tt,
|
|
// For taskloops:
|
|
// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
|
|
// tt->task_data.shareds);
|
|
llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
|
|
CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
|
|
LValue TDBase = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(&TaskTypeArg),
|
|
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
|
|
const auto *KmpTaskTWithPrivatesQTyRD =
|
|
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
|
|
LValue Base =
|
|
CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
|
|
auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
|
|
LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
|
|
llvm::Value *PartidParam = PartIdLVal.getPointer();
|
|
|
|
auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
|
|
LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
|
|
llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(SharedsLVal, Loc),
|
|
CGF.ConvertTypeForMem(SharedsPtrTy));
|
|
|
|
auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
|
|
llvm::Value *PrivatesParam;
|
|
if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
|
|
LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
|
|
PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
PrivatesLVal.getPointer(), CGF.VoidPtrTy);
|
|
} else {
|
|
PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
|
|
}
|
|
|
|
llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
|
|
TaskPrivatesMap,
|
|
CGF.Builder
|
|
.CreatePointerBitCastOrAddrSpaceCast(
|
|
TDBase.getAddress(), CGF.VoidPtrTy)
|
|
.getPointer()};
|
|
SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
|
|
std::end(CommonArgs));
|
|
if (isOpenMPTaskLoopDirective(Kind)) {
|
|
auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
|
|
LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
|
|
llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
|
|
auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
|
|
LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
|
|
llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
|
|
auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
|
|
LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
|
|
llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
|
|
auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
|
|
LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
|
|
llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
|
|
auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
|
|
LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
|
|
llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
|
|
CallArgs.push_back(LBParam);
|
|
CallArgs.push_back(UBParam);
|
|
CallArgs.push_back(StParam);
|
|
CallArgs.push_back(LIParam);
|
|
CallArgs.push_back(RParam);
|
|
}
|
|
CallArgs.push_back(SharedsParam);
|
|
|
|
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
|
|
CallArgs);
|
|
CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
|
|
CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
|
|
CGF.FinishFunction();
|
|
return TaskEntry;
|
|
}
|
|
|
|
static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
|
|
SourceLocation Loc,
|
|
QualType KmpInt32Ty,
|
|
QualType KmpTaskTWithPrivatesPtrQTy,
|
|
QualType KmpTaskTWithPrivatesQTy) {
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
KmpTaskTWithPrivatesPtrQTy.withRestrict(),
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&GtidArg);
|
|
Args.push_back(&TaskTypeArg);
|
|
const auto &DestructorFnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
|
|
llvm::FunctionType *DestructorFnTy =
|
|
CGM.getTypes().GetFunctionType(DestructorFnInfo);
|
|
std::string Name =
|
|
CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
|
|
auto *DestructorFn =
|
|
llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
|
|
Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
|
|
DestructorFnInfo);
|
|
DestructorFn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
|
|
Args, Loc, Loc);
|
|
|
|
LValue Base = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(&TaskTypeArg),
|
|
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
|
|
const auto *KmpTaskTWithPrivatesQTyRD =
|
|
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
|
|
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
Base = CGF.EmitLValueForField(Base, *FI);
|
|
for (const auto *Field :
|
|
cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
|
|
if (QualType::DestructionKind DtorKind =
|
|
Field->getType().isDestructedType()) {
|
|
LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
|
|
CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
|
|
}
|
|
}
|
|
CGF.FinishFunction();
|
|
return DestructorFn;
|
|
}
|
|
|
|
/// Emit a privates mapping function for correct handling of private and
|
|
/// firstprivate variables.
|
|
/// \code
|
|
/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
|
|
/// **noalias priv1,..., <tyn> **noalias privn) {
|
|
/// *priv1 = &.privates.priv1;
|
|
/// ...;
|
|
/// *privn = &.privates.privn;
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Value *
|
|
emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
|
|
ArrayRef<const Expr *> PrivateVars,
|
|
ArrayRef<const Expr *> FirstprivateVars,
|
|
ArrayRef<const Expr *> LastprivateVars,
|
|
QualType PrivatesQTy,
|
|
ArrayRef<PrivateDataTy> Privates) {
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl TaskPrivatesArg(
|
|
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.getPointerType(PrivatesQTy).withConst().withRestrict(),
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&TaskPrivatesArg);
|
|
llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
|
|
unsigned Counter = 1;
|
|
for (const Expr *E : PrivateVars) {
|
|
Args.push_back(ImplicitParamDecl::Create(
|
|
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.getPointerType(C.getPointerType(E->getType()))
|
|
.withConst()
|
|
.withRestrict(),
|
|
ImplicitParamDecl::Other));
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
PrivateVarsPos[VD] = Counter;
|
|
++Counter;
|
|
}
|
|
for (const Expr *E : FirstprivateVars) {
|
|
Args.push_back(ImplicitParamDecl::Create(
|
|
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.getPointerType(C.getPointerType(E->getType()))
|
|
.withConst()
|
|
.withRestrict(),
|
|
ImplicitParamDecl::Other));
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
PrivateVarsPos[VD] = Counter;
|
|
++Counter;
|
|
}
|
|
for (const Expr *E : LastprivateVars) {
|
|
Args.push_back(ImplicitParamDecl::Create(
|
|
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.getPointerType(C.getPointerType(E->getType()))
|
|
.withConst()
|
|
.withRestrict(),
|
|
ImplicitParamDecl::Other));
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
PrivateVarsPos[VD] = Counter;
|
|
++Counter;
|
|
}
|
|
const auto &TaskPrivatesMapFnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *TaskPrivatesMapTy =
|
|
CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
|
|
std::string Name =
|
|
CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
|
|
auto *TaskPrivatesMap = llvm::Function::Create(
|
|
TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
|
|
&CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
|
|
TaskPrivatesMapFnInfo);
|
|
if (CGM.getLangOpts().Optimize) {
|
|
TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
|
|
TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
|
|
TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
|
|
}
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
|
|
TaskPrivatesMapFnInfo, Args, Loc, Loc);
|
|
|
|
// *privi = &.privates.privi;
|
|
LValue Base = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
|
|
TaskPrivatesArg.getType()->castAs<PointerType>());
|
|
const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
|
|
Counter = 0;
|
|
for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
|
|
LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
|
|
const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
|
|
LValue RefLVal =
|
|
CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
|
|
LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
|
|
RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>());
|
|
CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal);
|
|
++Counter;
|
|
}
|
|
CGF.FinishFunction();
|
|
return TaskPrivatesMap;
|
|
}
|
|
|
|
/// Emit initialization for private variables in task-based directives.
|
|
static void emitPrivatesInit(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D,
|
|
Address KmpTaskSharedsPtr, LValue TDBase,
|
|
const RecordDecl *KmpTaskTWithPrivatesQTyRD,
|
|
QualType SharedsTy, QualType SharedsPtrTy,
|
|
const OMPTaskDataTy &Data,
|
|
ArrayRef<PrivateDataTy> Privates, bool ForDup) {
|
|
ASTContext &C = CGF.getContext();
|
|
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
|
|
OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
|
|
? OMPD_taskloop
|
|
: OMPD_task;
|
|
const CapturedStmt &CS = *D.getCapturedStmt(Kind);
|
|
CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
|
|
LValue SrcBase;
|
|
bool IsTargetTask =
|
|
isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
|
|
isOpenMPTargetExecutionDirective(D.getDirectiveKind());
|
|
// For target-based directives skip 3 firstprivate arrays BasePointersArray,
|
|
// PointersArray and SizesArray. The original variables for these arrays are
|
|
// not captured and we get their addresses explicitly.
|
|
if ((!IsTargetTask && !Data.FirstprivateVars.empty()) ||
|
|
(IsTargetTask && KmpTaskSharedsPtr.isValid())) {
|
|
SrcBase = CGF.MakeAddrLValue(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
|
|
SharedsTy);
|
|
}
|
|
FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
|
|
for (const PrivateDataTy &Pair : Privates) {
|
|
const VarDecl *VD = Pair.second.PrivateCopy;
|
|
const Expr *Init = VD->getAnyInitializer();
|
|
if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
|
|
!CGF.isTrivialInitializer(Init)))) {
|
|
LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
|
|
if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
|
|
const VarDecl *OriginalVD = Pair.second.Original;
|
|
// Check if the variable is the target-based BasePointersArray,
|
|
// PointersArray or SizesArray.
|
|
LValue SharedRefLValue;
|
|
QualType Type = PrivateLValue.getType();
|
|
const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
|
|
if (IsTargetTask && !SharedField) {
|
|
assert(isa<ImplicitParamDecl>(OriginalVD) &&
|
|
isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
|
|
cast<CapturedDecl>(OriginalVD->getDeclContext())
|
|
->getNumParams() == 0 &&
|
|
isa<TranslationUnitDecl>(
|
|
cast<CapturedDecl>(OriginalVD->getDeclContext())
|
|
->getDeclContext()) &&
|
|
"Expected artificial target data variable.");
|
|
SharedRefLValue =
|
|
CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
|
|
} else {
|
|
SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
|
|
SharedRefLValue = CGF.MakeAddrLValue(
|
|
Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)),
|
|
SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
|
|
SharedRefLValue.getTBAAInfo());
|
|
}
|
|
if (Type->isArrayType()) {
|
|
// Initialize firstprivate array.
|
|
if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
|
|
// Perform simple memcpy.
|
|
CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
|
|
} else {
|
|
// Initialize firstprivate array using element-by-element
|
|
// initialization.
|
|
CGF.EmitOMPAggregateAssign(
|
|
PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type,
|
|
[&CGF, Elem, Init, &CapturesInfo](Address DestElement,
|
|
Address SrcElement) {
|
|
// Clean up any temporaries needed by the initialization.
|
|
CodeGenFunction::OMPPrivateScope InitScope(CGF);
|
|
InitScope.addPrivate(
|
|
Elem, [SrcElement]() -> Address { return SrcElement; });
|
|
(void)InitScope.Privatize();
|
|
// Emit initialization for single element.
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
|
|
CGF, &CapturesInfo);
|
|
CGF.EmitAnyExprToMem(Init, DestElement,
|
|
Init->getType().getQualifiers(),
|
|
/*IsInitializer=*/false);
|
|
});
|
|
}
|
|
} else {
|
|
CodeGenFunction::OMPPrivateScope InitScope(CGF);
|
|
InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address {
|
|
return SharedRefLValue.getAddress();
|
|
});
|
|
(void)InitScope.Privatize();
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
|
|
CGF.EmitExprAsInit(Init, VD, PrivateLValue,
|
|
/*capturedByInit=*/false);
|
|
}
|
|
} else {
|
|
CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
|
|
}
|
|
}
|
|
++FI;
|
|
}
|
|
}
|
|
|
|
/// Check if duplication function is required for taskloops.
|
|
static bool checkInitIsRequired(CodeGenFunction &CGF,
|
|
ArrayRef<PrivateDataTy> Privates) {
|
|
bool InitRequired = false;
|
|
for (const PrivateDataTy &Pair : Privates) {
|
|
const VarDecl *VD = Pair.second.PrivateCopy;
|
|
const Expr *Init = VD->getAnyInitializer();
|
|
InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
|
|
!CGF.isTrivialInitializer(Init));
|
|
if (InitRequired)
|
|
break;
|
|
}
|
|
return InitRequired;
|
|
}
|
|
|
|
|
|
/// Emit task_dup function (for initialization of
|
|
/// private/firstprivate/lastprivate vars and last_iter flag)
|
|
/// \code
|
|
/// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
|
|
/// lastpriv) {
|
|
/// // setup lastprivate flag
|
|
/// task_dst->last = lastpriv;
|
|
/// // could be constructor calls here...
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Value *
|
|
emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
|
|
const OMPExecutableDirective &D,
|
|
QualType KmpTaskTWithPrivatesPtrQTy,
|
|
const RecordDecl *KmpTaskTWithPrivatesQTyRD,
|
|
const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
|
|
QualType SharedsPtrTy, const OMPTaskDataTy &Data,
|
|
ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
KmpTaskTWithPrivatesPtrQTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
KmpTaskTWithPrivatesPtrQTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&DstArg);
|
|
Args.push_back(&SrcArg);
|
|
Args.push_back(&LastprivArg);
|
|
const auto &TaskDupFnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
|
|
auto *TaskDup = llvm::Function::Create(
|
|
TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
|
|
TaskDup->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
|
|
Loc);
|
|
|
|
LValue TDBase = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(&DstArg),
|
|
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
|
|
// task_dst->liter = lastpriv;
|
|
if (WithLastIter) {
|
|
auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
|
|
LValue Base = CGF.EmitLValueForField(
|
|
TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
|
|
llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
|
|
CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
|
|
CGF.EmitStoreOfScalar(Lastpriv, LILVal);
|
|
}
|
|
|
|
// Emit initial values for private copies (if any).
|
|
assert(!Privates.empty());
|
|
Address KmpTaskSharedsPtr = Address::invalid();
|
|
if (!Data.FirstprivateVars.empty()) {
|
|
LValue TDBase = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(&SrcArg),
|
|
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
|
|
LValue Base = CGF.EmitLValueForField(
|
|
TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
KmpTaskSharedsPtr = Address(
|
|
CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
|
|
Base, *std::next(KmpTaskTQTyRD->field_begin(),
|
|
KmpTaskTShareds)),
|
|
Loc),
|
|
CGF.getNaturalTypeAlignment(SharedsTy));
|
|
}
|
|
emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
|
|
SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
|
|
CGF.FinishFunction();
|
|
return TaskDup;
|
|
}
|
|
|
|
/// Checks if destructor function is required to be generated.
|
|
/// \return true if cleanups are required, false otherwise.
|
|
static bool
|
|
checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
|
|
bool NeedsCleanup = false;
|
|
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
|
|
const auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
|
|
for (const FieldDecl *FD : PrivateRD->fields()) {
|
|
NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
|
|
if (NeedsCleanup)
|
|
break;
|
|
}
|
|
return NeedsCleanup;
|
|
}
|
|
|
|
CGOpenMPRuntime::TaskResultTy
|
|
CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OMPExecutableDirective &D,
|
|
llvm::Function *TaskFunction, QualType SharedsTy,
|
|
Address Shareds, const OMPTaskDataTy &Data) {
|
|
ASTContext &C = CGM.getContext();
|
|
llvm::SmallVector<PrivateDataTy, 4> Privates;
|
|
// Aggregate privates and sort them by the alignment.
|
|
auto I = Data.PrivateCopies.begin();
|
|
for (const Expr *E : Data.PrivateVars) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
Privates.emplace_back(
|
|
C.getDeclAlign(VD),
|
|
PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
|
|
/*PrivateElemInit=*/nullptr));
|
|
++I;
|
|
}
|
|
I = Data.FirstprivateCopies.begin();
|
|
auto IElemInitRef = Data.FirstprivateInits.begin();
|
|
for (const Expr *E : Data.FirstprivateVars) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
Privates.emplace_back(
|
|
C.getDeclAlign(VD),
|
|
PrivateHelpersTy(
|
|
VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
|
|
cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
|
|
++I;
|
|
++IElemInitRef;
|
|
}
|
|
I = Data.LastprivateCopies.begin();
|
|
for (const Expr *E : Data.LastprivateVars) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
Privates.emplace_back(
|
|
C.getDeclAlign(VD),
|
|
PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
|
|
/*PrivateElemInit=*/nullptr));
|
|
++I;
|
|
}
|
|
llvm::stable_sort(Privates, [](PrivateDataTy L, PrivateDataTy R) {
|
|
return L.first > R.first;
|
|
});
|
|
QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
|
|
// Build type kmp_routine_entry_t (if not built yet).
|
|
emitKmpRoutineEntryT(KmpInt32Ty);
|
|
// Build type kmp_task_t (if not built yet).
|
|
if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
|
|
if (SavedKmpTaskloopTQTy.isNull()) {
|
|
SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
|
|
CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
|
|
}
|
|
KmpTaskTQTy = SavedKmpTaskloopTQTy;
|
|
} else {
|
|
assert((D.getDirectiveKind() == OMPD_task ||
|
|
isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
|
|
isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
|
|
"Expected taskloop, task or target directive");
|
|
if (SavedKmpTaskTQTy.isNull()) {
|
|
SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
|
|
CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
|
|
}
|
|
KmpTaskTQTy = SavedKmpTaskTQTy;
|
|
}
|
|
const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
|
|
// Build particular struct kmp_task_t for the given task.
|
|
const RecordDecl *KmpTaskTWithPrivatesQTyRD =
|
|
createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
|
|
QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
|
|
QualType KmpTaskTWithPrivatesPtrQTy =
|
|
C.getPointerType(KmpTaskTWithPrivatesQTy);
|
|
llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
|
|
llvm::Type *KmpTaskTWithPrivatesPtrTy =
|
|
KmpTaskTWithPrivatesTy->getPointerTo();
|
|
llvm::Value *KmpTaskTWithPrivatesTySize =
|
|
CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
|
|
QualType SharedsPtrTy = C.getPointerType(SharedsTy);
|
|
|
|
// Emit initial values for private copies (if any).
|
|
llvm::Value *TaskPrivatesMap = nullptr;
|
|
llvm::Type *TaskPrivatesMapTy =
|
|
std::next(TaskFunction->arg_begin(), 3)->getType();
|
|
if (!Privates.empty()) {
|
|
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
TaskPrivatesMap = emitTaskPrivateMappingFunction(
|
|
CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
|
|
FI->getType(), Privates);
|
|
TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
TaskPrivatesMap, TaskPrivatesMapTy);
|
|
} else {
|
|
TaskPrivatesMap = llvm::ConstantPointerNull::get(
|
|
cast<llvm::PointerType>(TaskPrivatesMapTy));
|
|
}
|
|
// Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
|
|
// kmp_task_t *tt);
|
|
llvm::Function *TaskEntry = emitProxyTaskFunction(
|
|
CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
|
|
KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
|
|
TaskPrivatesMap);
|
|
|
|
// Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
|
|
// kmp_routine_entry_t *task_entry);
|
|
// Task flags. Format is taken from
|
|
// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h,
|
|
// description of kmp_tasking_flags struct.
|
|
enum {
|
|
TiedFlag = 0x1,
|
|
FinalFlag = 0x2,
|
|
DestructorsFlag = 0x8,
|
|
PriorityFlag = 0x20
|
|
};
|
|
unsigned Flags = Data.Tied ? TiedFlag : 0;
|
|
bool NeedsCleanup = false;
|
|
if (!Privates.empty()) {
|
|
NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
|
|
if (NeedsCleanup)
|
|
Flags = Flags | DestructorsFlag;
|
|
}
|
|
if (Data.Priority.getInt())
|
|
Flags = Flags | PriorityFlag;
|
|
llvm::Value *TaskFlags =
|
|
Data.Final.getPointer()
|
|
? CGF.Builder.CreateSelect(Data.Final.getPointer(),
|
|
CGF.Builder.getInt32(FinalFlag),
|
|
CGF.Builder.getInt32(/*C=*/0))
|
|
: CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
|
|
TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
|
|
llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
|
|
SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
|
|
getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
|
|
SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
TaskEntry, KmpRoutineEntryPtrTy)};
|
|
llvm::Value *NewTask;
|
|
if (D.hasClausesOfKind<OMPNowaitClause>()) {
|
|
// Check if we have any device clause associated with the directive.
|
|
const Expr *Device = nullptr;
|
|
if (auto *C = D.getSingleClause<OMPDeviceClause>())
|
|
Device = C->getDevice();
|
|
// Emit device ID if any otherwise use default value.
|
|
llvm::Value *DeviceID;
|
|
if (Device)
|
|
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
|
|
CGF.Int64Ty, /*isSigned=*/true);
|
|
else
|
|
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
|
|
AllocArgs.push_back(DeviceID);
|
|
NewTask = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_omp_target_task_alloc), AllocArgs);
|
|
} else {
|
|
NewTask = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
|
|
}
|
|
llvm::Value *NewTaskNewTaskTTy =
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
NewTask, KmpTaskTWithPrivatesPtrTy);
|
|
LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
|
|
KmpTaskTWithPrivatesQTy);
|
|
LValue TDBase =
|
|
CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
// Fill the data in the resulting kmp_task_t record.
|
|
// Copy shareds if there are any.
|
|
Address KmpTaskSharedsPtr = Address::invalid();
|
|
if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
|
|
KmpTaskSharedsPtr =
|
|
Address(CGF.EmitLoadOfScalar(
|
|
CGF.EmitLValueForField(
|
|
TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
|
|
KmpTaskTShareds)),
|
|
Loc),
|
|
CGF.getNaturalTypeAlignment(SharedsTy));
|
|
LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
|
|
LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
|
|
CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
|
|
}
|
|
// Emit initial values for private copies (if any).
|
|
TaskResultTy Result;
|
|
if (!Privates.empty()) {
|
|
emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
|
|
SharedsTy, SharedsPtrTy, Data, Privates,
|
|
/*ForDup=*/false);
|
|
if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
|
|
(!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
|
|
Result.TaskDupFn = emitTaskDupFunction(
|
|
CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
|
|
KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
|
|
/*WithLastIter=*/!Data.LastprivateVars.empty());
|
|
}
|
|
}
|
|
// Fields of union "kmp_cmplrdata_t" for destructors and priority.
|
|
enum { Priority = 0, Destructors = 1 };
|
|
// Provide pointer to function with destructors for privates.
|
|
auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
|
|
const RecordDecl *KmpCmplrdataUD =
|
|
(*FI)->getType()->getAsUnionType()->getDecl();
|
|
if (NeedsCleanup) {
|
|
llvm::Value *DestructorFn = emitDestructorsFunction(
|
|
CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
|
|
KmpTaskTWithPrivatesQTy);
|
|
LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
|
|
LValue DestructorsLV = CGF.EmitLValueForField(
|
|
Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
|
|
CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
DestructorFn, KmpRoutineEntryPtrTy),
|
|
DestructorsLV);
|
|
}
|
|
// Set priority.
|
|
if (Data.Priority.getInt()) {
|
|
LValue Data2LV = CGF.EmitLValueForField(
|
|
TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
|
|
LValue PriorityLV = CGF.EmitLValueForField(
|
|
Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
|
|
CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
|
|
}
|
|
Result.NewTask = NewTask;
|
|
Result.TaskEntry = TaskEntry;
|
|
Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
|
|
Result.TDBase = TDBase;
|
|
Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
|
|
return Result;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OMPExecutableDirective &D,
|
|
llvm::Function *TaskFunction,
|
|
QualType SharedsTy, Address Shareds,
|
|
const Expr *IfCond,
|
|
const OMPTaskDataTy &Data) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
TaskResultTy Result =
|
|
emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
|
|
llvm::Value *NewTask = Result.NewTask;
|
|
llvm::Function *TaskEntry = Result.TaskEntry;
|
|
llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
|
|
LValue TDBase = Result.TDBase;
|
|
const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
|
|
ASTContext &C = CGM.getContext();
|
|
// Process list of dependences.
|
|
Address DependenciesArray = Address::invalid();
|
|
unsigned NumDependencies = Data.Dependences.size();
|
|
if (NumDependencies) {
|
|
// Dependence kind for RTL.
|
|
enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3, DepMutexInOutSet = 0x4 };
|
|
enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
|
|
RecordDecl *KmpDependInfoRD;
|
|
QualType FlagsTy =
|
|
C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
|
|
llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
|
|
if (KmpDependInfoTy.isNull()) {
|
|
KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
|
|
KmpDependInfoRD->startDefinition();
|
|
addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
|
|
addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
|
|
addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
|
|
KmpDependInfoRD->completeDefinition();
|
|
KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
|
|
} else {
|
|
KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
|
|
}
|
|
// Define type kmp_depend_info[<Dependences.size()>];
|
|
QualType KmpDependInfoArrayTy = C.getConstantArrayType(
|
|
KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
|
|
ArrayType::Normal, /*IndexTypeQuals=*/0);
|
|
// kmp_depend_info[<Dependences.size()>] deps;
|
|
DependenciesArray =
|
|
CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
|
|
for (unsigned I = 0; I < NumDependencies; ++I) {
|
|
const Expr *E = Data.Dependences[I].second;
|
|
LValue Addr = CGF.EmitLValue(E);
|
|
llvm::Value *Size;
|
|
QualType Ty = E->getType();
|
|
if (const auto *ASE =
|
|
dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
|
|
LValue UpAddrLVal =
|
|
CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
|
|
llvm::Value *UpAddr =
|
|
CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1);
|
|
llvm::Value *LowIntPtr =
|
|
CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy);
|
|
llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
|
|
Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
|
|
} else {
|
|
Size = CGF.getTypeSize(Ty);
|
|
}
|
|
LValue Base = CGF.MakeAddrLValue(
|
|
CGF.Builder.CreateConstArrayGEP(DependenciesArray, I),
|
|
KmpDependInfoTy);
|
|
// deps[i].base_addr = &<Dependences[i].second>;
|
|
LValue BaseAddrLVal = CGF.EmitLValueForField(
|
|
Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
|
|
CGF.EmitStoreOfScalar(
|
|
CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy),
|
|
BaseAddrLVal);
|
|
// deps[i].len = sizeof(<Dependences[i].second>);
|
|
LValue LenLVal = CGF.EmitLValueForField(
|
|
Base, *std::next(KmpDependInfoRD->field_begin(), Len));
|
|
CGF.EmitStoreOfScalar(Size, LenLVal);
|
|
// deps[i].flags = <Dependences[i].first>;
|
|
RTLDependenceKindTy DepKind;
|
|
switch (Data.Dependences[I].first) {
|
|
case OMPC_DEPEND_in:
|
|
DepKind = DepIn;
|
|
break;
|
|
// Out and InOut dependencies must use the same code.
|
|
case OMPC_DEPEND_out:
|
|
case OMPC_DEPEND_inout:
|
|
DepKind = DepInOut;
|
|
break;
|
|
case OMPC_DEPEND_mutexinoutset:
|
|
DepKind = DepMutexInOutSet;
|
|
break;
|
|
case OMPC_DEPEND_source:
|
|
case OMPC_DEPEND_sink:
|
|
case OMPC_DEPEND_unknown:
|
|
llvm_unreachable("Unknown task dependence type");
|
|
}
|
|
LValue FlagsLVal = CGF.EmitLValueForField(
|
|
Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
|
|
CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
|
|
FlagsLVal);
|
|
}
|
|
DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0), CGF.VoidPtrTy);
|
|
}
|
|
|
|
// NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
|
|
// libcall.
|
|
// Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
|
|
// kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
|
|
// list is not empty
|
|
llvm::Value *ThreadID = getThreadID(CGF, Loc);
|
|
llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
|
|
llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
|
|
llvm::Value *DepTaskArgs[7];
|
|
if (NumDependencies) {
|
|
DepTaskArgs[0] = UpLoc;
|
|
DepTaskArgs[1] = ThreadID;
|
|
DepTaskArgs[2] = NewTask;
|
|
DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
|
|
DepTaskArgs[4] = DependenciesArray.getPointer();
|
|
DepTaskArgs[5] = CGF.Builder.getInt32(0);
|
|
DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
|
|
}
|
|
auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies,
|
|
&TaskArgs,
|
|
&DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
if (!Data.Tied) {
|
|
auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
|
|
LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
|
|
CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
|
|
}
|
|
if (NumDependencies) {
|
|
CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
|
|
} else {
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
|
|
TaskArgs);
|
|
}
|
|
// Check if parent region is untied and build return for untied task;
|
|
if (auto *Region =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
|
|
Region->emitUntiedSwitch(CGF);
|
|
};
|
|
|
|
llvm::Value *DepWaitTaskArgs[6];
|
|
if (NumDependencies) {
|
|
DepWaitTaskArgs[0] = UpLoc;
|
|
DepWaitTaskArgs[1] = ThreadID;
|
|
DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
|
|
DepWaitTaskArgs[3] = DependenciesArray.getPointer();
|
|
DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
|
|
DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
|
|
}
|
|
auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
|
|
NumDependencies, &DepWaitTaskArgs,
|
|
Loc](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
CodeGenFunction::RunCleanupsScope LocalScope(CGF);
|
|
// Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
|
|
// ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
|
|
// is specified.
|
|
if (NumDependencies)
|
|
CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
|
|
DepWaitTaskArgs);
|
|
// Call proxy_task_entry(gtid, new_task);
|
|
auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
|
|
Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
|
|
CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
|
|
OutlinedFnArgs);
|
|
};
|
|
|
|
// Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t *new_task);
|
|
// Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t *new_task);
|
|
RegionCodeGenTy RCG(CodeGen);
|
|
CommonActionTy Action(
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
|
|
RCG.setAction(Action);
|
|
RCG(CGF);
|
|
};
|
|
|
|
if (IfCond) {
|
|
emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
|
|
} else {
|
|
RegionCodeGenTy ThenRCG(ThenCodeGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OMPLoopDirective &D,
|
|
llvm::Function *TaskFunction,
|
|
QualType SharedsTy, Address Shareds,
|
|
const Expr *IfCond,
|
|
const OMPTaskDataTy &Data) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
TaskResultTy Result =
|
|
emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
|
|
// NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
|
|
// libcall.
|
|
// Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
|
|
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
|
|
// sched, kmp_uint64 grainsize, void *task_dup);
|
|
llvm::Value *ThreadID = getThreadID(CGF, Loc);
|
|
llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
|
|
llvm::Value *IfVal;
|
|
if (IfCond) {
|
|
IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
|
|
/*isSigned=*/true);
|
|
} else {
|
|
IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
|
|
}
|
|
|
|
LValue LBLVal = CGF.EmitLValueForField(
|
|
Result.TDBase,
|
|
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
|
|
const auto *LBVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
|
|
CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(),
|
|
/*IsInitializer=*/true);
|
|
LValue UBLVal = CGF.EmitLValueForField(
|
|
Result.TDBase,
|
|
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
|
|
const auto *UBVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
|
|
CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(),
|
|
/*IsInitializer=*/true);
|
|
LValue StLVal = CGF.EmitLValueForField(
|
|
Result.TDBase,
|
|
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
|
|
const auto *StVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
|
|
CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(),
|
|
/*IsInitializer=*/true);
|
|
// Store reductions address.
|
|
LValue RedLVal = CGF.EmitLValueForField(
|
|
Result.TDBase,
|
|
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
|
|
if (Data.Reductions) {
|
|
CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
|
|
} else {
|
|
CGF.EmitNullInitialization(RedLVal.getAddress(),
|
|
CGF.getContext().VoidPtrTy);
|
|
}
|
|
enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
|
|
llvm::Value *TaskArgs[] = {
|
|
UpLoc,
|
|
ThreadID,
|
|
Result.NewTask,
|
|
IfVal,
|
|
LBLVal.getPointer(),
|
|
UBLVal.getPointer(),
|
|
CGF.EmitLoadOfScalar(StLVal, Loc),
|
|
llvm::ConstantInt::getSigned(
|
|
CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
|
|
llvm::ConstantInt::getSigned(
|
|
CGF.IntTy, Data.Schedule.getPointer()
|
|
? Data.Schedule.getInt() ? NumTasks : Grainsize
|
|
: NoSchedule),
|
|
Data.Schedule.getPointer()
|
|
? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
|
|
/*isSigned=*/false)
|
|
: llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
|
|
Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
Result.TaskDupFn, CGF.VoidPtrTy)
|
|
: llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
|
|
}
|
|
|
|
/// Emit reduction operation for each element of array (required for
|
|
/// array sections) LHS op = RHS.
|
|
/// \param Type Type of array.
|
|
/// \param LHSVar Variable on the left side of the reduction operation
|
|
/// (references element of array in original variable).
|
|
/// \param RHSVar Variable on the right side of the reduction operation
|
|
/// (references element of array in original variable).
|
|
/// \param RedOpGen Generator of reduction operation with use of LHSVar and
|
|
/// RHSVar.
|
|
static void EmitOMPAggregateReduction(
|
|
CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
|
|
const VarDecl *RHSVar,
|
|
const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
|
|
const Expr *, const Expr *)> &RedOpGen,
|
|
const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
|
|
const Expr *UpExpr = nullptr) {
|
|
// Perform element-by-element initialization.
|
|
QualType ElementTy;
|
|
Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
|
|
Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
|
|
|
|
// Drill down to the base element type on both arrays.
|
|
const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
|
|
llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
|
|
|
|
llvm::Value *RHSBegin = RHSAddr.getPointer();
|
|
llvm::Value *LHSBegin = LHSAddr.getPointer();
|
|
// Cast from pointer to array type to pointer to single element.
|
|
llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
|
|
// The basic structure here is a while-do loop.
|
|
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
|
|
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
|
|
llvm::Value *IsEmpty =
|
|
CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
|
|
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
|
|
|
|
// Enter the loop body, making that address the current address.
|
|
llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
|
|
CGF.EmitBlock(BodyBB);
|
|
|
|
CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
|
|
|
|
llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
|
|
RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
|
|
RHSElementPHI->addIncoming(RHSBegin, EntryBB);
|
|
Address RHSElementCurrent =
|
|
Address(RHSElementPHI,
|
|
RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
|
|
|
|
llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
|
|
LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
|
|
LHSElementPHI->addIncoming(LHSBegin, EntryBB);
|
|
Address LHSElementCurrent =
|
|
Address(LHSElementPHI,
|
|
LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
|
|
|
|
// Emit copy.
|
|
CodeGenFunction::OMPPrivateScope Scope(CGF);
|
|
Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
|
|
Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
|
|
Scope.Privatize();
|
|
RedOpGen(CGF, XExpr, EExpr, UpExpr);
|
|
Scope.ForceCleanup();
|
|
|
|
// Shift the address forward by one element.
|
|
llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
|
|
LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
|
|
llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
|
|
RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
|
|
// Check whether we've reached the end.
|
|
llvm::Value *Done =
|
|
CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
|
|
CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
|
|
LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
|
|
RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
|
|
|
|
// Done.
|
|
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
/// Emit reduction combiner. If the combiner is a simple expression emit it as
|
|
/// is, otherwise consider it as combiner of UDR decl and emit it as a call of
|
|
/// UDR combiner function.
|
|
static void emitReductionCombiner(CodeGenFunction &CGF,
|
|
const Expr *ReductionOp) {
|
|
if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
|
|
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
|
|
if (const auto *DRE =
|
|
dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
|
|
if (const auto *DRD =
|
|
dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
|
|
std::pair<llvm::Function *, llvm::Function *> Reduction =
|
|
CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
|
|
RValue Func = RValue::get(Reduction.first);
|
|
CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
|
|
CGF.EmitIgnoredExpr(ReductionOp);
|
|
return;
|
|
}
|
|
CGF.EmitIgnoredExpr(ReductionOp);
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitReductionFunction(
|
|
SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
|
|
ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
|
|
ArrayRef<const Expr *> ReductionOps) {
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
// void reduction_func(void *LHSArg, void *RHSArg);
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&LHSArg);
|
|
Args.push_back(&RHSArg);
|
|
const auto &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
std::string Name = getName({"omp", "reduction", "reduction_func"});
|
|
auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
|
|
llvm::GlobalValue::InternalLinkage, Name,
|
|
&CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
// Dst = (void*[n])(LHSArg);
|
|
// Src = (void*[n])(RHSArg);
|
|
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
|
|
ArgsType), CGF.getPointerAlign());
|
|
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
|
|
ArgsType), CGF.getPointerAlign());
|
|
|
|
// ...
|
|
// *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
|
|
// ...
|
|
CodeGenFunction::OMPPrivateScope Scope(CGF);
|
|
auto IPriv = Privates.begin();
|
|
unsigned Idx = 0;
|
|
for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
|
|
const auto *RHSVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
|
|
Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
|
|
return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
|
|
});
|
|
const auto *LHSVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
|
|
Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
|
|
return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
|
|
});
|
|
QualType PrivTy = (*IPriv)->getType();
|
|
if (PrivTy->isVariablyModifiedType()) {
|
|
// Get array size and emit VLA type.
|
|
++Idx;
|
|
Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
|
|
llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
|
|
const VariableArrayType *VLA =
|
|
CGF.getContext().getAsVariableArrayType(PrivTy);
|
|
const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
|
|
CodeGenFunction::OpaqueValueMapping OpaqueMap(
|
|
CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
|
|
CGF.EmitVariablyModifiedType(PrivTy);
|
|
}
|
|
}
|
|
Scope.Privatize();
|
|
IPriv = Privates.begin();
|
|
auto ILHS = LHSExprs.begin();
|
|
auto IRHS = RHSExprs.begin();
|
|
for (const Expr *E : ReductionOps) {
|
|
if ((*IPriv)->getType()->isArrayType()) {
|
|
// Emit reduction for array section.
|
|
const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
|
|
const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
|
|
EmitOMPAggregateReduction(
|
|
CGF, (*IPriv)->getType(), LHSVar, RHSVar,
|
|
[=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
|
|
emitReductionCombiner(CGF, E);
|
|
});
|
|
} else {
|
|
// Emit reduction for array subscript or single variable.
|
|
emitReductionCombiner(CGF, E);
|
|
}
|
|
++IPriv;
|
|
++ILHS;
|
|
++IRHS;
|
|
}
|
|
Scope.ForceCleanup();
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
|
|
const Expr *ReductionOp,
|
|
const Expr *PrivateRef,
|
|
const DeclRefExpr *LHS,
|
|
const DeclRefExpr *RHS) {
|
|
if (PrivateRef->getType()->isArrayType()) {
|
|
// Emit reduction for array section.
|
|
const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
|
|
const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
|
|
EmitOMPAggregateReduction(
|
|
CGF, PrivateRef->getType(), LHSVar, RHSVar,
|
|
[=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
|
|
emitReductionCombiner(CGF, ReductionOp);
|
|
});
|
|
} else {
|
|
// Emit reduction for array subscript or single variable.
|
|
emitReductionCombiner(CGF, ReductionOp);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
|
|
ArrayRef<const Expr *> Privates,
|
|
ArrayRef<const Expr *> LHSExprs,
|
|
ArrayRef<const Expr *> RHSExprs,
|
|
ArrayRef<const Expr *> ReductionOps,
|
|
ReductionOptionsTy Options) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
bool WithNowait = Options.WithNowait;
|
|
bool SimpleReduction = Options.SimpleReduction;
|
|
|
|
// Next code should be emitted for reduction:
|
|
//
|
|
// static kmp_critical_name lock = { 0 };
|
|
//
|
|
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
|
|
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
|
|
// ...
|
|
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
|
|
// *(Type<n>-1*)rhs[<n>-1]);
|
|
// }
|
|
//
|
|
// ...
|
|
// void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
|
|
// switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
|
|
// RedList, reduce_func, &<lock>)) {
|
|
// case 1:
|
|
// ...
|
|
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
|
|
// ...
|
|
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
|
|
// break;
|
|
// case 2:
|
|
// ...
|
|
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
|
|
// ...
|
|
// [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
|
|
// break;
|
|
// default:;
|
|
// }
|
|
//
|
|
// if SimpleReduction is true, only the next code is generated:
|
|
// ...
|
|
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
|
|
// ...
|
|
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
if (SimpleReduction) {
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
auto IPriv = Privates.begin();
|
|
auto ILHS = LHSExprs.begin();
|
|
auto IRHS = RHSExprs.begin();
|
|
for (const Expr *E : ReductionOps) {
|
|
emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
|
|
cast<DeclRefExpr>(*IRHS));
|
|
++IPriv;
|
|
++ILHS;
|
|
++IRHS;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// 1. Build a list of reduction variables.
|
|
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
|
|
auto Size = RHSExprs.size();
|
|
for (const Expr *E : Privates) {
|
|
if (E->getType()->isVariablyModifiedType())
|
|
// Reserve place for array size.
|
|
++Size;
|
|
}
|
|
llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
|
|
QualType ReductionArrayTy =
|
|
C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
Address ReductionList =
|
|
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
|
|
auto IPriv = Privates.begin();
|
|
unsigned Idx = 0;
|
|
for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
|
|
Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
|
|
CGF.Builder.CreateStore(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
|
|
Elem);
|
|
if ((*IPriv)->getType()->isVariablyModifiedType()) {
|
|
// Store array size.
|
|
++Idx;
|
|
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
|
|
llvm::Value *Size = CGF.Builder.CreateIntCast(
|
|
CGF.getVLASize(
|
|
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
|
|
.NumElts,
|
|
CGF.SizeTy, /*isSigned=*/false);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
|
|
Elem);
|
|
}
|
|
}
|
|
|
|
// 2. Emit reduce_func().
|
|
llvm::Function *ReductionFn = emitReductionFunction(
|
|
Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
|
|
LHSExprs, RHSExprs, ReductionOps);
|
|
|
|
// 3. Create static kmp_critical_name lock = { 0 };
|
|
std::string Name = getName({"reduction"});
|
|
llvm::Value *Lock = getCriticalRegionLock(Name);
|
|
|
|
// 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
|
|
// RedList, reduce_func, &<lock>);
|
|
llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
|
|
llvm::Value *ThreadId = getThreadID(CGF, Loc);
|
|
llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
|
|
llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
ReductionList.getPointer(), CGF.VoidPtrTy);
|
|
llvm::Value *Args[] = {
|
|
IdentTLoc, // ident_t *<loc>
|
|
ThreadId, // i32 <gtid>
|
|
CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
|
|
ReductionArrayTySize, // size_type sizeof(RedList)
|
|
RL, // void *RedList
|
|
ReductionFn, // void (*) (void *, void *) <reduce_func>
|
|
Lock // kmp_critical_name *&<lock>
|
|
};
|
|
llvm::Value *Res = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
|
|
: OMPRTL__kmpc_reduce),
|
|
Args);
|
|
|
|
// 5. Build switch(res)
|
|
llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
|
|
llvm::SwitchInst *SwInst =
|
|
CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
|
|
|
|
// 6. Build case 1:
|
|
// ...
|
|
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
|
|
// ...
|
|
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
|
|
// break;
|
|
llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
|
|
SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
|
|
CGF.EmitBlock(Case1BB);
|
|
|
|
// Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
|
|
llvm::Value *EndArgs[] = {
|
|
IdentTLoc, // ident_t *<loc>
|
|
ThreadId, // i32 <gtid>
|
|
Lock // kmp_critical_name *&<lock>
|
|
};
|
|
auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
|
|
CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
auto IPriv = Privates.begin();
|
|
auto ILHS = LHSExprs.begin();
|
|
auto IRHS = RHSExprs.begin();
|
|
for (const Expr *E : ReductionOps) {
|
|
RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
|
|
cast<DeclRefExpr>(*IRHS));
|
|
++IPriv;
|
|
++ILHS;
|
|
++IRHS;
|
|
}
|
|
};
|
|
RegionCodeGenTy RCG(CodeGen);
|
|
CommonActionTy Action(
|
|
nullptr, llvm::None,
|
|
createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
|
|
: OMPRTL__kmpc_end_reduce),
|
|
EndArgs);
|
|
RCG.setAction(Action);
|
|
RCG(CGF);
|
|
|
|
CGF.EmitBranch(DefaultBB);
|
|
|
|
// 7. Build case 2:
|
|
// ...
|
|
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
|
|
// ...
|
|
// break;
|
|
llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
|
|
SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
|
|
CGF.EmitBlock(Case2BB);
|
|
|
|
auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
|
|
CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
auto ILHS = LHSExprs.begin();
|
|
auto IRHS = RHSExprs.begin();
|
|
auto IPriv = Privates.begin();
|
|
for (const Expr *E : ReductionOps) {
|
|
const Expr *XExpr = nullptr;
|
|
const Expr *EExpr = nullptr;
|
|
const Expr *UpExpr = nullptr;
|
|
BinaryOperatorKind BO = BO_Comma;
|
|
if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
|
|
if (BO->getOpcode() == BO_Assign) {
|
|
XExpr = BO->getLHS();
|
|
UpExpr = BO->getRHS();
|
|
}
|
|
}
|
|
// Try to emit update expression as a simple atomic.
|
|
const Expr *RHSExpr = UpExpr;
|
|
if (RHSExpr) {
|
|
// Analyze RHS part of the whole expression.
|
|
if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
|
|
RHSExpr->IgnoreParenImpCasts())) {
|
|
// If this is a conditional operator, analyze its condition for
|
|
// min/max reduction operator.
|
|
RHSExpr = ACO->getCond();
|
|
}
|
|
if (const auto *BORHS =
|
|
dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
|
|
EExpr = BORHS->getRHS();
|
|
BO = BORHS->getOpcode();
|
|
}
|
|
}
|
|
if (XExpr) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
|
|
auto &&AtomicRedGen = [BO, VD,
|
|
Loc](CodeGenFunction &CGF, const Expr *XExpr,
|
|
const Expr *EExpr, const Expr *UpExpr) {
|
|
LValue X = CGF.EmitLValue(XExpr);
|
|
RValue E;
|
|
if (EExpr)
|
|
E = CGF.EmitAnyExpr(EExpr);
|
|
CGF.EmitOMPAtomicSimpleUpdateExpr(
|
|
X, E, BO, /*IsXLHSInRHSPart=*/true,
|
|
llvm::AtomicOrdering::Monotonic, Loc,
|
|
[&CGF, UpExpr, VD, Loc](RValue XRValue) {
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
PrivateScope.addPrivate(
|
|
VD, [&CGF, VD, XRValue, Loc]() {
|
|
Address LHSTemp = CGF.CreateMemTemp(VD->getType());
|
|
CGF.emitOMPSimpleStore(
|
|
CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
|
|
VD->getType().getNonReferenceType(), Loc);
|
|
return LHSTemp;
|
|
});
|
|
(void)PrivateScope.Privatize();
|
|
return CGF.EmitAnyExpr(UpExpr);
|
|
});
|
|
};
|
|
if ((*IPriv)->getType()->isArrayType()) {
|
|
// Emit atomic reduction for array section.
|
|
const auto *RHSVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
|
|
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
|
|
AtomicRedGen, XExpr, EExpr, UpExpr);
|
|
} else {
|
|
// Emit atomic reduction for array subscript or single variable.
|
|
AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
|
|
}
|
|
} else {
|
|
// Emit as a critical region.
|
|
auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
|
|
const Expr *, const Expr *) {
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
std::string Name = RT.getName({"atomic_reduction"});
|
|
RT.emitCriticalRegion(
|
|
CGF, Name,
|
|
[=](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
emitReductionCombiner(CGF, E);
|
|
},
|
|
Loc);
|
|
};
|
|
if ((*IPriv)->getType()->isArrayType()) {
|
|
const auto *LHSVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
|
|
const auto *RHSVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
|
|
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
|
|
CritRedGen);
|
|
} else {
|
|
CritRedGen(CGF, nullptr, nullptr, nullptr);
|
|
}
|
|
}
|
|
++ILHS;
|
|
++IRHS;
|
|
++IPriv;
|
|
}
|
|
};
|
|
RegionCodeGenTy AtomicRCG(AtomicCodeGen);
|
|
if (!WithNowait) {
|
|
// Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
|
|
llvm::Value *EndArgs[] = {
|
|
IdentTLoc, // ident_t *<loc>
|
|
ThreadId, // i32 <gtid>
|
|
Lock // kmp_critical_name *&<lock>
|
|
};
|
|
CommonActionTy Action(nullptr, llvm::None,
|
|
createRuntimeFunction(OMPRTL__kmpc_end_reduce),
|
|
EndArgs);
|
|
AtomicRCG.setAction(Action);
|
|
AtomicRCG(CGF);
|
|
} else {
|
|
AtomicRCG(CGF);
|
|
}
|
|
|
|
CGF.EmitBranch(DefaultBB);
|
|
CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
/// Generates unique name for artificial threadprivate variables.
|
|
/// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
|
|
static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
|
|
const Expr *Ref) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
const clang::DeclRefExpr *DE;
|
|
const VarDecl *D = ::getBaseDecl(Ref, DE);
|
|
if (!D)
|
|
D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
|
|
D = D->getCanonicalDecl();
|
|
std::string Name = CGM.getOpenMPRuntime().getName(
|
|
{D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
|
|
Out << Prefix << Name << "_"
|
|
<< D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
|
|
return Out.str();
|
|
}
|
|
|
|
/// Emits reduction initializer function:
|
|
/// \code
|
|
/// void @.red_init(void* %arg) {
|
|
/// %0 = bitcast void* %arg to <type>*
|
|
/// store <type> <init>, <type>* %0
|
|
/// ret void
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
|
|
SourceLocation Loc,
|
|
ReductionCodeGen &RCG, unsigned N) {
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.emplace_back(&Param);
|
|
const auto &FnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
|
|
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
|
|
Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
|
|
Address PrivateAddr = CGF.EmitLoadOfPointer(
|
|
CGF.GetAddrOfLocalVar(&Param),
|
|
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
|
|
llvm::Value *Size = nullptr;
|
|
// If the size of the reduction item is non-constant, load it from global
|
|
// threadprivate variable.
|
|
if (RCG.getSizes(N).second) {
|
|
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().getSizeType(),
|
|
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
|
|
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
|
|
CGM.getContext().getSizeType(), Loc);
|
|
}
|
|
RCG.emitAggregateType(CGF, N, Size);
|
|
LValue SharedLVal;
|
|
// If initializer uses initializer from declare reduction construct, emit a
|
|
// pointer to the address of the original reduction item (reuired by reduction
|
|
// initializer)
|
|
if (RCG.usesReductionInitializer(N)) {
|
|
Address SharedAddr =
|
|
CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().VoidPtrTy,
|
|
generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
|
|
SharedAddr = CGF.EmitLoadOfPointer(
|
|
SharedAddr,
|
|
CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
|
|
SharedLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
|
|
} else {
|
|
SharedLVal = CGF.MakeNaturalAlignAddrLValue(
|
|
llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
|
|
CGM.getContext().VoidPtrTy);
|
|
}
|
|
// Emit the initializer:
|
|
// %0 = bitcast void* %arg to <type>*
|
|
// store <type> <init>, <type>* %0
|
|
RCG.emitInitialization(CGF, N, PrivateAddr, SharedLVal,
|
|
[](CodeGenFunction &) { return false; });
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// Emits reduction combiner function:
|
|
/// \code
|
|
/// void @.red_comb(void* %arg0, void* %arg1) {
|
|
/// %lhs = bitcast void* %arg0 to <type>*
|
|
/// %rhs = bitcast void* %arg1 to <type>*
|
|
/// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
|
|
/// store <type> %2, <type>* %lhs
|
|
/// ret void
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
|
|
SourceLocation Loc,
|
|
ReductionCodeGen &RCG, unsigned N,
|
|
const Expr *ReductionOp,
|
|
const Expr *LHS, const Expr *RHS,
|
|
const Expr *PrivateRef) {
|
|
ASTContext &C = CGM.getContext();
|
|
const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
|
|
const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.emplace_back(&ParamInOut);
|
|
Args.emplace_back(&ParamIn);
|
|
const auto &FnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
|
|
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
|
|
Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
|
|
llvm::Value *Size = nullptr;
|
|
// If the size of the reduction item is non-constant, load it from global
|
|
// threadprivate variable.
|
|
if (RCG.getSizes(N).second) {
|
|
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().getSizeType(),
|
|
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
|
|
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
|
|
CGM.getContext().getSizeType(), Loc);
|
|
}
|
|
RCG.emitAggregateType(CGF, N, Size);
|
|
// Remap lhs and rhs variables to the addresses of the function arguments.
|
|
// %lhs = bitcast void* %arg0 to <type>*
|
|
// %rhs = bitcast void* %arg1 to <type>*
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
|
|
// Pull out the pointer to the variable.
|
|
Address PtrAddr = CGF.EmitLoadOfPointer(
|
|
CGF.GetAddrOfLocalVar(&ParamInOut),
|
|
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
|
|
return CGF.Builder.CreateElementBitCast(
|
|
PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
|
|
});
|
|
PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
|
|
// Pull out the pointer to the variable.
|
|
Address PtrAddr = CGF.EmitLoadOfPointer(
|
|
CGF.GetAddrOfLocalVar(&ParamIn),
|
|
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
|
|
return CGF.Builder.CreateElementBitCast(
|
|
PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
|
|
});
|
|
PrivateScope.Privatize();
|
|
// Emit the combiner body:
|
|
// %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
|
|
// store <type> %2, <type>* %lhs
|
|
CGM.getOpenMPRuntime().emitSingleReductionCombiner(
|
|
CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
|
|
cast<DeclRefExpr>(RHS));
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// Emits reduction finalizer function:
|
|
/// \code
|
|
/// void @.red_fini(void* %arg) {
|
|
/// %0 = bitcast void* %arg to <type>*
|
|
/// <destroy>(<type>* %0)
|
|
/// ret void
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
|
|
SourceLocation Loc,
|
|
ReductionCodeGen &RCG, unsigned N) {
|
|
if (!RCG.needCleanups(N))
|
|
return nullptr;
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.emplace_back(&Param);
|
|
const auto &FnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
|
|
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
|
|
Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
|
|
Address PrivateAddr = CGF.EmitLoadOfPointer(
|
|
CGF.GetAddrOfLocalVar(&Param),
|
|
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
|
|
llvm::Value *Size = nullptr;
|
|
// If the size of the reduction item is non-constant, load it from global
|
|
// threadprivate variable.
|
|
if (RCG.getSizes(N).second) {
|
|
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().getSizeType(),
|
|
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
|
|
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
|
|
CGM.getContext().getSizeType(), Loc);
|
|
}
|
|
RCG.emitAggregateType(CGF, N, Size);
|
|
// Emit the finalizer body:
|
|
// <destroy>(<type>* %0)
|
|
RCG.emitCleanups(CGF, N, PrivateAddr);
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
|
|
ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
|
|
if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
|
|
return nullptr;
|
|
|
|
// Build typedef struct:
|
|
// kmp_task_red_input {
|
|
// void *reduce_shar; // shared reduction item
|
|
// size_t reduce_size; // size of data item
|
|
// void *reduce_init; // data initialization routine
|
|
// void *reduce_fini; // data finalization routine
|
|
// void *reduce_comb; // data combiner routine
|
|
// kmp_task_red_flags_t flags; // flags for additional info from compiler
|
|
// } kmp_task_red_input_t;
|
|
ASTContext &C = CGM.getContext();
|
|
RecordDecl *RD = C.buildImplicitRecord("kmp_task_red_input_t");
|
|
RD->startDefinition();
|
|
const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
|
|
const FieldDecl *InitFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
const FieldDecl *FlagsFD = addFieldToRecordDecl(
|
|
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
|
|
RD->completeDefinition();
|
|
QualType RDType = C.getRecordType(RD);
|
|
unsigned Size = Data.ReductionVars.size();
|
|
llvm::APInt ArraySize(/*numBits=*/64, Size);
|
|
QualType ArrayRDType = C.getConstantArrayType(
|
|
RDType, ArraySize, ArrayType::Normal, /*IndexTypeQuals=*/0);
|
|
// kmp_task_red_input_t .rd_input.[Size];
|
|
Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
|
|
ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionCopies,
|
|
Data.ReductionOps);
|
|
for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
|
|
// kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
|
|
llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
|
|
llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
|
|
llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
|
|
TaskRedInput.getPointer(), Idxs,
|
|
/*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
|
|
".rd_input.gep.");
|
|
LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
|
|
// ElemLVal.reduce_shar = &Shareds[Cnt];
|
|
LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
|
|
RCG.emitSharedLValue(CGF, Cnt);
|
|
llvm::Value *CastedShared =
|
|
CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer());
|
|
CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
|
|
RCG.emitAggregateType(CGF, Cnt);
|
|
llvm::Value *SizeValInChars;
|
|
llvm::Value *SizeVal;
|
|
std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
|
|
// We use delayed creation/initialization for VLAs, array sections and
|
|
// custom reduction initializations. It is required because runtime does not
|
|
// provide the way to pass the sizes of VLAs/array sections to
|
|
// initializer/combiner/finalizer functions and does not pass the pointer to
|
|
// original reduction item to the initializer. Instead threadprivate global
|
|
// variables are used to store these values and use them in the functions.
|
|
bool DelayedCreation = !!SizeVal;
|
|
SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
|
|
/*isSigned=*/false);
|
|
LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
|
|
CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
|
|
// ElemLVal.reduce_init = init;
|
|
LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
|
|
llvm::Value *InitAddr =
|
|
CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
|
|
CGF.EmitStoreOfScalar(InitAddr, InitLVal);
|
|
DelayedCreation = DelayedCreation || RCG.usesReductionInitializer(Cnt);
|
|
// ElemLVal.reduce_fini = fini;
|
|
LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
|
|
llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
|
|
llvm::Value *FiniAddr = Fini
|
|
? CGF.EmitCastToVoidPtr(Fini)
|
|
: llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
|
|
CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
|
|
// ElemLVal.reduce_comb = comb;
|
|
LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
|
|
llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
|
|
CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
|
|
RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
|
|
CGF.EmitStoreOfScalar(CombAddr, CombLVal);
|
|
// ElemLVal.flags = 0;
|
|
LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
|
|
if (DelayedCreation) {
|
|
CGF.EmitStoreOfScalar(
|
|
llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
|
|
FlagsLVal);
|
|
} else
|
|
CGF.EmitNullInitialization(FlagsLVal.getAddress(), FlagsLVal.getType());
|
|
}
|
|
// Build call void *__kmpc_task_reduction_init(int gtid, int num_data, void
|
|
// *data);
|
|
llvm::Value *Args[] = {
|
|
CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
|
|
/*isSigned=*/true),
|
|
llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
|
|
CGM.VoidPtrTy)};
|
|
return CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_task_reduction_init), Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
ReductionCodeGen &RCG,
|
|
unsigned N) {
|
|
auto Sizes = RCG.getSizes(N);
|
|
// Emit threadprivate global variable if the type is non-constant
|
|
// (Sizes.second = nullptr).
|
|
if (Sizes.second) {
|
|
llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
|
|
/*isSigned=*/false);
|
|
Address SizeAddr = getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().getSizeType(),
|
|
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
|
|
CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
|
|
}
|
|
// Store address of the original reduction item if custom initializer is used.
|
|
if (RCG.usesReductionInitializer(N)) {
|
|
Address SharedAddr = getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().VoidPtrTy,
|
|
generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
|
|
CGF.Builder.CreateStore(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
RCG.getSharedLValue(N).getPointer(), CGM.VoidPtrTy),
|
|
SharedAddr, /*IsVolatile=*/false);
|
|
}
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
llvm::Value *ReductionsPtr,
|
|
LValue SharedLVal) {
|
|
// Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
|
|
// *d);
|
|
llvm::Value *Args[] = {
|
|
CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
|
|
/*isSigned=*/true),
|
|
ReductionsPtr,
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(SharedLVal.getPointer(),
|
|
CGM.VoidPtrTy)};
|
|
return Address(
|
|
CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_task_reduction_get_th_data), Args),
|
|
SharedLVal.getAlignment());
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
// Ignore return result until untied tasks are supported.
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
|
|
if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
|
|
Region->emitUntiedSwitch(CGF);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
|
|
OpenMPDirectiveKind InnerKind,
|
|
const RegionCodeGenTy &CodeGen,
|
|
bool HasCancel) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
|
|
CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
|
|
}
|
|
|
|
namespace {
|
|
enum RTCancelKind {
|
|
CancelNoreq = 0,
|
|
CancelParallel = 1,
|
|
CancelLoop = 2,
|
|
CancelSections = 3,
|
|
CancelTaskgroup = 4
|
|
};
|
|
} // anonymous namespace
|
|
|
|
static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
|
|
RTCancelKind CancelKind = CancelNoreq;
|
|
if (CancelRegion == OMPD_parallel)
|
|
CancelKind = CancelParallel;
|
|
else if (CancelRegion == OMPD_for)
|
|
CancelKind = CancelLoop;
|
|
else if (CancelRegion == OMPD_sections)
|
|
CancelKind = CancelSections;
|
|
else {
|
|
assert(CancelRegion == OMPD_taskgroup);
|
|
CancelKind = CancelTaskgroup;
|
|
}
|
|
return CancelKind;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitCancellationPointCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
OpenMPDirectiveKind CancelRegion) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_int32 cncl_kind);
|
|
if (auto *OMPRegionInfo =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
|
|
// For 'cancellation point taskgroup', the task region info may not have a
|
|
// cancel. This may instead happen in another adjacent task.
|
|
if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
|
|
// Ignore return result until untied tasks are supported.
|
|
llvm::Value *Result = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
|
|
// if (__kmpc_cancellationpoint()) {
|
|
// exit from construct;
|
|
// }
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
|
|
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
|
|
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
|
|
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
|
|
CGF.EmitBlock(ExitBB);
|
|
// exit from construct;
|
|
CodeGenFunction::JumpDest CancelDest =
|
|
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
|
|
CGF.EmitBranchThroughCleanup(CancelDest);
|
|
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
const Expr *IfCond,
|
|
OpenMPDirectiveKind CancelRegion) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 cncl_kind);
|
|
if (auto *OMPRegionInfo =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
|
|
auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
llvm::Value *Args[] = {
|
|
RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
|
|
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
|
|
// Ignore return result until untied tasks are supported.
|
|
llvm::Value *Result = CGF.EmitRuntimeCall(
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
|
|
// if (__kmpc_cancel()) {
|
|
// exit from construct;
|
|
// }
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
|
|
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
|
|
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
|
|
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
|
|
CGF.EmitBlock(ExitBB);
|
|
// exit from construct;
|
|
CodeGenFunction::JumpDest CancelDest =
|
|
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
|
|
CGF.EmitBranchThroughCleanup(CancelDest);
|
|
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
|
|
};
|
|
if (IfCond) {
|
|
emitOMPIfClause(CGF, IfCond, ThenGen,
|
|
[](CodeGenFunction &, PrePostActionTy &) {});
|
|
} else {
|
|
RegionCodeGenTy ThenRCG(ThenGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetOutlinedFunction(
|
|
const OMPExecutableDirective &D, StringRef ParentName,
|
|
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
|
|
assert(!ParentName.empty() && "Invalid target region parent name!");
|
|
HasEmittedTargetRegion = true;
|
|
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
|
|
IsOffloadEntry, CodeGen);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
|
|
const OMPExecutableDirective &D, StringRef ParentName,
|
|
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
|
|
// Create a unique name for the entry function using the source location
|
|
// information of the current target region. The name will be something like:
|
|
//
|
|
// __omp_offloading_DD_FFFF_PP_lBB
|
|
//
|
|
// where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
|
|
// mangled name of the function that encloses the target region and BB is the
|
|
// line number of the target region.
|
|
|
|
unsigned DeviceID;
|
|
unsigned FileID;
|
|
unsigned Line;
|
|
getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
|
|
Line);
|
|
SmallString<64> EntryFnName;
|
|
{
|
|
llvm::raw_svector_ostream OS(EntryFnName);
|
|
OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
|
|
<< llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
|
|
}
|
|
|
|
const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
|
|
|
|
CodeGenFunction CGF(CGM, true);
|
|
CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
|
|
OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS);
|
|
|
|
// If this target outline function is not an offload entry, we don't need to
|
|
// register it.
|
|
if (!IsOffloadEntry)
|
|
return;
|
|
|
|
// The target region ID is used by the runtime library to identify the current
|
|
// target region, so it only has to be unique and not necessarily point to
|
|
// anything. It could be the pointer to the outlined function that implements
|
|
// the target region, but we aren't using that so that the compiler doesn't
|
|
// need to keep that, and could therefore inline the host function if proven
|
|
// worthwhile during optimization. In the other hand, if emitting code for the
|
|
// device, the ID has to be the function address so that it can retrieved from
|
|
// the offloading entry and launched by the runtime library. We also mark the
|
|
// outlined function to have external linkage in case we are emitting code for
|
|
// the device, because these functions will be entry points to the device.
|
|
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
|
|
OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
|
|
OutlinedFn->setDSOLocal(false);
|
|
} else {
|
|
std::string Name = getName({EntryFnName, "region_id"});
|
|
OutlinedFnID = new llvm::GlobalVariable(
|
|
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
|
|
llvm::GlobalValue::WeakAnyLinkage,
|
|
llvm::Constant::getNullValue(CGM.Int8Ty), Name);
|
|
}
|
|
|
|
// Register the information for the entry associated with this target region.
|
|
OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
|
|
DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
|
|
OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
|
|
}
|
|
|
|
/// Checks if the expression is constant or does not have non-trivial function
|
|
/// calls.
|
|
static bool isTrivial(ASTContext &Ctx, const Expr * E) {
|
|
// We can skip constant expressions.
|
|
// We can skip expressions with trivial calls or simple expressions.
|
|
return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
|
|
!E->hasNonTrivialCall(Ctx)) &&
|
|
!E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
|
|
}
|
|
|
|
const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
|
|
const Stmt *Body) {
|
|
const Stmt *Child = Body->IgnoreContainers();
|
|
while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
|
|
Child = nullptr;
|
|
for (const Stmt *S : C->body()) {
|
|
if (const auto *E = dyn_cast<Expr>(S)) {
|
|
if (isTrivial(Ctx, E))
|
|
continue;
|
|
}
|
|
// Some of the statements can be ignored.
|
|
if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
|
|
isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
|
|
continue;
|
|
// Analyze declarations.
|
|
if (const auto *DS = dyn_cast<DeclStmt>(S)) {
|
|
if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
|
|
if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
|
|
isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
|
|
isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
|
|
isa<UsingDirectiveDecl>(D) ||
|
|
isa<OMPDeclareReductionDecl>(D) ||
|
|
isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
|
|
return true;
|
|
const auto *VD = dyn_cast<VarDecl>(D);
|
|
if (!VD)
|
|
return false;
|
|
return VD->isConstexpr() ||
|
|
((VD->getType().isTrivialType(Ctx) ||
|
|
VD->getType()->isReferenceType()) &&
|
|
(!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
|
|
}))
|
|
continue;
|
|
}
|
|
// Found multiple children - cannot get the one child only.
|
|
if (Child)
|
|
return nullptr;
|
|
Child = S;
|
|
}
|
|
if (Child)
|
|
Child = Child->IgnoreContainers();
|
|
}
|
|
return Child;
|
|
}
|
|
|
|
/// Emit the number of teams for a target directive. Inspect the num_teams
|
|
/// clause associated with a teams construct combined or closely nested
|
|
/// with the target directive.
|
|
///
|
|
/// Emit a team of size one for directives such as 'target parallel' that
|
|
/// have no associated teams construct.
|
|
///
|
|
/// Otherwise, return nullptr.
|
|
static llvm::Value *
|
|
emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D) {
|
|
assert(!CGF.getLangOpts().OpenMPIsDevice &&
|
|
"Clauses associated with the teams directive expected to be emitted "
|
|
"only for the host!");
|
|
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
|
|
assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
|
|
"Expected target-based executable directive.");
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
switch (DirectiveKind) {
|
|
case OMPD_target: {
|
|
const auto *CS = D.getInnermostCapturedStmt();
|
|
const auto *Body =
|
|
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
|
|
const Stmt *ChildStmt =
|
|
CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
|
|
if (const auto *NestedDir =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
|
|
if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
|
|
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
const Expr *NumTeams =
|
|
NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
|
|
llvm::Value *NumTeamsVal =
|
|
CGF.EmitScalarExpr(NumTeams,
|
|
/*IgnoreResultAssign*/ true);
|
|
return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
|
|
/*isSigned=*/true);
|
|
}
|
|
return Bld.getInt32(0);
|
|
}
|
|
if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
|
|
isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
|
|
return Bld.getInt32(1);
|
|
return Bld.getInt32(0);
|
|
}
|
|
return nullptr;
|
|
}
|
|
case OMPD_target_teams:
|
|
case OMPD_target_teams_distribute:
|
|
case OMPD_target_teams_distribute_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd: {
|
|
if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
|
|
CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
|
|
const Expr *NumTeams =
|
|
D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
|
|
llvm::Value *NumTeamsVal =
|
|
CGF.EmitScalarExpr(NumTeams,
|
|
/*IgnoreResultAssign*/ true);
|
|
return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
|
|
/*isSigned=*/true);
|
|
}
|
|
return Bld.getInt32(0);
|
|
}
|
|
case OMPD_target_parallel:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
case OMPD_target_simd:
|
|
return Bld.getInt32(1);
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
break;
|
|
}
|
|
llvm_unreachable("Unexpected directive kind.");
|
|
}
|
|
|
|
static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
|
|
llvm::Value *DefaultThreadLimitVal) {
|
|
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
|
|
CGF.getContext(), CS->getCapturedStmt());
|
|
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
|
|
if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
|
|
llvm::Value *NumThreads = nullptr;
|
|
llvm::Value *CondVal = nullptr;
|
|
// Handle if clause. If if clause present, the number of threads is
|
|
// calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
|
|
if (Dir->hasClausesOfKind<OMPIfClause>()) {
|
|
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
const OMPIfClause *IfClause = nullptr;
|
|
for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
|
|
if (C->getNameModifier() == OMPD_unknown ||
|
|
C->getNameModifier() == OMPD_parallel) {
|
|
IfClause = C;
|
|
break;
|
|
}
|
|
}
|
|
if (IfClause) {
|
|
const Expr *Cond = IfClause->getCondition();
|
|
bool Result;
|
|
if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
|
|
if (!Result)
|
|
return CGF.Builder.getInt32(1);
|
|
} else {
|
|
CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
|
|
if (const auto *PreInit =
|
|
cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
|
|
for (const auto *I : PreInit->decls()) {
|
|
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
|
|
CGF.EmitVarDecl(cast<VarDecl>(*I));
|
|
} else {
|
|
CodeGenFunction::AutoVarEmission Emission =
|
|
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
|
|
CGF.EmitAutoVarCleanups(Emission);
|
|
}
|
|
}
|
|
}
|
|
CondVal = CGF.EvaluateExprAsBool(Cond);
|
|
}
|
|
}
|
|
}
|
|
// Check the value of num_threads clause iff if clause was not specified
|
|
// or is not evaluated to false.
|
|
if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
|
|
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
const auto *NumThreadsClause =
|
|
Dir->getSingleClause<OMPNumThreadsClause>();
|
|
CodeGenFunction::LexicalScope Scope(
|
|
CGF, NumThreadsClause->getNumThreads()->getSourceRange());
|
|
if (const auto *PreInit =
|
|
cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
|
|
for (const auto *I : PreInit->decls()) {
|
|
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
|
|
CGF.EmitVarDecl(cast<VarDecl>(*I));
|
|
} else {
|
|
CodeGenFunction::AutoVarEmission Emission =
|
|
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
|
|
CGF.EmitAutoVarCleanups(Emission);
|
|
}
|
|
}
|
|
}
|
|
NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
|
|
NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
|
|
/*isSigned=*/false);
|
|
if (DefaultThreadLimitVal)
|
|
NumThreads = CGF.Builder.CreateSelect(
|
|
CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
|
|
DefaultThreadLimitVal, NumThreads);
|
|
} else {
|
|
NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
|
|
: CGF.Builder.getInt32(0);
|
|
}
|
|
// Process condition of the if clause.
|
|
if (CondVal) {
|
|
NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
|
|
CGF.Builder.getInt32(1));
|
|
}
|
|
return NumThreads;
|
|
}
|
|
if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
|
|
return CGF.Builder.getInt32(1);
|
|
return DefaultThreadLimitVal;
|
|
}
|
|
return DefaultThreadLimitVal ? DefaultThreadLimitVal
|
|
: CGF.Builder.getInt32(0);
|
|
}
|
|
|
|
/// Emit the number of threads for a target directive. Inspect the
|
|
/// thread_limit clause associated with a teams construct combined or closely
|
|
/// nested with the target directive.
|
|
///
|
|
/// Emit the num_threads clause for directives such as 'target parallel' that
|
|
/// have no associated teams construct.
|
|
///
|
|
/// Otherwise, return nullptr.
|
|
static llvm::Value *
|
|
emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D) {
|
|
assert(!CGF.getLangOpts().OpenMPIsDevice &&
|
|
"Clauses associated with the teams directive expected to be emitted "
|
|
"only for the host!");
|
|
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
|
|
assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
|
|
"Expected target-based executable directive.");
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
llvm::Value *ThreadLimitVal = nullptr;
|
|
llvm::Value *NumThreadsVal = nullptr;
|
|
switch (DirectiveKind) {
|
|
case OMPD_target: {
|
|
const CapturedStmt *CS = D.getInnermostCapturedStmt();
|
|
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
|
|
return NumThreads;
|
|
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
|
|
CGF.getContext(), CS->getCapturedStmt());
|
|
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
|
|
if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
|
|
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
const auto *ThreadLimitClause =
|
|
Dir->getSingleClause<OMPThreadLimitClause>();
|
|
CodeGenFunction::LexicalScope Scope(
|
|
CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
|
|
if (const auto *PreInit =
|
|
cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
|
|
for (const auto *I : PreInit->decls()) {
|
|
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
|
|
CGF.EmitVarDecl(cast<VarDecl>(*I));
|
|
} else {
|
|
CodeGenFunction::AutoVarEmission Emission =
|
|
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
|
|
CGF.EmitAutoVarCleanups(Emission);
|
|
}
|
|
}
|
|
}
|
|
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
|
|
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
|
|
ThreadLimitVal =
|
|
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
|
|
}
|
|
if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
|
|
!isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
|
|
CS = Dir->getInnermostCapturedStmt();
|
|
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
|
|
CGF.getContext(), CS->getCapturedStmt());
|
|
Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
|
|
}
|
|
if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
|
|
!isOpenMPSimdDirective(Dir->getDirectiveKind())) {
|
|
CS = Dir->getInnermostCapturedStmt();
|
|
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
|
|
return NumThreads;
|
|
}
|
|
if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
|
|
return Bld.getInt32(1);
|
|
}
|
|
return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
|
|
}
|
|
case OMPD_target_teams: {
|
|
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
|
|
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
|
|
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
|
|
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
|
|
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
|
|
ThreadLimitVal =
|
|
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
|
|
}
|
|
const CapturedStmt *CS = D.getInnermostCapturedStmt();
|
|
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
|
|
return NumThreads;
|
|
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
|
|
CGF.getContext(), CS->getCapturedStmt());
|
|
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
|
|
if (Dir->getDirectiveKind() == OMPD_distribute) {
|
|
CS = Dir->getInnermostCapturedStmt();
|
|
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
|
|
return NumThreads;
|
|
}
|
|
}
|
|
return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
|
|
}
|
|
case OMPD_target_teams_distribute:
|
|
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
|
|
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
|
|
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
|
|
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
|
|
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
|
|
ThreadLimitVal =
|
|
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
|
|
}
|
|
return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
|
|
case OMPD_target_parallel:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd: {
|
|
llvm::Value *CondVal = nullptr;
|
|
// Handle if clause. If if clause present, the number of threads is
|
|
// calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
|
|
if (D.hasClausesOfKind<OMPIfClause>()) {
|
|
const OMPIfClause *IfClause = nullptr;
|
|
for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
|
|
if (C->getNameModifier() == OMPD_unknown ||
|
|
C->getNameModifier() == OMPD_parallel) {
|
|
IfClause = C;
|
|
break;
|
|
}
|
|
}
|
|
if (IfClause) {
|
|
const Expr *Cond = IfClause->getCondition();
|
|
bool Result;
|
|
if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
|
|
if (!Result)
|
|
return Bld.getInt32(1);
|
|
} else {
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
CondVal = CGF.EvaluateExprAsBool(Cond);
|
|
}
|
|
}
|
|
}
|
|
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
|
|
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
|
|
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
|
|
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
|
|
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
|
|
ThreadLimitVal =
|
|
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
|
|
}
|
|
if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
|
|
CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
|
|
const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
|
|
llvm::Value *NumThreads = CGF.EmitScalarExpr(
|
|
NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
|
|
NumThreadsVal =
|
|
Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
|
|
ThreadLimitVal = ThreadLimitVal
|
|
? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
|
|
ThreadLimitVal),
|
|
NumThreadsVal, ThreadLimitVal)
|
|
: NumThreadsVal;
|
|
}
|
|
if (!ThreadLimitVal)
|
|
ThreadLimitVal = Bld.getInt32(0);
|
|
if (CondVal)
|
|
return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
|
|
return ThreadLimitVal;
|
|
}
|
|
case OMPD_target_teams_distribute_simd:
|
|
case OMPD_target_simd:
|
|
return Bld.getInt32(1);
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
break;
|
|
}
|
|
llvm_unreachable("Unsupported directive kind.");
|
|
}
|
|
|
|
namespace {
|
|
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
|
|
|
|
// Utility to handle information from clauses associated with a given
|
|
// construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
|
|
// It provides a convenient interface to obtain the information and generate
|
|
// code for that information.
|
|
class MappableExprsHandler {
|
|
public:
|
|
/// Values for bit flags used to specify the mapping type for
|
|
/// offloading.
|
|
enum OpenMPOffloadMappingFlags : uint64_t {
|
|
/// No flags
|
|
OMP_MAP_NONE = 0x0,
|
|
/// Allocate memory on the device and move data from host to device.
|
|
OMP_MAP_TO = 0x01,
|
|
/// Allocate memory on the device and move data from device to host.
|
|
OMP_MAP_FROM = 0x02,
|
|
/// Always perform the requested mapping action on the element, even
|
|
/// if it was already mapped before.
|
|
OMP_MAP_ALWAYS = 0x04,
|
|
/// Delete the element from the device environment, ignoring the
|
|
/// current reference count associated with the element.
|
|
OMP_MAP_DELETE = 0x08,
|
|
/// The element being mapped is a pointer-pointee pair; both the
|
|
/// pointer and the pointee should be mapped.
|
|
OMP_MAP_PTR_AND_OBJ = 0x10,
|
|
/// This flags signals that the base address of an entry should be
|
|
/// passed to the target kernel as an argument.
|
|
OMP_MAP_TARGET_PARAM = 0x20,
|
|
/// Signal that the runtime library has to return the device pointer
|
|
/// in the current position for the data being mapped. Used when we have the
|
|
/// use_device_ptr clause.
|
|
OMP_MAP_RETURN_PARAM = 0x40,
|
|
/// This flag signals that the reference being passed is a pointer to
|
|
/// private data.
|
|
OMP_MAP_PRIVATE = 0x80,
|
|
/// Pass the element to the device by value.
|
|
OMP_MAP_LITERAL = 0x100,
|
|
/// Implicit map
|
|
OMP_MAP_IMPLICIT = 0x200,
|
|
/// The 16 MSBs of the flags indicate whether the entry is member of some
|
|
/// struct/class.
|
|
OMP_MAP_MEMBER_OF = 0xffff000000000000,
|
|
LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
|
|
};
|
|
|
|
/// Class that associates information with a base pointer to be passed to the
|
|
/// runtime library.
|
|
class BasePointerInfo {
|
|
/// The base pointer.
|
|
llvm::Value *Ptr = nullptr;
|
|
/// The base declaration that refers to this device pointer, or null if
|
|
/// there is none.
|
|
const ValueDecl *DevPtrDecl = nullptr;
|
|
|
|
public:
|
|
BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
|
|
: Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
|
|
llvm::Value *operator*() const { return Ptr; }
|
|
const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
|
|
void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
|
|
};
|
|
|
|
using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
|
|
using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
|
|
using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
|
|
|
|
/// Map between a struct and the its lowest & highest elements which have been
|
|
/// mapped.
|
|
/// [ValueDecl *] --> {LE(FieldIndex, Pointer),
|
|
/// HE(FieldIndex, Pointer)}
|
|
struct StructRangeInfoTy {
|
|
std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
|
|
0, Address::invalid()};
|
|
std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
|
|
0, Address::invalid()};
|
|
Address Base = Address::invalid();
|
|
};
|
|
|
|
private:
|
|
/// Kind that defines how a device pointer has to be returned.
|
|
struct MapInfo {
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
|
|
OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers;
|
|
bool ReturnDevicePointer = false;
|
|
bool IsImplicit = false;
|
|
|
|
MapInfo() = default;
|
|
MapInfo(
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
|
|
OpenMPMapClauseKind MapType,
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers,
|
|
bool ReturnDevicePointer, bool IsImplicit)
|
|
: Components(Components), MapType(MapType), MapModifiers(MapModifiers),
|
|
ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit) {}
|
|
};
|
|
|
|
/// If use_device_ptr is used on a pointer which is a struct member and there
|
|
/// is no map information about it, then emission of that entry is deferred
|
|
/// until the whole struct has been processed.
|
|
struct DeferredDevicePtrEntryTy {
|
|
const Expr *IE = nullptr;
|
|
const ValueDecl *VD = nullptr;
|
|
|
|
DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD)
|
|
: IE(IE), VD(VD) {}
|
|
};
|
|
|
|
/// Directive from where the map clauses were extracted.
|
|
const OMPExecutableDirective &CurDir;
|
|
|
|
/// Function the directive is being generated for.
|
|
CodeGenFunction &CGF;
|
|
|
|
/// Set of all first private variables in the current directive.
|
|
/// bool data is set to true if the variable is implicitly marked as
|
|
/// firstprivate, false otherwise.
|
|
llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
|
|
|
|
/// Map between device pointer declarations and their expression components.
|
|
/// The key value for declarations in 'this' is null.
|
|
llvm::DenseMap<
|
|
const ValueDecl *,
|
|
SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
|
|
DevPointersMap;
|
|
|
|
llvm::Value *getExprTypeSize(const Expr *E) const {
|
|
QualType ExprTy = E->getType().getCanonicalType();
|
|
|
|
// Reference types are ignored for mapping purposes.
|
|
if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
|
|
ExprTy = RefTy->getPointeeType().getCanonicalType();
|
|
|
|
// Given that an array section is considered a built-in type, we need to
|
|
// do the calculation based on the length of the section instead of relying
|
|
// on CGF.getTypeSize(E->getType()).
|
|
if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
|
|
QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
|
|
OAE->getBase()->IgnoreParenImpCasts())
|
|
.getCanonicalType();
|
|
|
|
// If there is no length associated with the expression, that means we
|
|
// are using the whole length of the base.
|
|
if (!OAE->getLength() && OAE->getColonLoc().isValid())
|
|
return CGF.getTypeSize(BaseTy);
|
|
|
|
llvm::Value *ElemSize;
|
|
if (const auto *PTy = BaseTy->getAs<PointerType>()) {
|
|
ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
|
|
} else {
|
|
const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
|
|
assert(ATy && "Expecting array type if not a pointer type.");
|
|
ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
|
|
}
|
|
|
|
// If we don't have a length at this point, that is because we have an
|
|
// array section with a single element.
|
|
if (!OAE->getLength())
|
|
return ElemSize;
|
|
|
|
llvm::Value *LengthVal = CGF.EmitScalarExpr(OAE->getLength());
|
|
LengthVal =
|
|
CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false);
|
|
return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
|
|
}
|
|
return CGF.getTypeSize(ExprTy);
|
|
}
|
|
|
|
/// Return the corresponding bits for a given map clause modifier. Add
|
|
/// a flag marking the map as a pointer if requested. Add a flag marking the
|
|
/// map as the first one of a series of maps that relate to the same map
|
|
/// expression.
|
|
OpenMPOffloadMappingFlags getMapTypeBits(
|
|
OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
|
|
bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag) const {
|
|
OpenMPOffloadMappingFlags Bits =
|
|
IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
|
|
switch (MapType) {
|
|
case OMPC_MAP_alloc:
|
|
case OMPC_MAP_release:
|
|
// alloc and release is the default behavior in the runtime library, i.e.
|
|
// if we don't pass any bits alloc/release that is what the runtime is
|
|
// going to do. Therefore, we don't need to signal anything for these two
|
|
// type modifiers.
|
|
break;
|
|
case OMPC_MAP_to:
|
|
Bits |= OMP_MAP_TO;
|
|
break;
|
|
case OMPC_MAP_from:
|
|
Bits |= OMP_MAP_FROM;
|
|
break;
|
|
case OMPC_MAP_tofrom:
|
|
Bits |= OMP_MAP_TO | OMP_MAP_FROM;
|
|
break;
|
|
case OMPC_MAP_delete:
|
|
Bits |= OMP_MAP_DELETE;
|
|
break;
|
|
case OMPC_MAP_unknown:
|
|
llvm_unreachable("Unexpected map type!");
|
|
}
|
|
if (AddPtrFlag)
|
|
Bits |= OMP_MAP_PTR_AND_OBJ;
|
|
if (AddIsTargetParamFlag)
|
|
Bits |= OMP_MAP_TARGET_PARAM;
|
|
if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
|
|
!= MapModifiers.end())
|
|
Bits |= OMP_MAP_ALWAYS;
|
|
return Bits;
|
|
}
|
|
|
|
/// Return true if the provided expression is a final array section. A
|
|
/// final array section, is one whose length can't be proved to be one.
|
|
bool isFinalArraySectionExpression(const Expr *E) const {
|
|
const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
|
|
|
|
// It is not an array section and therefore not a unity-size one.
|
|
if (!OASE)
|
|
return false;
|
|
|
|
// An array section with no colon always refer to a single element.
|
|
if (OASE->getColonLoc().isInvalid())
|
|
return false;
|
|
|
|
const Expr *Length = OASE->getLength();
|
|
|
|
// If we don't have a length we have to check if the array has size 1
|
|
// for this dimension. Also, we should always expect a length if the
|
|
// base type is pointer.
|
|
if (!Length) {
|
|
QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
|
|
OASE->getBase()->IgnoreParenImpCasts())
|
|
.getCanonicalType();
|
|
if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
|
|
return ATy->getSize().getSExtValue() != 1;
|
|
// If we don't have a constant dimension length, we have to consider
|
|
// the current section as having any size, so it is not necessarily
|
|
// unitary. If it happen to be unity size, that's user fault.
|
|
return true;
|
|
}
|
|
|
|
// Check if the length evaluates to 1.
|
|
Expr::EvalResult Result;
|
|
if (!Length->EvaluateAsInt(Result, CGF.getContext()))
|
|
return true; // Can have more that size 1.
|
|
|
|
llvm::APSInt ConstLength = Result.Val.getInt();
|
|
return ConstLength.getSExtValue() != 1;
|
|
}
|
|
|
|
/// Generate the base pointers, section pointers, sizes and map type
|
|
/// bits for the provided map type, map modifier, and expression components.
|
|
/// \a IsFirstComponent should be set to true if the provided set of
|
|
/// components is the first associated with a capture.
|
|
void generateInfoForComponentList(
|
|
OpenMPMapClauseKind MapType,
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers,
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
|
|
MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
|
|
MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
|
|
StructRangeInfoTy &PartialStruct, bool IsFirstComponentList,
|
|
bool IsImplicit,
|
|
ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
|
|
OverlappedElements = llvm::None) const {
|
|
// The following summarizes what has to be generated for each map and the
|
|
// types below. The generated information is expressed in this order:
|
|
// base pointer, section pointer, size, flags
|
|
// (to add to the ones that come from the map type and modifier).
|
|
//
|
|
// double d;
|
|
// int i[100];
|
|
// float *p;
|
|
//
|
|
// struct S1 {
|
|
// int i;
|
|
// float f[50];
|
|
// }
|
|
// struct S2 {
|
|
// int i;
|
|
// float f[50];
|
|
// S1 s;
|
|
// double *p;
|
|
// struct S2 *ps;
|
|
// }
|
|
// S2 s;
|
|
// S2 *ps;
|
|
//
|
|
// map(d)
|
|
// &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(i)
|
|
// &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(i[1:23])
|
|
// &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(p)
|
|
// &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(p[1:24])
|
|
// p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(s)
|
|
// &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(s.i)
|
|
// &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(s.s.f)
|
|
// &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(s.p)
|
|
// &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(to: s.p[:22])
|
|
// &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
|
|
// &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
|
|
// &(s.p), &(s.p[0]), 22*sizeof(double),
|
|
// MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
|
|
// (*) alloc space for struct members, only this is a target parameter
|
|
// (**) map the pointer (nothing to be mapped in this example) (the compiler
|
|
// optimizes this entry out, same in the examples below)
|
|
// (***) map the pointee (map: to)
|
|
//
|
|
// map(s.ps)
|
|
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(from: s.ps->s.i)
|
|
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
|
|
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
|
|
//
|
|
// map(to: s.ps->ps)
|
|
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
|
|
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | TO
|
|
//
|
|
// map(s.ps->ps->ps)
|
|
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
|
|
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
|
|
// &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
|
|
//
|
|
// map(to: s.ps->ps->s.f[:22])
|
|
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
|
|
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
|
|
// &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
|
|
//
|
|
// map(ps)
|
|
// &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(ps->i)
|
|
// ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(ps->s.f)
|
|
// ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(from: ps->p)
|
|
// ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
|
|
//
|
|
// map(to: ps->p[:22])
|
|
// ps, &(ps->p), sizeof(double*), TARGET_PARAM
|
|
// ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
|
|
// &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
|
|
//
|
|
// map(ps->ps)
|
|
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(from: ps->ps->s.i)
|
|
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
|
|
//
|
|
// map(from: ps->ps->ps)
|
|
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
|
|
//
|
|
// map(ps->ps->ps->ps)
|
|
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
|
|
// &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
|
|
//
|
|
// map(to: ps->ps->ps->s.f[:22])
|
|
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
|
|
// &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
|
|
//
|
|
// map(to: s.f[:22]) map(from: s.p[:33])
|
|
// &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
|
|
// sizeof(double*) (**), TARGET_PARAM
|
|
// &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
|
|
// &s, &(s.p), sizeof(double*), MEMBER_OF(1)
|
|
// &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
|
|
// (*) allocate contiguous space needed to fit all mapped members even if
|
|
// we allocate space for members not mapped (in this example,
|
|
// s.f[22..49] and s.s are not mapped, yet we must allocate space for
|
|
// them as well because they fall between &s.f[0] and &s.p)
|
|
//
|
|
// map(from: s.f[:22]) map(to: ps->p[:33])
|
|
// &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
|
|
// ps, &(ps->p), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
|
|
// &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
|
|
// (*) the struct this entry pertains to is the 2nd element in the list of
|
|
// arguments, hence MEMBER_OF(2)
|
|
//
|
|
// map(from: s.f[:22], s.s) map(to: ps->p[:33])
|
|
// &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
|
|
// &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
|
|
// &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
|
|
// ps, &(ps->p), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
|
|
// &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
|
|
// (*) the struct this entry pertains to is the 4th element in the list
|
|
// of arguments, hence MEMBER_OF(4)
|
|
|
|
// Track if the map information being generated is the first for a capture.
|
|
bool IsCaptureFirstInfo = IsFirstComponentList;
|
|
// When the variable is on a declare target link or in a to clause with
|
|
// unified memory, a reference is needed to hold the host/device address
|
|
// of the variable.
|
|
bool RequiresReference = false;
|
|
|
|
// Scan the components from the base to the complete expression.
|
|
auto CI = Components.rbegin();
|
|
auto CE = Components.rend();
|
|
auto I = CI;
|
|
|
|
// Track if the map information being generated is the first for a list of
|
|
// components.
|
|
bool IsExpressionFirstInfo = true;
|
|
Address BP = Address::invalid();
|
|
const Expr *AssocExpr = I->getAssociatedExpression();
|
|
const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
|
|
const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
|
|
|
|
if (isa<MemberExpr>(AssocExpr)) {
|
|
// The base is the 'this' pointer. The content of the pointer is going
|
|
// to be the base of the field being mapped.
|
|
BP = CGF.LoadCXXThisAddress();
|
|
} else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
|
|
(OASE &&
|
|
isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
|
|
BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
|
|
} else {
|
|
// The base is the reference to the variable.
|
|
// BP = &Var.
|
|
BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
|
|
if (const auto *VD =
|
|
dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
|
|
if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
|
|
if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
|
|
RequiresReference = true;
|
|
BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the variable is a pointer and is being dereferenced (i.e. is not
|
|
// the last component), the base has to be the pointer itself, not its
|
|
// reference. References are ignored for mapping purposes.
|
|
QualType Ty =
|
|
I->getAssociatedDeclaration()->getType().getNonReferenceType();
|
|
if (Ty->isAnyPointerType() && std::next(I) != CE) {
|
|
BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
|
|
|
|
// We do not need to generate individual map information for the
|
|
// pointer, it can be associated with the combined storage.
|
|
++I;
|
|
}
|
|
}
|
|
|
|
// Track whether a component of the list should be marked as MEMBER_OF some
|
|
// combined entry (for partial structs). Only the first PTR_AND_OBJ entry
|
|
// in a component list should be marked as MEMBER_OF, all subsequent entries
|
|
// do not belong to the base struct. E.g.
|
|
// struct S2 s;
|
|
// s.ps->ps->ps->f[:]
|
|
// (1) (2) (3) (4)
|
|
// ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
|
|
// PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
|
|
// is the pointee of ps(2) which is not member of struct s, so it should not
|
|
// be marked as such (it is still PTR_AND_OBJ).
|
|
// The variable is initialized to false so that PTR_AND_OBJ entries which
|
|
// are not struct members are not considered (e.g. array of pointers to
|
|
// data).
|
|
bool ShouldBeMemberOf = false;
|
|
|
|
// Variable keeping track of whether or not we have encountered a component
|
|
// in the component list which is a member expression. Useful when we have a
|
|
// pointer or a final array section, in which case it is the previous
|
|
// component in the list which tells us whether we have a member expression.
|
|
// E.g. X.f[:]
|
|
// While processing the final array section "[:]" it is "f" which tells us
|
|
// whether we are dealing with a member of a declared struct.
|
|
const MemberExpr *EncounteredME = nullptr;
|
|
|
|
for (; I != CE; ++I) {
|
|
// If the current component is member of a struct (parent struct) mark it.
|
|
if (!EncounteredME) {
|
|
EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
|
|
// If we encounter a PTR_AND_OBJ entry from now on it should be marked
|
|
// as MEMBER_OF the parent struct.
|
|
if (EncounteredME)
|
|
ShouldBeMemberOf = true;
|
|
}
|
|
|
|
auto Next = std::next(I);
|
|
|
|
// We need to generate the addresses and sizes if this is the last
|
|
// component, if the component is a pointer or if it is an array section
|
|
// whose length can't be proved to be one. If this is a pointer, it
|
|
// becomes the base address for the following components.
|
|
|
|
// A final array section, is one whose length can't be proved to be one.
|
|
bool IsFinalArraySection =
|
|
isFinalArraySectionExpression(I->getAssociatedExpression());
|
|
|
|
// Get information on whether the element is a pointer. Have to do a
|
|
// special treatment for array sections given that they are built-in
|
|
// types.
|
|
const auto *OASE =
|
|
dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
|
|
bool IsPointer =
|
|
(OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
|
|
.getCanonicalType()
|
|
->isAnyPointerType()) ||
|
|
I->getAssociatedExpression()->getType()->isAnyPointerType();
|
|
|
|
if (Next == CE || IsPointer || IsFinalArraySection) {
|
|
// If this is not the last component, we expect the pointer to be
|
|
// associated with an array expression or member expression.
|
|
assert((Next == CE ||
|
|
isa<MemberExpr>(Next->getAssociatedExpression()) ||
|
|
isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
|
|
isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&
|
|
"Unexpected expression");
|
|
|
|
Address LB =
|
|
CGF.EmitOMPSharedLValue(I->getAssociatedExpression()).getAddress();
|
|
|
|
// If this component is a pointer inside the base struct then we don't
|
|
// need to create any entry for it - it will be combined with the object
|
|
// it is pointing to into a single PTR_AND_OBJ entry.
|
|
bool IsMemberPointer =
|
|
IsPointer && EncounteredME &&
|
|
(dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
|
|
EncounteredME);
|
|
if (!OverlappedElements.empty()) {
|
|
// Handle base element with the info for overlapped elements.
|
|
assert(!PartialStruct.Base.isValid() && "The base element is set.");
|
|
assert(Next == CE &&
|
|
"Expected last element for the overlapped elements.");
|
|
assert(!IsPointer &&
|
|
"Unexpected base element with the pointer type.");
|
|
// Mark the whole struct as the struct that requires allocation on the
|
|
// device.
|
|
PartialStruct.LowestElem = {0, LB};
|
|
CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
|
|
I->getAssociatedExpression()->getType());
|
|
Address HB = CGF.Builder.CreateConstGEP(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
|
|
CGF.VoidPtrTy),
|
|
TypeSize.getQuantity() - 1);
|
|
PartialStruct.HighestElem = {
|
|
std::numeric_limits<decltype(
|
|
PartialStruct.HighestElem.first)>::max(),
|
|
HB};
|
|
PartialStruct.Base = BP;
|
|
// Emit data for non-overlapped data.
|
|
OpenMPOffloadMappingFlags Flags =
|
|
OMP_MAP_MEMBER_OF |
|
|
getMapTypeBits(MapType, MapModifiers, IsImplicit,
|
|
/*AddPtrFlag=*/false,
|
|
/*AddIsTargetParamFlag=*/false);
|
|
LB = BP;
|
|
llvm::Value *Size = nullptr;
|
|
// Do bitcopy of all non-overlapped structure elements.
|
|
for (OMPClauseMappableExprCommon::MappableExprComponentListRef
|
|
Component : OverlappedElements) {
|
|
Address ComponentLB = Address::invalid();
|
|
for (const OMPClauseMappableExprCommon::MappableComponent &MC :
|
|
Component) {
|
|
if (MC.getAssociatedDeclaration()) {
|
|
ComponentLB =
|
|
CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
|
|
.getAddress();
|
|
Size = CGF.Builder.CreatePtrDiff(
|
|
CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
|
|
CGF.EmitCastToVoidPtr(LB.getPointer()));
|
|
break;
|
|
}
|
|
}
|
|
BasePointers.push_back(BP.getPointer());
|
|
Pointers.push_back(LB.getPointer());
|
|
Sizes.push_back(CGF.Builder.CreateIntCast(Size, CGF.Int64Ty,
|
|
/*isSigned=*/true));
|
|
Types.push_back(Flags);
|
|
LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
|
|
}
|
|
BasePointers.push_back(BP.getPointer());
|
|
Pointers.push_back(LB.getPointer());
|
|
Size = CGF.Builder.CreatePtrDiff(
|
|
CGF.EmitCastToVoidPtr(
|
|
CGF.Builder.CreateConstGEP(HB, 1).getPointer()),
|
|
CGF.EmitCastToVoidPtr(LB.getPointer()));
|
|
Sizes.push_back(
|
|
CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
|
|
Types.push_back(Flags);
|
|
break;
|
|
}
|
|
llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
|
|
if (!IsMemberPointer) {
|
|
BasePointers.push_back(BP.getPointer());
|
|
Pointers.push_back(LB.getPointer());
|
|
Sizes.push_back(
|
|
CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
|
|
|
|
// We need to add a pointer flag for each map that comes from the
|
|
// same expression except for the first one. We also need to signal
|
|
// this map is the first one that relates with the current capture
|
|
// (there is a set of entries for each capture).
|
|
OpenMPOffloadMappingFlags Flags = getMapTypeBits(
|
|
MapType, MapModifiers, IsImplicit,
|
|
!IsExpressionFirstInfo || RequiresReference,
|
|
IsCaptureFirstInfo && !RequiresReference);
|
|
|
|
if (!IsExpressionFirstInfo) {
|
|
// If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
|
|
// then we reset the TO/FROM/ALWAYS/DELETE flags.
|
|
if (IsPointer)
|
|
Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
|
|
OMP_MAP_DELETE);
|
|
|
|
if (ShouldBeMemberOf) {
|
|
// Set placeholder value MEMBER_OF=FFFF to indicate that the flag
|
|
// should be later updated with the correct value of MEMBER_OF.
|
|
Flags |= OMP_MAP_MEMBER_OF;
|
|
// From now on, all subsequent PTR_AND_OBJ entries should not be
|
|
// marked as MEMBER_OF.
|
|
ShouldBeMemberOf = false;
|
|
}
|
|
}
|
|
|
|
Types.push_back(Flags);
|
|
}
|
|
|
|
// If we have encountered a member expression so far, keep track of the
|
|
// mapped member. If the parent is "*this", then the value declaration
|
|
// is nullptr.
|
|
if (EncounteredME) {
|
|
const auto *FD = dyn_cast<FieldDecl>(EncounteredME->getMemberDecl());
|
|
unsigned FieldIndex = FD->getFieldIndex();
|
|
|
|
// Update info about the lowest and highest elements for this struct
|
|
if (!PartialStruct.Base.isValid()) {
|
|
PartialStruct.LowestElem = {FieldIndex, LB};
|
|
PartialStruct.HighestElem = {FieldIndex, LB};
|
|
PartialStruct.Base = BP;
|
|
} else if (FieldIndex < PartialStruct.LowestElem.first) {
|
|
PartialStruct.LowestElem = {FieldIndex, LB};
|
|
} else if (FieldIndex > PartialStruct.HighestElem.first) {
|
|
PartialStruct.HighestElem = {FieldIndex, LB};
|
|
}
|
|
}
|
|
|
|
// If we have a final array section, we are done with this expression.
|
|
if (IsFinalArraySection)
|
|
break;
|
|
|
|
// The pointer becomes the base for the next element.
|
|
if (Next != CE)
|
|
BP = LB;
|
|
|
|
IsExpressionFirstInfo = false;
|
|
IsCaptureFirstInfo = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return the adjusted map modifiers if the declaration a capture refers to
|
|
/// appears in a first-private clause. This is expected to be used only with
|
|
/// directives that start with 'target'.
|
|
MappableExprsHandler::OpenMPOffloadMappingFlags
|
|
getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
|
|
assert(Cap.capturesVariable() && "Expected capture by reference only!");
|
|
|
|
// A first private variable captured by reference will use only the
|
|
// 'private ptr' and 'map to' flag. Return the right flags if the captured
|
|
// declaration is known as first-private in this handler.
|
|
if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
|
|
if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
|
|
Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
|
|
return MappableExprsHandler::OMP_MAP_ALWAYS |
|
|
MappableExprsHandler::OMP_MAP_TO;
|
|
if (Cap.getCapturedVar()->getType()->isAnyPointerType())
|
|
return MappableExprsHandler::OMP_MAP_TO |
|
|
MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
|
|
return MappableExprsHandler::OMP_MAP_PRIVATE |
|
|
MappableExprsHandler::OMP_MAP_TO;
|
|
}
|
|
return MappableExprsHandler::OMP_MAP_TO |
|
|
MappableExprsHandler::OMP_MAP_FROM;
|
|
}
|
|
|
|
static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
|
|
// Member of is given by the 16 MSB of the flag, so rotate by 48 bits.
|
|
return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
|
|
<< 48);
|
|
}
|
|
|
|
static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
|
|
OpenMPOffloadMappingFlags MemberOfFlag) {
|
|
// If the entry is PTR_AND_OBJ but has not been marked with the special
|
|
// placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
|
|
// marked as MEMBER_OF.
|
|
if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
|
|
((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
|
|
return;
|
|
|
|
// Reset the placeholder value to prepare the flag for the assignment of the
|
|
// proper MEMBER_OF value.
|
|
Flags &= ~OMP_MAP_MEMBER_OF;
|
|
Flags |= MemberOfFlag;
|
|
}
|
|
|
|
void getPlainLayout(const CXXRecordDecl *RD,
|
|
llvm::SmallVectorImpl<const FieldDecl *> &Layout,
|
|
bool AsBase) const {
|
|
const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
|
|
|
|
llvm::StructType *St =
|
|
AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
|
|
|
|
unsigned NumElements = St->getNumElements();
|
|
llvm::SmallVector<
|
|
llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
|
|
RecordLayout(NumElements);
|
|
|
|
// Fill bases.
|
|
for (const auto &I : RD->bases()) {
|
|
if (I.isVirtual())
|
|
continue;
|
|
const auto *Base = I.getType()->getAsCXXRecordDecl();
|
|
// Ignore empty bases.
|
|
if (Base->isEmpty() || CGF.getContext()
|
|
.getASTRecordLayout(Base)
|
|
.getNonVirtualSize()
|
|
.isZero())
|
|
continue;
|
|
|
|
unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
|
|
RecordLayout[FieldIndex] = Base;
|
|
}
|
|
// Fill in virtual bases.
|
|
for (const auto &I : RD->vbases()) {
|
|
const auto *Base = I.getType()->getAsCXXRecordDecl();
|
|
// Ignore empty bases.
|
|
if (Base->isEmpty())
|
|
continue;
|
|
unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
|
|
if (RecordLayout[FieldIndex])
|
|
continue;
|
|
RecordLayout[FieldIndex] = Base;
|
|
}
|
|
// Fill in all the fields.
|
|
assert(!RD->isUnion() && "Unexpected union.");
|
|
for (const auto *Field : RD->fields()) {
|
|
// Fill in non-bitfields. (Bitfields always use a zero pattern, which we
|
|
// will fill in later.)
|
|
if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
|
|
unsigned FieldIndex = RL.getLLVMFieldNo(Field);
|
|
RecordLayout[FieldIndex] = Field;
|
|
}
|
|
}
|
|
for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
|
|
&Data : RecordLayout) {
|
|
if (Data.isNull())
|
|
continue;
|
|
if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
|
|
getPlainLayout(Base, Layout, /*AsBase=*/true);
|
|
else
|
|
Layout.push_back(Data.get<const FieldDecl *>());
|
|
}
|
|
}
|
|
|
|
public:
|
|
MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
|
|
: CurDir(Dir), CGF(CGF) {
|
|
// Extract firstprivate clause information.
|
|
for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
|
|
for (const auto *D : C->varlists())
|
|
FirstPrivateDecls.try_emplace(
|
|
cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
|
|
// Extract device pointer clause information.
|
|
for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
|
|
for (auto L : C->component_lists())
|
|
DevPointersMap[L.first].push_back(L.second);
|
|
}
|
|
|
|
/// Generate code for the combined entry if we have a partially mapped struct
|
|
/// and take care of the mapping flags of the arguments corresponding to
|
|
/// individual struct members.
|
|
void emitCombinedEntry(MapBaseValuesArrayTy &BasePointers,
|
|
MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
|
|
MapFlagsArrayTy &Types, MapFlagsArrayTy &CurTypes,
|
|
const StructRangeInfoTy &PartialStruct) const {
|
|
// Base is the base of the struct
|
|
BasePointers.push_back(PartialStruct.Base.getPointer());
|
|
// Pointer is the address of the lowest element
|
|
llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
|
|
Pointers.push_back(LB);
|
|
// Size is (addr of {highest+1} element) - (addr of lowest element)
|
|
llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
|
|
llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
|
|
llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
|
|
llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
|
|
llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
|
|
llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
|
|
/*isSigned=*/false);
|
|
Sizes.push_back(Size);
|
|
// Map type is always TARGET_PARAM
|
|
Types.push_back(OMP_MAP_TARGET_PARAM);
|
|
// Remove TARGET_PARAM flag from the first element
|
|
(*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM;
|
|
|
|
// All other current entries will be MEMBER_OF the combined entry
|
|
// (except for PTR_AND_OBJ entries which do not have a placeholder value
|
|
// 0xFFFF in the MEMBER_OF field).
|
|
OpenMPOffloadMappingFlags MemberOfFlag =
|
|
getMemberOfFlag(BasePointers.size() - 1);
|
|
for (auto &M : CurTypes)
|
|
setCorrectMemberOfFlag(M, MemberOfFlag);
|
|
}
|
|
|
|
/// Generate all the base pointers, section pointers, sizes and map
|
|
/// types for the extracted mappable expressions. Also, for each item that
|
|
/// relates with a device pointer, a pair of the relevant declaration and
|
|
/// index where it occurs is appended to the device pointers info array.
|
|
void generateAllInfo(MapBaseValuesArrayTy &BasePointers,
|
|
MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
|
|
MapFlagsArrayTy &Types) const {
|
|
// We have to process the component lists that relate with the same
|
|
// declaration in a single chunk so that we can generate the map flags
|
|
// correctly. Therefore, we organize all lists in a map.
|
|
llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
|
|
|
|
// Helper function to fill the information map for the different supported
|
|
// clauses.
|
|
auto &&InfoGen = [&Info](
|
|
const ValueDecl *D,
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef L,
|
|
OpenMPMapClauseKind MapType,
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers,
|
|
bool ReturnDevicePointer, bool IsImplicit) {
|
|
const ValueDecl *VD =
|
|
D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
|
|
Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
|
|
IsImplicit);
|
|
};
|
|
|
|
// FIXME: MSVC 2013 seems to require this-> to find member CurDir.
|
|
for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>())
|
|
for (const auto &L : C->component_lists()) {
|
|
InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifiers(),
|
|
/*ReturnDevicePointer=*/false, C->isImplicit());
|
|
}
|
|
for (const auto *C : this->CurDir.getClausesOfKind<OMPToClause>())
|
|
for (const auto &L : C->component_lists()) {
|
|
InfoGen(L.first, L.second, OMPC_MAP_to, llvm::None,
|
|
/*ReturnDevicePointer=*/false, C->isImplicit());
|
|
}
|
|
for (const auto *C : this->CurDir.getClausesOfKind<OMPFromClause>())
|
|
for (const auto &L : C->component_lists()) {
|
|
InfoGen(L.first, L.second, OMPC_MAP_from, llvm::None,
|
|
/*ReturnDevicePointer=*/false, C->isImplicit());
|
|
}
|
|
|
|
// Look at the use_device_ptr clause information and mark the existing map
|
|
// entries as such. If there is no map information for an entry in the
|
|
// use_device_ptr list, we create one with map type 'alloc' and zero size
|
|
// section. It is the user fault if that was not mapped before. If there is
|
|
// no map information and the pointer is a struct member, then we defer the
|
|
// emission of that entry until the whole struct has been processed.
|
|
llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
|
|
DeferredInfo;
|
|
|
|
// FIXME: MSVC 2013 seems to require this-> to find member CurDir.
|
|
for (const auto *C :
|
|
this->CurDir.getClausesOfKind<OMPUseDevicePtrClause>()) {
|
|
for (const auto &L : C->component_lists()) {
|
|
assert(!L.second.empty() && "Not expecting empty list of components!");
|
|
const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
|
|
VD = cast<ValueDecl>(VD->getCanonicalDecl());
|
|
const Expr *IE = L.second.back().getAssociatedExpression();
|
|
// If the first component is a member expression, we have to look into
|
|
// 'this', which maps to null in the map of map information. Otherwise
|
|
// look directly for the information.
|
|
auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
|
|
|
|
// We potentially have map information for this declaration already.
|
|
// Look for the first set of components that refer to it.
|
|
if (It != Info.end()) {
|
|
auto CI = std::find_if(
|
|
It->second.begin(), It->second.end(), [VD](const MapInfo &MI) {
|
|
return MI.Components.back().getAssociatedDeclaration() == VD;
|
|
});
|
|
// If we found a map entry, signal that the pointer has to be returned
|
|
// and move on to the next declaration.
|
|
if (CI != It->second.end()) {
|
|
CI->ReturnDevicePointer = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We didn't find any match in our map information - generate a zero
|
|
// size array section - if the pointer is a struct member we defer this
|
|
// action until the whole struct has been processed.
|
|
// FIXME: MSVC 2013 seems to require this-> to find member CGF.
|
|
if (isa<MemberExpr>(IE)) {
|
|
// Insert the pointer into Info to be processed by
|
|
// generateInfoForComponentList. Because it is a member pointer
|
|
// without a pointee, no entry will be generated for it, therefore
|
|
// we need to generate one after the whole struct has been processed.
|
|
// Nonetheless, generateInfoForComponentList must be called to take
|
|
// the pointer into account for the calculation of the range of the
|
|
// partial struct.
|
|
InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None,
|
|
/*ReturnDevicePointer=*/false, C->isImplicit());
|
|
DeferredInfo[nullptr].emplace_back(IE, VD);
|
|
} else {
|
|
llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
|
|
this->CGF.EmitLValue(IE), IE->getExprLoc());
|
|
BasePointers.emplace_back(Ptr, VD);
|
|
Pointers.push_back(Ptr);
|
|
Sizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty));
|
|
Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_TARGET_PARAM);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const auto &M : Info) {
|
|
// We need to know when we generate information for the first component
|
|
// associated with a capture, because the mapping flags depend on it.
|
|
bool IsFirstComponentList = true;
|
|
|
|
// Temporary versions of arrays
|
|
MapBaseValuesArrayTy CurBasePointers;
|
|
MapValuesArrayTy CurPointers;
|
|
MapValuesArrayTy CurSizes;
|
|
MapFlagsArrayTy CurTypes;
|
|
StructRangeInfoTy PartialStruct;
|
|
|
|
for (const MapInfo &L : M.second) {
|
|
assert(!L.Components.empty() &&
|
|
"Not expecting declaration with no component lists.");
|
|
|
|
// Remember the current base pointer index.
|
|
unsigned CurrentBasePointersIdx = CurBasePointers.size();
|
|
// FIXME: MSVC 2013 seems to require this-> to find the member method.
|
|
this->generateInfoForComponentList(
|
|
L.MapType, L.MapModifiers, L.Components, CurBasePointers,
|
|
CurPointers, CurSizes, CurTypes, PartialStruct,
|
|
IsFirstComponentList, L.IsImplicit);
|
|
|
|
// If this entry relates with a device pointer, set the relevant
|
|
// declaration and add the 'return pointer' flag.
|
|
if (L.ReturnDevicePointer) {
|
|
assert(CurBasePointers.size() > CurrentBasePointersIdx &&
|
|
"Unexpected number of mapped base pointers.");
|
|
|
|
const ValueDecl *RelevantVD =
|
|
L.Components.back().getAssociatedDeclaration();
|
|
assert(RelevantVD &&
|
|
"No relevant declaration related with device pointer??");
|
|
|
|
CurBasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD);
|
|
CurTypes[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
|
|
}
|
|
IsFirstComponentList = false;
|
|
}
|
|
|
|
// Append any pending zero-length pointers which are struct members and
|
|
// used with use_device_ptr.
|
|
auto CI = DeferredInfo.find(M.first);
|
|
if (CI != DeferredInfo.end()) {
|
|
for (const DeferredDevicePtrEntryTy &L : CI->second) {
|
|
llvm::Value *BasePtr = this->CGF.EmitLValue(L.IE).getPointer();
|
|
llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
|
|
this->CGF.EmitLValue(L.IE), L.IE->getExprLoc());
|
|
CurBasePointers.emplace_back(BasePtr, L.VD);
|
|
CurPointers.push_back(Ptr);
|
|
CurSizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty));
|
|
// Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
|
|
// value MEMBER_OF=FFFF so that the entry is later updated with the
|
|
// correct value of MEMBER_OF.
|
|
CurTypes.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
|
|
OMP_MAP_MEMBER_OF);
|
|
}
|
|
}
|
|
|
|
// If there is an entry in PartialStruct it means we have a struct with
|
|
// individual members mapped. Emit an extra combined entry.
|
|
if (PartialStruct.Base.isValid())
|
|
emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
|
|
PartialStruct);
|
|
|
|
// We need to append the results of this capture to what we already have.
|
|
BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
|
|
Pointers.append(CurPointers.begin(), CurPointers.end());
|
|
Sizes.append(CurSizes.begin(), CurSizes.end());
|
|
Types.append(CurTypes.begin(), CurTypes.end());
|
|
}
|
|
}
|
|
|
|
/// Emit capture info for lambdas for variables captured by reference.
|
|
void generateInfoForLambdaCaptures(
|
|
const ValueDecl *VD, llvm::Value *Arg, MapBaseValuesArrayTy &BasePointers,
|
|
MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
|
|
MapFlagsArrayTy &Types,
|
|
llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
|
|
const auto *RD = VD->getType()
|
|
.getCanonicalType()
|
|
.getNonReferenceType()
|
|
->getAsCXXRecordDecl();
|
|
if (!RD || !RD->isLambda())
|
|
return;
|
|
Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
|
|
LValue VDLVal = CGF.MakeAddrLValue(
|
|
VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
|
|
llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
|
|
FieldDecl *ThisCapture = nullptr;
|
|
RD->getCaptureFields(Captures, ThisCapture);
|
|
if (ThisCapture) {
|
|
LValue ThisLVal =
|
|
CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
|
|
LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
|
|
LambdaPointers.try_emplace(ThisLVal.getPointer(), VDLVal.getPointer());
|
|
BasePointers.push_back(ThisLVal.getPointer());
|
|
Pointers.push_back(ThisLValVal.getPointer());
|
|
Sizes.push_back(
|
|
CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
|
|
CGF.Int64Ty, /*isSigned=*/true));
|
|
Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
|
|
OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
|
|
}
|
|
for (const LambdaCapture &LC : RD->captures()) {
|
|
if (!LC.capturesVariable())
|
|
continue;
|
|
const VarDecl *VD = LC.getCapturedVar();
|
|
if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
|
|
continue;
|
|
auto It = Captures.find(VD);
|
|
assert(It != Captures.end() && "Found lambda capture without field.");
|
|
LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
|
|
if (LC.getCaptureKind() == LCK_ByRef) {
|
|
LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
|
|
LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer());
|
|
BasePointers.push_back(VarLVal.getPointer());
|
|
Pointers.push_back(VarLValVal.getPointer());
|
|
Sizes.push_back(CGF.Builder.CreateIntCast(
|
|
CGF.getTypeSize(
|
|
VD->getType().getCanonicalType().getNonReferenceType()),
|
|
CGF.Int64Ty, /*isSigned=*/true));
|
|
} else {
|
|
RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
|
|
LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer());
|
|
BasePointers.push_back(VarLVal.getPointer());
|
|
Pointers.push_back(VarRVal.getScalarVal());
|
|
Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
|
|
}
|
|
Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
|
|
OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
|
|
}
|
|
}
|
|
|
|
/// Set correct indices for lambdas captures.
|
|
void adjustMemberOfForLambdaCaptures(
|
|
const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
|
|
MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
|
|
MapFlagsArrayTy &Types) const {
|
|
for (unsigned I = 0, E = Types.size(); I < E; ++I) {
|
|
// Set correct member_of idx for all implicit lambda captures.
|
|
if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
|
|
OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
|
|
continue;
|
|
llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
|
|
assert(BasePtr && "Unable to find base lambda address.");
|
|
int TgtIdx = -1;
|
|
for (unsigned J = I; J > 0; --J) {
|
|
unsigned Idx = J - 1;
|
|
if (Pointers[Idx] != BasePtr)
|
|
continue;
|
|
TgtIdx = Idx;
|
|
break;
|
|
}
|
|
assert(TgtIdx != -1 && "Unable to find parent lambda.");
|
|
// All other current entries will be MEMBER_OF the combined entry
|
|
// (except for PTR_AND_OBJ entries which do not have a placeholder value
|
|
// 0xFFFF in the MEMBER_OF field).
|
|
OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
|
|
setCorrectMemberOfFlag(Types[I], MemberOfFlag);
|
|
}
|
|
}
|
|
|
|
/// Generate the base pointers, section pointers, sizes and map types
|
|
/// associated to a given capture.
|
|
void generateInfoForCapture(const CapturedStmt::Capture *Cap,
|
|
llvm::Value *Arg,
|
|
MapBaseValuesArrayTy &BasePointers,
|
|
MapValuesArrayTy &Pointers,
|
|
MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
|
|
StructRangeInfoTy &PartialStruct) const {
|
|
assert(!Cap->capturesVariableArrayType() &&
|
|
"Not expecting to generate map info for a variable array type!");
|
|
|
|
// We need to know when we generating information for the first component
|
|
const ValueDecl *VD = Cap->capturesThis()
|
|
? nullptr
|
|
: Cap->getCapturedVar()->getCanonicalDecl();
|
|
|
|
// If this declaration appears in a is_device_ptr clause we just have to
|
|
// pass the pointer by value. If it is a reference to a declaration, we just
|
|
// pass its value.
|
|
if (DevPointersMap.count(VD)) {
|
|
BasePointers.emplace_back(Arg, VD);
|
|
Pointers.push_back(Arg);
|
|
Sizes.push_back(
|
|
CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
|
|
CGF.Int64Ty, /*isSigned=*/true));
|
|
Types.push_back(OMP_MAP_LITERAL | OMP_MAP_TARGET_PARAM);
|
|
return;
|
|
}
|
|
|
|
using MapData =
|
|
std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
|
|
OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool>;
|
|
SmallVector<MapData, 4> DeclComponentLists;
|
|
// FIXME: MSVC 2013 seems to require this-> to find member CurDir.
|
|
for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) {
|
|
for (const auto &L : C->decl_component_lists(VD)) {
|
|
assert(L.first == VD &&
|
|
"We got information for the wrong declaration??");
|
|
assert(!L.second.empty() &&
|
|
"Not expecting declaration with no component lists.");
|
|
DeclComponentLists.emplace_back(L.second, C->getMapType(),
|
|
C->getMapTypeModifiers(),
|
|
C->isImplicit());
|
|
}
|
|
}
|
|
|
|
// Find overlapping elements (including the offset from the base element).
|
|
llvm::SmallDenseMap<
|
|
const MapData *,
|
|
llvm::SmallVector<
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
|
|
4>
|
|
OverlappedData;
|
|
size_t Count = 0;
|
|
for (const MapData &L : DeclComponentLists) {
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
|
|
OpenMPMapClauseKind MapType;
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers;
|
|
bool IsImplicit;
|
|
std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
|
|
++Count;
|
|
for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
|
|
std::tie(Components1, MapType, MapModifiers, IsImplicit) = L1;
|
|
auto CI = Components.rbegin();
|
|
auto CE = Components.rend();
|
|
auto SI = Components1.rbegin();
|
|
auto SE = Components1.rend();
|
|
for (; CI != CE && SI != SE; ++CI, ++SI) {
|
|
if (CI->getAssociatedExpression()->getStmtClass() !=
|
|
SI->getAssociatedExpression()->getStmtClass())
|
|
break;
|
|
// Are we dealing with different variables/fields?
|
|
if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
|
|
break;
|
|
}
|
|
// Found overlapping if, at least for one component, reached the head of
|
|
// the components list.
|
|
if (CI == CE || SI == SE) {
|
|
assert((CI != CE || SI != SE) &&
|
|
"Unexpected full match of the mapping components.");
|
|
const MapData &BaseData = CI == CE ? L : L1;
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
|
|
SI == SE ? Components : Components1;
|
|
auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
|
|
OverlappedElements.getSecond().push_back(SubData);
|
|
}
|
|
}
|
|
}
|
|
// Sort the overlapped elements for each item.
|
|
llvm::SmallVector<const FieldDecl *, 4> Layout;
|
|
if (!OverlappedData.empty()) {
|
|
if (const auto *CRD =
|
|
VD->getType().getCanonicalType()->getAsCXXRecordDecl())
|
|
getPlainLayout(CRD, Layout, /*AsBase=*/false);
|
|
else {
|
|
const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
|
|
Layout.append(RD->field_begin(), RD->field_end());
|
|
}
|
|
}
|
|
for (auto &Pair : OverlappedData) {
|
|
llvm::sort(
|
|
Pair.getSecond(),
|
|
[&Layout](
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef First,
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef
|
|
Second) {
|
|
auto CI = First.rbegin();
|
|
auto CE = First.rend();
|
|
auto SI = Second.rbegin();
|
|
auto SE = Second.rend();
|
|
for (; CI != CE && SI != SE; ++CI, ++SI) {
|
|
if (CI->getAssociatedExpression()->getStmtClass() !=
|
|
SI->getAssociatedExpression()->getStmtClass())
|
|
break;
|
|
// Are we dealing with different variables/fields?
|
|
if (CI->getAssociatedDeclaration() !=
|
|
SI->getAssociatedDeclaration())
|
|
break;
|
|
}
|
|
|
|
// Lists contain the same elements.
|
|
if (CI == CE && SI == SE)
|
|
return false;
|
|
|
|
// List with less elements is less than list with more elements.
|
|
if (CI == CE || SI == SE)
|
|
return CI == CE;
|
|
|
|
const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
|
|
const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
|
|
if (FD1->getParent() == FD2->getParent())
|
|
return FD1->getFieldIndex() < FD2->getFieldIndex();
|
|
const auto It =
|
|
llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
|
|
return FD == FD1 || FD == FD2;
|
|
});
|
|
return *It == FD1;
|
|
});
|
|
}
|
|
|
|
// Associated with a capture, because the mapping flags depend on it.
|
|
// Go through all of the elements with the overlapped elements.
|
|
for (const auto &Pair : OverlappedData) {
|
|
const MapData &L = *Pair.getFirst();
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
|
|
OpenMPMapClauseKind MapType;
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers;
|
|
bool IsImplicit;
|
|
std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
|
|
ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
|
|
OverlappedComponents = Pair.getSecond();
|
|
bool IsFirstComponentList = true;
|
|
generateInfoForComponentList(MapType, MapModifiers, Components,
|
|
BasePointers, Pointers, Sizes, Types,
|
|
PartialStruct, IsFirstComponentList,
|
|
IsImplicit, OverlappedComponents);
|
|
}
|
|
// Go through other elements without overlapped elements.
|
|
bool IsFirstComponentList = OverlappedData.empty();
|
|
for (const MapData &L : DeclComponentLists) {
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
|
|
OpenMPMapClauseKind MapType;
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers;
|
|
bool IsImplicit;
|
|
std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
|
|
auto It = OverlappedData.find(&L);
|
|
if (It == OverlappedData.end())
|
|
generateInfoForComponentList(MapType, MapModifiers, Components,
|
|
BasePointers, Pointers, Sizes, Types,
|
|
PartialStruct, IsFirstComponentList,
|
|
IsImplicit);
|
|
IsFirstComponentList = false;
|
|
}
|
|
}
|
|
|
|
/// Generate the base pointers, section pointers, sizes and map types
|
|
/// associated with the declare target link variables.
|
|
void generateInfoForDeclareTargetLink(MapBaseValuesArrayTy &BasePointers,
|
|
MapValuesArrayTy &Pointers,
|
|
MapValuesArrayTy &Sizes,
|
|
MapFlagsArrayTy &Types) const {
|
|
// Map other list items in the map clause which are not captured variables
|
|
// but "declare target link" global variables.
|
|
for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) {
|
|
for (const auto &L : C->component_lists()) {
|
|
if (!L.first)
|
|
continue;
|
|
const auto *VD = dyn_cast<VarDecl>(L.first);
|
|
if (!VD)
|
|
continue;
|
|
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
|
|
if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
|
|
!Res || *Res != OMPDeclareTargetDeclAttr::MT_Link)
|
|
continue;
|
|
StructRangeInfoTy PartialStruct;
|
|
generateInfoForComponentList(
|
|
C->getMapType(), C->getMapTypeModifiers(), L.second, BasePointers,
|
|
Pointers, Sizes, Types, PartialStruct,
|
|
/*IsFirstComponentList=*/true, C->isImplicit());
|
|
assert(!PartialStruct.Base.isValid() &&
|
|
"No partial structs for declare target link expected.");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Generate the default map information for a given capture \a CI,
|
|
/// record field declaration \a RI and captured value \a CV.
|
|
void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
|
|
const FieldDecl &RI, llvm::Value *CV,
|
|
MapBaseValuesArrayTy &CurBasePointers,
|
|
MapValuesArrayTy &CurPointers,
|
|
MapValuesArrayTy &CurSizes,
|
|
MapFlagsArrayTy &CurMapTypes) const {
|
|
bool IsImplicit = true;
|
|
// Do the default mapping.
|
|
if (CI.capturesThis()) {
|
|
CurBasePointers.push_back(CV);
|
|
CurPointers.push_back(CV);
|
|
const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
|
|
CurSizes.push_back(
|
|
CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
|
|
CGF.Int64Ty, /*isSigned=*/true));
|
|
// Default map type.
|
|
CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM);
|
|
} else if (CI.capturesVariableByCopy()) {
|
|
CurBasePointers.push_back(CV);
|
|
CurPointers.push_back(CV);
|
|
if (!RI.getType()->isAnyPointerType()) {
|
|
// We have to signal to the runtime captures passed by value that are
|
|
// not pointers.
|
|
CurMapTypes.push_back(OMP_MAP_LITERAL);
|
|
CurSizes.push_back(CGF.Builder.CreateIntCast(
|
|
CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
|
|
} else {
|
|
// Pointers are implicitly mapped with a zero size and no flags
|
|
// (other than first map that is added for all implicit maps).
|
|
CurMapTypes.push_back(OMP_MAP_NONE);
|
|
CurSizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
|
|
}
|
|
const VarDecl *VD = CI.getCapturedVar();
|
|
auto I = FirstPrivateDecls.find(VD);
|
|
if (I != FirstPrivateDecls.end())
|
|
IsImplicit = I->getSecond();
|
|
} else {
|
|
assert(CI.capturesVariable() && "Expected captured reference.");
|
|
const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
|
|
QualType ElementType = PtrTy->getPointeeType();
|
|
CurSizes.push_back(CGF.Builder.CreateIntCast(
|
|
CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
|
|
// The default map type for a scalar/complex type is 'to' because by
|
|
// default the value doesn't have to be retrieved. For an aggregate
|
|
// type, the default is 'tofrom'.
|
|
CurMapTypes.push_back(getMapModifiersForPrivateClauses(CI));
|
|
const VarDecl *VD = CI.getCapturedVar();
|
|
auto I = FirstPrivateDecls.find(VD);
|
|
if (I != FirstPrivateDecls.end() &&
|
|
VD->getType().isConstant(CGF.getContext())) {
|
|
llvm::Constant *Addr =
|
|
CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
|
|
// Copy the value of the original variable to the new global copy.
|
|
CGF.Builder.CreateMemCpy(
|
|
CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(),
|
|
Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
|
|
CurSizes.back(), /*IsVolatile=*/false);
|
|
// Use new global variable as the base pointers.
|
|
CurBasePointers.push_back(Addr);
|
|
CurPointers.push_back(Addr);
|
|
} else {
|
|
CurBasePointers.push_back(CV);
|
|
if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
|
|
Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
|
|
CV, ElementType, CGF.getContext().getDeclAlign(VD),
|
|
AlignmentSource::Decl));
|
|
CurPointers.push_back(PtrAddr.getPointer());
|
|
} else {
|
|
CurPointers.push_back(CV);
|
|
}
|
|
}
|
|
if (I != FirstPrivateDecls.end())
|
|
IsImplicit = I->getSecond();
|
|
}
|
|
// Every default map produces a single argument which is a target parameter.
|
|
CurMapTypes.back() |= OMP_MAP_TARGET_PARAM;
|
|
|
|
// Add flag stating this is an implicit map.
|
|
if (IsImplicit)
|
|
CurMapTypes.back() |= OMP_MAP_IMPLICIT;
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
/// Emit the arrays used to pass the captures and map information to the
|
|
/// offloading runtime library. If there is no map or capture information,
|
|
/// return nullptr by reference.
|
|
static void
|
|
emitOffloadingArrays(CodeGenFunction &CGF,
|
|
MappableExprsHandler::MapBaseValuesArrayTy &BasePointers,
|
|
MappableExprsHandler::MapValuesArrayTy &Pointers,
|
|
MappableExprsHandler::MapValuesArrayTy &Sizes,
|
|
MappableExprsHandler::MapFlagsArrayTy &MapTypes,
|
|
CGOpenMPRuntime::TargetDataInfo &Info) {
|
|
CodeGenModule &CGM = CGF.CGM;
|
|
ASTContext &Ctx = CGF.getContext();
|
|
|
|
// Reset the array information.
|
|
Info.clearArrayInfo();
|
|
Info.NumberOfPtrs = BasePointers.size();
|
|
|
|
if (Info.NumberOfPtrs) {
|
|
// Detect if we have any capture size requiring runtime evaluation of the
|
|
// size so that a constant array could be eventually used.
|
|
bool hasRuntimeEvaluationCaptureSize = false;
|
|
for (llvm::Value *S : Sizes)
|
|
if (!isa<llvm::Constant>(S)) {
|
|
hasRuntimeEvaluationCaptureSize = true;
|
|
break;
|
|
}
|
|
|
|
llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
|
|
QualType PointerArrayType =
|
|
Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
|
|
Info.BasePointersArray =
|
|
CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
|
|
Info.PointersArray =
|
|
CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
|
|
|
|
// If we don't have any VLA types or other types that require runtime
|
|
// evaluation, we can use a constant array for the map sizes, otherwise we
|
|
// need to fill up the arrays as we do for the pointers.
|
|
QualType Int64Ty =
|
|
Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
|
|
if (hasRuntimeEvaluationCaptureSize) {
|
|
QualType SizeArrayType =
|
|
Ctx.getConstantArrayType(Int64Ty, PointerNumAP, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
Info.SizesArray =
|
|
CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
|
|
} else {
|
|
// We expect all the sizes to be constant, so we collect them to create
|
|
// a constant array.
|
|
SmallVector<llvm::Constant *, 16> ConstSizes;
|
|
for (llvm::Value *S : Sizes)
|
|
ConstSizes.push_back(cast<llvm::Constant>(S));
|
|
|
|
auto *SizesArrayInit = llvm::ConstantArray::get(
|
|
llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
|
|
auto *SizesArrayGbl = new llvm::GlobalVariable(
|
|
CGM.getModule(), SizesArrayInit->getType(),
|
|
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
|
|
SizesArrayInit, Name);
|
|
SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
Info.SizesArray = SizesArrayGbl;
|
|
}
|
|
|
|
// The map types are always constant so we don't need to generate code to
|
|
// fill arrays. Instead, we create an array constant.
|
|
SmallVector<uint64_t, 4> Mapping(MapTypes.size(), 0);
|
|
llvm::copy(MapTypes, Mapping.begin());
|
|
llvm::Constant *MapTypesArrayInit =
|
|
llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
|
|
std::string MaptypesName =
|
|
CGM.getOpenMPRuntime().getName({"offload_maptypes"});
|
|
auto *MapTypesArrayGbl = new llvm::GlobalVariable(
|
|
CGM.getModule(), MapTypesArrayInit->getType(),
|
|
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
|
|
MapTypesArrayInit, MaptypesName);
|
|
MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
Info.MapTypesArray = MapTypesArrayGbl;
|
|
|
|
for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
|
|
llvm::Value *BPVal = *BasePointers[I];
|
|
llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
|
|
Info.BasePointersArray, 0, I);
|
|
BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
|
|
Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
|
|
CGF.Builder.CreateStore(BPVal, BPAddr);
|
|
|
|
if (Info.requiresDevicePointerInfo())
|
|
if (const ValueDecl *DevVD = BasePointers[I].getDevicePtrDecl())
|
|
Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
|
|
|
|
llvm::Value *PVal = Pointers[I];
|
|
llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
|
|
Info.PointersArray, 0, I);
|
|
P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
|
|
Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
|
|
CGF.Builder.CreateStore(PVal, PAddr);
|
|
|
|
if (hasRuntimeEvaluationCaptureSize) {
|
|
llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
|
|
Info.SizesArray,
|
|
/*Idx0=*/0,
|
|
/*Idx1=*/I);
|
|
Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty));
|
|
CGF.Builder.CreateStore(
|
|
CGF.Builder.CreateIntCast(Sizes[I], CGM.Int64Ty, /*isSigned=*/true),
|
|
SAddr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/// Emit the arguments to be passed to the runtime library based on the
|
|
/// arrays of pointers, sizes and map types.
|
|
static void emitOffloadingArraysArgument(
|
|
CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
|
|
llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
|
|
llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) {
|
|
CodeGenModule &CGM = CGF.CGM;
|
|
if (Info.NumberOfPtrs) {
|
|
BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
|
|
Info.BasePointersArray,
|
|
/*Idx0=*/0, /*Idx1=*/0);
|
|
PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
|
|
Info.PointersArray,
|
|
/*Idx0=*/0,
|
|
/*Idx1=*/0);
|
|
SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray,
|
|
/*Idx0=*/0, /*Idx1=*/0);
|
|
MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
|
|
Info.MapTypesArray,
|
|
/*Idx0=*/0,
|
|
/*Idx1=*/0);
|
|
} else {
|
|
BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
|
|
PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
|
|
SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
|
|
MapTypesArrayArg =
|
|
llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
|
|
}
|
|
}
|
|
|
|
/// Check for inner distribute directive.
|
|
static const OMPExecutableDirective *
|
|
getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
|
|
const auto *CS = D.getInnermostCapturedStmt();
|
|
const auto *Body =
|
|
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
|
|
const Stmt *ChildStmt =
|
|
CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
|
|
|
|
if (const auto *NestedDir =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
|
|
switch (D.getDirectiveKind()) {
|
|
case OMPD_target:
|
|
if (isOpenMPDistributeDirective(DKind))
|
|
return NestedDir;
|
|
if (DKind == OMPD_teams) {
|
|
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
|
|
/*IgnoreCaptured=*/true);
|
|
if (!Body)
|
|
return nullptr;
|
|
ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
|
|
if (const auto *NND =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
DKind = NND->getDirectiveKind();
|
|
if (isOpenMPDistributeDirective(DKind))
|
|
return NND;
|
|
}
|
|
}
|
|
return nullptr;
|
|
case OMPD_target_teams:
|
|
if (isOpenMPDistributeDirective(DKind))
|
|
return NestedDir;
|
|
return nullptr;
|
|
case OMPD_target_parallel:
|
|
case OMPD_target_simd:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
return nullptr;
|
|
case OMPD_target_teams_distribute:
|
|
case OMPD_target_teams_distribute_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd:
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
llvm_unreachable("Unexpected directive.");
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetNumIterationsCall(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *Device,
|
|
const llvm::function_ref<llvm::Value *(
|
|
CodeGenFunction &CGF, const OMPLoopDirective &D)> &SizeEmitter) {
|
|
OpenMPDirectiveKind Kind = D.getDirectiveKind();
|
|
const OMPExecutableDirective *TD = &D;
|
|
// Get nested teams distribute kind directive, if any.
|
|
if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
|
|
TD = getNestedDistributeDirective(CGM.getContext(), D);
|
|
if (!TD)
|
|
return;
|
|
const auto *LD = cast<OMPLoopDirective>(TD);
|
|
auto &&CodeGen = [LD, &Device, &SizeEmitter, this](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
llvm::Value *NumIterations = SizeEmitter(CGF, *LD);
|
|
|
|
// Emit device ID if any.
|
|
llvm::Value *DeviceID;
|
|
if (Device)
|
|
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
|
|
CGF.Int64Ty, /*isSigned=*/true);
|
|
else
|
|
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
|
|
|
|
llvm::Value *Args[] = {DeviceID, NumIterations};
|
|
CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_push_target_tripcount), Args);
|
|
};
|
|
emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D,
|
|
llvm::Function *OutlinedFn,
|
|
llvm::Value *OutlinedFnID,
|
|
const Expr *IfCond, const Expr *Device) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
assert(OutlinedFn && "Invalid outlined function!");
|
|
|
|
const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>();
|
|
llvm::SmallVector<llvm::Value *, 16> CapturedVars;
|
|
const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
|
|
auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
|
|
};
|
|
emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
|
|
|
|
CodeGenFunction::OMPTargetDataInfo InputInfo;
|
|
llvm::Value *MapTypesArray = nullptr;
|
|
// Fill up the pointer arrays and transfer execution to the device.
|
|
auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
|
|
&MapTypesArray, &CS, RequiresOuterTask,
|
|
&CapturedVars](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// On top of the arrays that were filled up, the target offloading call
|
|
// takes as arguments the device id as well as the host pointer. The host
|
|
// pointer is used by the runtime library to identify the current target
|
|
// region, so it only has to be unique and not necessarily point to
|
|
// anything. It could be the pointer to the outlined function that
|
|
// implements the target region, but we aren't using that so that the
|
|
// compiler doesn't need to keep that, and could therefore inline the host
|
|
// function if proven worthwhile during optimization.
|
|
|
|
// From this point on, we need to have an ID of the target region defined.
|
|
assert(OutlinedFnID && "Invalid outlined function ID!");
|
|
|
|
// Emit device ID if any.
|
|
llvm::Value *DeviceID;
|
|
if (Device) {
|
|
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
|
|
CGF.Int64Ty, /*isSigned=*/true);
|
|
} else {
|
|
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
|
|
}
|
|
|
|
// Emit the number of elements in the offloading arrays.
|
|
llvm::Value *PointerNum =
|
|
CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
|
|
|
|
// Return value of the runtime offloading call.
|
|
llvm::Value *Return;
|
|
|
|
llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
|
|
llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
|
|
|
|
bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
|
|
// The target region is an outlined function launched by the runtime
|
|
// via calls __tgt_target() or __tgt_target_teams().
|
|
//
|
|
// __tgt_target() launches a target region with one team and one thread,
|
|
// executing a serial region. This master thread may in turn launch
|
|
// more threads within its team upon encountering a parallel region,
|
|
// however, no additional teams can be launched on the device.
|
|
//
|
|
// __tgt_target_teams() launches a target region with one or more teams,
|
|
// each with one or more threads. This call is required for target
|
|
// constructs such as:
|
|
// 'target teams'
|
|
// 'target' / 'teams'
|
|
// 'target teams distribute parallel for'
|
|
// 'target parallel'
|
|
// and so on.
|
|
//
|
|
// Note that on the host and CPU targets, the runtime implementation of
|
|
// these calls simply call the outlined function without forking threads.
|
|
// The outlined functions themselves have runtime calls to
|
|
// __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
|
|
// the compiler in emitTeamsCall() and emitParallelCall().
|
|
//
|
|
// In contrast, on the NVPTX target, the implementation of
|
|
// __tgt_target_teams() launches a GPU kernel with the requested number
|
|
// of teams and threads so no additional calls to the runtime are required.
|
|
if (NumTeams) {
|
|
// If we have NumTeams defined this means that we have an enclosed teams
|
|
// region. Therefore we also expect to have NumThreads defined. These two
|
|
// values should be defined in the presence of a teams directive,
|
|
// regardless of having any clauses associated. If the user is using teams
|
|
// but no clauses, these two values will be the default that should be
|
|
// passed to the runtime library - a 32-bit integer with the value zero.
|
|
assert(NumThreads && "Thread limit expression should be available along "
|
|
"with number of teams.");
|
|
llvm::Value *OffloadingArgs[] = {DeviceID,
|
|
OutlinedFnID,
|
|
PointerNum,
|
|
InputInfo.BasePointersArray.getPointer(),
|
|
InputInfo.PointersArray.getPointer(),
|
|
InputInfo.SizesArray.getPointer(),
|
|
MapTypesArray,
|
|
NumTeams,
|
|
NumThreads};
|
|
Return = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_teams_nowait
|
|
: OMPRTL__tgt_target_teams),
|
|
OffloadingArgs);
|
|
} else {
|
|
llvm::Value *OffloadingArgs[] = {DeviceID,
|
|
OutlinedFnID,
|
|
PointerNum,
|
|
InputInfo.BasePointersArray.getPointer(),
|
|
InputInfo.PointersArray.getPointer(),
|
|
InputInfo.SizesArray.getPointer(),
|
|
MapTypesArray};
|
|
Return = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_nowait
|
|
: OMPRTL__tgt_target),
|
|
OffloadingArgs);
|
|
}
|
|
|
|
// Check the error code and execute the host version if required.
|
|
llvm::BasicBlock *OffloadFailedBlock =
|
|
CGF.createBasicBlock("omp_offload.failed");
|
|
llvm::BasicBlock *OffloadContBlock =
|
|
CGF.createBasicBlock("omp_offload.cont");
|
|
llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
|
|
CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
|
|
|
|
CGF.EmitBlock(OffloadFailedBlock);
|
|
if (RequiresOuterTask) {
|
|
CapturedVars.clear();
|
|
CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
|
|
}
|
|
emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
|
|
CGF.EmitBranch(OffloadContBlock);
|
|
|
|
CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
|
|
};
|
|
|
|
// Notify that the host version must be executed.
|
|
auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
|
|
RequiresOuterTask](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
if (RequiresOuterTask) {
|
|
CapturedVars.clear();
|
|
CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
|
|
}
|
|
emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
|
|
};
|
|
|
|
auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
|
|
&CapturedVars, RequiresOuterTask,
|
|
&CS](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// Fill up the arrays with all the captured variables.
|
|
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
|
|
MappableExprsHandler::MapValuesArrayTy Pointers;
|
|
MappableExprsHandler::MapValuesArrayTy Sizes;
|
|
MappableExprsHandler::MapFlagsArrayTy MapTypes;
|
|
|
|
// Get mappable expression information.
|
|
MappableExprsHandler MEHandler(D, CGF);
|
|
llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
|
|
|
|
auto RI = CS.getCapturedRecordDecl()->field_begin();
|
|
auto CV = CapturedVars.begin();
|
|
for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
|
|
CE = CS.capture_end();
|
|
CI != CE; ++CI, ++RI, ++CV) {
|
|
MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers;
|
|
MappableExprsHandler::MapValuesArrayTy CurPointers;
|
|
MappableExprsHandler::MapValuesArrayTy CurSizes;
|
|
MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
|
|
MappableExprsHandler::StructRangeInfoTy PartialStruct;
|
|
|
|
// VLA sizes are passed to the outlined region by copy and do not have map
|
|
// information associated.
|
|
if (CI->capturesVariableArrayType()) {
|
|
CurBasePointers.push_back(*CV);
|
|
CurPointers.push_back(*CV);
|
|
CurSizes.push_back(CGF.Builder.CreateIntCast(
|
|
CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
|
|
// Copy to the device as an argument. No need to retrieve it.
|
|
CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
|
|
MappableExprsHandler::OMP_MAP_TARGET_PARAM |
|
|
MappableExprsHandler::OMP_MAP_IMPLICIT);
|
|
} else {
|
|
// If we have any information in the map clause, we use it, otherwise we
|
|
// just do a default mapping.
|
|
MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers,
|
|
CurSizes, CurMapTypes, PartialStruct);
|
|
if (CurBasePointers.empty())
|
|
MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
|
|
CurPointers, CurSizes, CurMapTypes);
|
|
// Generate correct mapping for variables captured by reference in
|
|
// lambdas.
|
|
if (CI->capturesVariable())
|
|
MEHandler.generateInfoForLambdaCaptures(
|
|
CI->getCapturedVar(), *CV, CurBasePointers, CurPointers, CurSizes,
|
|
CurMapTypes, LambdaPointers);
|
|
}
|
|
// We expect to have at least an element of information for this capture.
|
|
assert(!CurBasePointers.empty() &&
|
|
"Non-existing map pointer for capture!");
|
|
assert(CurBasePointers.size() == CurPointers.size() &&
|
|
CurBasePointers.size() == CurSizes.size() &&
|
|
CurBasePointers.size() == CurMapTypes.size() &&
|
|
"Inconsistent map information sizes!");
|
|
|
|
// If there is an entry in PartialStruct it means we have a struct with
|
|
// individual members mapped. Emit an extra combined entry.
|
|
if (PartialStruct.Base.isValid())
|
|
MEHandler.emitCombinedEntry(BasePointers, Pointers, Sizes, MapTypes,
|
|
CurMapTypes, PartialStruct);
|
|
|
|
// We need to append the results of this capture to what we already have.
|
|
BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
|
|
Pointers.append(CurPointers.begin(), CurPointers.end());
|
|
Sizes.append(CurSizes.begin(), CurSizes.end());
|
|
MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
|
|
}
|
|
// Adjust MEMBER_OF flags for the lambdas captures.
|
|
MEHandler.adjustMemberOfForLambdaCaptures(LambdaPointers, BasePointers,
|
|
Pointers, MapTypes);
|
|
// Map other list items in the map clause which are not captured variables
|
|
// but "declare target link" global variables.
|
|
MEHandler.generateInfoForDeclareTargetLink(BasePointers, Pointers, Sizes,
|
|
MapTypes);
|
|
|
|
TargetDataInfo Info;
|
|
// Fill up the arrays and create the arguments.
|
|
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
|
|
emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
|
|
Info.PointersArray, Info.SizesArray,
|
|
Info.MapTypesArray, Info);
|
|
InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
|
|
InputInfo.BasePointersArray =
|
|
Address(Info.BasePointersArray, CGM.getPointerAlign());
|
|
InputInfo.PointersArray =
|
|
Address(Info.PointersArray, CGM.getPointerAlign());
|
|
InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
|
|
MapTypesArray = Info.MapTypesArray;
|
|
if (RequiresOuterTask)
|
|
CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
|
|
else
|
|
emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
|
|
};
|
|
|
|
auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
|
|
CodeGenFunction &CGF, PrePostActionTy &) {
|
|
if (RequiresOuterTask) {
|
|
CodeGenFunction::OMPTargetDataInfo InputInfo;
|
|
CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
|
|
} else {
|
|
emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
|
|
}
|
|
};
|
|
|
|
// If we have a target function ID it means that we need to support
|
|
// offloading, otherwise, just execute on the host. We need to execute on host
|
|
// regardless of the conditional in the if clause if, e.g., the user do not
|
|
// specify target triples.
|
|
if (OutlinedFnID) {
|
|
if (IfCond) {
|
|
emitOMPIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
|
|
} else {
|
|
RegionCodeGenTy ThenRCG(TargetThenGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
} else {
|
|
RegionCodeGenTy ElseRCG(TargetElseGen);
|
|
ElseRCG(CGF);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
|
|
StringRef ParentName) {
|
|
if (!S)
|
|
return;
|
|
|
|
// Codegen OMP target directives that offload compute to the device.
|
|
bool RequiresDeviceCodegen =
|
|
isa<OMPExecutableDirective>(S) &&
|
|
isOpenMPTargetExecutionDirective(
|
|
cast<OMPExecutableDirective>(S)->getDirectiveKind());
|
|
|
|
if (RequiresDeviceCodegen) {
|
|
const auto &E = *cast<OMPExecutableDirective>(S);
|
|
unsigned DeviceID;
|
|
unsigned FileID;
|
|
unsigned Line;
|
|
getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
|
|
FileID, Line);
|
|
|
|
// Is this a target region that should not be emitted as an entry point? If
|
|
// so just signal we are done with this target region.
|
|
if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
|
|
ParentName, Line))
|
|
return;
|
|
|
|
switch (E.getDirectiveKind()) {
|
|
case OMPD_target:
|
|
CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
|
|
cast<OMPTargetDirective>(E));
|
|
break;
|
|
case OMPD_target_parallel:
|
|
CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetParallelDirective>(E));
|
|
break;
|
|
case OMPD_target_teams:
|
|
CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
|
|
break;
|
|
case OMPD_target_teams_distribute:
|
|
CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
|
|
break;
|
|
case OMPD_target_teams_distribute_simd:
|
|
CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
|
|
break;
|
|
case OMPD_target_parallel_for:
|
|
CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
|
|
break;
|
|
case OMPD_target_parallel_for_simd:
|
|
CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
|
|
break;
|
|
case OMPD_target_simd:
|
|
CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetSimdDirective>(E));
|
|
break;
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
|
|
CGM, ParentName,
|
|
cast<OMPTargetTeamsDistributeParallelForDirective>(E));
|
|
break;
|
|
case OMPD_target_teams_distribute_parallel_for_simd:
|
|
CodeGenFunction::
|
|
EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
|
|
CGM, ParentName,
|
|
cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
|
|
break;
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
llvm_unreachable("Unknown target directive for OpenMP device codegen.");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
|
|
if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
|
|
return;
|
|
|
|
scanForTargetRegionsFunctions(
|
|
E->getInnermostCapturedStmt()->getCapturedStmt(), ParentName);
|
|
return;
|
|
}
|
|
|
|
// If this is a lambda function, look into its body.
|
|
if (const auto *L = dyn_cast<LambdaExpr>(S))
|
|
S = L->getBody();
|
|
|
|
// Keep looking for target regions recursively.
|
|
for (const Stmt *II : S->children())
|
|
scanForTargetRegionsFunctions(II, ParentName);
|
|
}
|
|
|
|
bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
|
|
// If emitting code for the host, we do not process FD here. Instead we do
|
|
// the normal code generation.
|
|
if (!CGM.getLangOpts().OpenMPIsDevice)
|
|
return false;
|
|
|
|
const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
|
|
StringRef Name = CGM.getMangledName(GD);
|
|
// Try to detect target regions in the function.
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(VD))
|
|
scanForTargetRegionsFunctions(FD->getBody(), Name);
|
|
|
|
// Do not to emit function if it is not marked as declare target.
|
|
return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
|
|
AlreadyEmittedTargetFunctions.count(Name) == 0;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
|
|
if (!CGM.getLangOpts().OpenMPIsDevice)
|
|
return false;
|
|
|
|
// Check if there are Ctors/Dtors in this declaration and look for target
|
|
// regions in it. We use the complete variant to produce the kernel name
|
|
// mangling.
|
|
QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
|
|
if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
|
|
for (const CXXConstructorDecl *Ctor : RD->ctors()) {
|
|
StringRef ParentName =
|
|
CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
|
|
scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
|
|
}
|
|
if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
|
|
StringRef ParentName =
|
|
CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
|
|
scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
|
|
}
|
|
}
|
|
|
|
// Do not to emit variable if it is not marked as declare target.
|
|
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
|
|
cast<VarDecl>(GD.getDecl()));
|
|
if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
HasRequiresUnifiedSharedMemory)) {
|
|
DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
llvm::Constant *
|
|
CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
|
|
const VarDecl *VD) {
|
|
assert(VD->getType().isConstant(CGM.getContext()) &&
|
|
"Expected constant variable.");
|
|
StringRef VarName;
|
|
llvm::Constant *Addr;
|
|
llvm::GlobalValue::LinkageTypes Linkage;
|
|
QualType Ty = VD->getType();
|
|
SmallString<128> Buffer;
|
|
{
|
|
unsigned DeviceID;
|
|
unsigned FileID;
|
|
unsigned Line;
|
|
getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
|
|
FileID, Line);
|
|
llvm::raw_svector_ostream OS(Buffer);
|
|
OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
|
|
<< llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
|
|
VarName = OS.str();
|
|
}
|
|
Linkage = llvm::GlobalValue::InternalLinkage;
|
|
Addr =
|
|
getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
|
|
getDefaultFirstprivateAddressSpace());
|
|
cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
|
|
CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
|
|
CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
|
|
OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
|
|
VarName, Addr, VarSize,
|
|
OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
|
|
return Addr;
|
|
}
|
|
|
|
void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
|
|
llvm::Constant *Addr) {
|
|
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
|
|
if (!Res) {
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
// Register non-target variables being emitted in device code (debug info
|
|
// may cause this).
|
|
StringRef VarName = CGM.getMangledName(VD);
|
|
EmittedNonTargetVariables.try_emplace(VarName, Addr);
|
|
}
|
|
return;
|
|
}
|
|
// Register declare target variables.
|
|
OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
|
|
StringRef VarName;
|
|
CharUnits VarSize;
|
|
llvm::GlobalValue::LinkageTypes Linkage;
|
|
|
|
if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
!HasRequiresUnifiedSharedMemory) {
|
|
Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
|
|
VarName = CGM.getMangledName(VD);
|
|
if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
|
|
VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
|
|
assert(!VarSize.isZero() && "Expected non-zero size of the variable");
|
|
} else {
|
|
VarSize = CharUnits::Zero();
|
|
}
|
|
Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
|
|
// Temp solution to prevent optimizations of the internal variables.
|
|
if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
|
|
std::string RefName = getName({VarName, "ref"});
|
|
if (!CGM.GetGlobalValue(RefName)) {
|
|
llvm::Constant *AddrRef =
|
|
getOrCreateInternalVariable(Addr->getType(), RefName);
|
|
auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
|
|
GVAddrRef->setConstant(/*Val=*/true);
|
|
GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
|
|
GVAddrRef->setInitializer(Addr);
|
|
CGM.addCompilerUsedGlobal(GVAddrRef);
|
|
}
|
|
}
|
|
} else {
|
|
assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
HasRequiresUnifiedSharedMemory)) &&
|
|
"Declare target attribute must link or to with unified memory.");
|
|
if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
|
|
Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
|
|
else
|
|
Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
|
|
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
VarName = Addr->getName();
|
|
Addr = nullptr;
|
|
} else {
|
|
VarName = getAddrOfDeclareTargetVar(VD).getName();
|
|
Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
|
|
}
|
|
VarSize = CGM.getPointerSize();
|
|
Linkage = llvm::GlobalValue::WeakAnyLinkage;
|
|
}
|
|
|
|
OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
|
|
VarName, Addr, VarSize, Flags, Linkage);
|
|
}
|
|
|
|
bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
|
|
if (isa<FunctionDecl>(GD.getDecl()) ||
|
|
isa<OMPDeclareReductionDecl>(GD.getDecl()))
|
|
return emitTargetFunctions(GD);
|
|
|
|
return emitTargetGlobalVariable(GD);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitDeferredTargetDecls() const {
|
|
for (const VarDecl *VD : DeferredGlobalVariables) {
|
|
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
|
|
if (!Res)
|
|
continue;
|
|
if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
!HasRequiresUnifiedSharedMemory) {
|
|
CGM.EmitGlobal(VD);
|
|
} else {
|
|
assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
HasRequiresUnifiedSharedMemory)) &&
|
|
"Expected link clause or to clause with unified memory.");
|
|
(void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
|
|
assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
|
|
" Expected target-based directive.");
|
|
}
|
|
|
|
void CGOpenMPRuntime::checkArchForUnifiedAddressing(
|
|
const OMPRequiresDecl *D) {
|
|
for (const OMPClause *Clause : D->clauselists()) {
|
|
if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
|
|
HasRequiresUnifiedSharedMemory = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
|
|
LangAS &AS) {
|
|
if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
|
|
return false;
|
|
const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
|
|
switch(A->getAllocatorType()) {
|
|
case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
|
|
// Not supported, fallback to the default mem space.
|
|
case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPThreadMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPConstMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
|
|
AS = LangAS::Default;
|
|
return true;
|
|
case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
|
|
llvm_unreachable("Expected predefined allocator for the variables with the "
|
|
"static storage.");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
|
|
return HasRequiresUnifiedSharedMemory;
|
|
}
|
|
|
|
CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
|
|
CodeGenModule &CGM)
|
|
: CGM(CGM) {
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
|
|
CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
|
|
}
|
|
}
|
|
|
|
CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
|
|
if (CGM.getLangOpts().OpenMPIsDevice)
|
|
CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
|
|
if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
|
|
return true;
|
|
|
|
StringRef Name = CGM.getMangledName(GD);
|
|
const auto *D = cast<FunctionDecl>(GD.getDecl());
|
|
// Do not to emit function if it is marked as declare target as it was already
|
|
// emitted.
|
|
if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
|
|
if (D->hasBody() && AlreadyEmittedTargetFunctions.count(Name) == 0) {
|
|
if (auto *F = dyn_cast_or_null<llvm::Function>(CGM.GetGlobalValue(Name)))
|
|
return !F->isDeclaration();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return !AlreadyEmittedTargetFunctions.insert(Name).second;
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
|
|
// If we don't have entries or if we are emitting code for the device, we
|
|
// don't need to do anything.
|
|
if (CGM.getLangOpts().OMPTargetTriples.empty() ||
|
|
CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
|
|
(OffloadEntriesInfoManager.empty() &&
|
|
!HasEmittedDeclareTargetRegion &&
|
|
!HasEmittedTargetRegion))
|
|
return nullptr;
|
|
|
|
// Create and register the function that handles the requires directives.
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
llvm::Function *RequiresRegFn;
|
|
{
|
|
CodeGenFunction CGF(CGM);
|
|
const auto &FI = CGM.getTypes().arrangeNullaryFunction();
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
std::string ReqName = getName({"omp_offloading", "requires_reg"});
|
|
RequiresRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, ReqName, FI);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
|
|
OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
|
|
// TODO: check for other requires clauses.
|
|
// The requires directive takes effect only when a target region is
|
|
// present in the compilation unit. Otherwise it is ignored and not
|
|
// passed to the runtime. This avoids the runtime from throwing an error
|
|
// for mismatching requires clauses across compilation units that don't
|
|
// contain at least 1 target region.
|
|
assert((HasEmittedTargetRegion ||
|
|
HasEmittedDeclareTargetRegion ||
|
|
!OffloadEntriesInfoManager.empty()) &&
|
|
"Target or declare target region expected.");
|
|
if (HasRequiresUnifiedSharedMemory)
|
|
Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_requires),
|
|
llvm::ConstantInt::get(CGM.Int64Ty, Flags));
|
|
CGF.FinishFunction();
|
|
}
|
|
return RequiresRegFn;
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() {
|
|
// If we have offloading in the current module, we need to emit the entries
|
|
// now and register the offloading descriptor.
|
|
createOffloadEntriesAndInfoMetadata();
|
|
|
|
// Create and register the offloading binary descriptors. This is the main
|
|
// entity that captures all the information about offloading in the current
|
|
// compilation unit.
|
|
return createOffloadingBinaryDescriptorRegistration();
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D,
|
|
SourceLocation Loc,
|
|
llvm::Function *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
|
|
// Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
|
|
llvm::Value *Args[] = {
|
|
RTLoc,
|
|
CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
|
|
CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
|
|
llvm::SmallVector<llvm::Value *, 16> RealArgs;
|
|
RealArgs.append(std::begin(Args), std::end(Args));
|
|
RealArgs.append(CapturedVars.begin(), CapturedVars.end());
|
|
|
|
llvm::FunctionCallee RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
|
|
CGF.EmitRuntimeCall(RTLFn, RealArgs);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
|
|
const Expr *NumTeams,
|
|
const Expr *ThreadLimit,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
|
|
|
|
llvm::Value *NumTeamsVal =
|
|
NumTeams
|
|
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
|
|
CGF.CGM.Int32Ty, /* isSigned = */ true)
|
|
: CGF.Builder.getInt32(0);
|
|
|
|
llvm::Value *ThreadLimitVal =
|
|
ThreadLimit
|
|
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
|
|
CGF.CGM.Int32Ty, /* isSigned = */ true)
|
|
: CGF.Builder.getInt32(0);
|
|
|
|
// Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
|
|
llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
|
|
ThreadLimitVal};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
|
|
PushNumTeamsArgs);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetDataCalls(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
|
|
const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
// Action used to replace the default codegen action and turn privatization
|
|
// off.
|
|
PrePostActionTy NoPrivAction;
|
|
|
|
// Generate the code for the opening of the data environment. Capture all the
|
|
// arguments of the runtime call by reference because they are used in the
|
|
// closing of the region.
|
|
auto &&BeginThenGen = [this, &D, Device, &Info,
|
|
&CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// Fill up the arrays with all the mapped variables.
|
|
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
|
|
MappableExprsHandler::MapValuesArrayTy Pointers;
|
|
MappableExprsHandler::MapValuesArrayTy Sizes;
|
|
MappableExprsHandler::MapFlagsArrayTy MapTypes;
|
|
|
|
// Get map clause information.
|
|
MappableExprsHandler MCHandler(D, CGF);
|
|
MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
|
|
|
|
// Fill up the arrays and create the arguments.
|
|
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
|
|
|
|
llvm::Value *BasePointersArrayArg = nullptr;
|
|
llvm::Value *PointersArrayArg = nullptr;
|
|
llvm::Value *SizesArrayArg = nullptr;
|
|
llvm::Value *MapTypesArrayArg = nullptr;
|
|
emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
|
|
SizesArrayArg, MapTypesArrayArg, Info);
|
|
|
|
// Emit device ID if any.
|
|
llvm::Value *DeviceID = nullptr;
|
|
if (Device) {
|
|
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
|
|
CGF.Int64Ty, /*isSigned=*/true);
|
|
} else {
|
|
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
|
|
}
|
|
|
|
// Emit the number of elements in the offloading arrays.
|
|
llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
|
|
|
|
llvm::Value *OffloadingArgs[] = {
|
|
DeviceID, PointerNum, BasePointersArrayArg,
|
|
PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_begin),
|
|
OffloadingArgs);
|
|
|
|
// If device pointer privatization is required, emit the body of the region
|
|
// here. It will have to be duplicated: with and without privatization.
|
|
if (!Info.CaptureDeviceAddrMap.empty())
|
|
CodeGen(CGF);
|
|
};
|
|
|
|
// Generate code for the closing of the data region.
|
|
auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
assert(Info.isValid() && "Invalid data environment closing arguments.");
|
|
|
|
llvm::Value *BasePointersArrayArg = nullptr;
|
|
llvm::Value *PointersArrayArg = nullptr;
|
|
llvm::Value *SizesArrayArg = nullptr;
|
|
llvm::Value *MapTypesArrayArg = nullptr;
|
|
emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
|
|
SizesArrayArg, MapTypesArrayArg, Info);
|
|
|
|
// Emit device ID if any.
|
|
llvm::Value *DeviceID = nullptr;
|
|
if (Device) {
|
|
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
|
|
CGF.Int64Ty, /*isSigned=*/true);
|
|
} else {
|
|
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
|
|
}
|
|
|
|
// Emit the number of elements in the offloading arrays.
|
|
llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
|
|
|
|
llvm::Value *OffloadingArgs[] = {
|
|
DeviceID, PointerNum, BasePointersArrayArg,
|
|
PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_end),
|
|
OffloadingArgs);
|
|
};
|
|
|
|
// If we need device pointer privatization, we need to emit the body of the
|
|
// region with no privatization in the 'else' branch of the conditional.
|
|
// Otherwise, we don't have to do anything.
|
|
auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
if (!Info.CaptureDeviceAddrMap.empty()) {
|
|
CodeGen.setAction(NoPrivAction);
|
|
CodeGen(CGF);
|
|
}
|
|
};
|
|
|
|
// We don't have to do anything to close the region if the if clause evaluates
|
|
// to false.
|
|
auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
|
|
|
|
if (IfCond) {
|
|
emitOMPIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
|
|
} else {
|
|
RegionCodeGenTy RCG(BeginThenGen);
|
|
RCG(CGF);
|
|
}
|
|
|
|
// If we don't require privatization of device pointers, we emit the body in
|
|
// between the runtime calls. This avoids duplicating the body code.
|
|
if (Info.CaptureDeviceAddrMap.empty()) {
|
|
CodeGen.setAction(NoPrivAction);
|
|
CodeGen(CGF);
|
|
}
|
|
|
|
if (IfCond) {
|
|
emitOMPIfClause(CGF, IfCond, EndThenGen, EndElseGen);
|
|
} else {
|
|
RegionCodeGenTy RCG(EndThenGen);
|
|
RCG(CGF);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetDataStandAloneCall(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
|
|
const Expr *Device) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
assert((isa<OMPTargetEnterDataDirective>(D) ||
|
|
isa<OMPTargetExitDataDirective>(D) ||
|
|
isa<OMPTargetUpdateDirective>(D)) &&
|
|
"Expecting either target enter, exit data, or update directives.");
|
|
|
|
CodeGenFunction::OMPTargetDataInfo InputInfo;
|
|
llvm::Value *MapTypesArray = nullptr;
|
|
// Generate the code for the opening of the data environment.
|
|
auto &&ThenGen = [this, &D, Device, &InputInfo,
|
|
&MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// Emit device ID if any.
|
|
llvm::Value *DeviceID = nullptr;
|
|
if (Device) {
|
|
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
|
|
CGF.Int64Ty, /*isSigned=*/true);
|
|
} else {
|
|
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
|
|
}
|
|
|
|
// Emit the number of elements in the offloading arrays.
|
|
llvm::Constant *PointerNum =
|
|
CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
|
|
|
|
llvm::Value *OffloadingArgs[] = {DeviceID,
|
|
PointerNum,
|
|
InputInfo.BasePointersArray.getPointer(),
|
|
InputInfo.PointersArray.getPointer(),
|
|
InputInfo.SizesArray.getPointer(),
|
|
MapTypesArray};
|
|
|
|
// Select the right runtime function call for each expected standalone
|
|
// directive.
|
|
const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
|
|
OpenMPRTLFunction RTLFn;
|
|
switch (D.getDirectiveKind()) {
|
|
case OMPD_target_enter_data:
|
|
RTLFn = HasNowait ? OMPRTL__tgt_target_data_begin_nowait
|
|
: OMPRTL__tgt_target_data_begin;
|
|
break;
|
|
case OMPD_target_exit_data:
|
|
RTLFn = HasNowait ? OMPRTL__tgt_target_data_end_nowait
|
|
: OMPRTL__tgt_target_data_end;
|
|
break;
|
|
case OMPD_target_update:
|
|
RTLFn = HasNowait ? OMPRTL__tgt_target_data_update_nowait
|
|
: OMPRTL__tgt_target_data_update;
|
|
break;
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_target:
|
|
case OMPD_target_simd:
|
|
case OMPD_target_teams_distribute:
|
|
case OMPD_target_teams_distribute_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_teams:
|
|
case OMPD_target_parallel:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
llvm_unreachable("Unexpected standalone target data directive.");
|
|
break;
|
|
}
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(RTLFn), OffloadingArgs);
|
|
};
|
|
|
|
auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray](
|
|
CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// Fill up the arrays with all the mapped variables.
|
|
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
|
|
MappableExprsHandler::MapValuesArrayTy Pointers;
|
|
MappableExprsHandler::MapValuesArrayTy Sizes;
|
|
MappableExprsHandler::MapFlagsArrayTy MapTypes;
|
|
|
|
// Get map clause information.
|
|
MappableExprsHandler MEHandler(D, CGF);
|
|
MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
|
|
|
|
TargetDataInfo Info;
|
|
// Fill up the arrays and create the arguments.
|
|
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
|
|
emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
|
|
Info.PointersArray, Info.SizesArray,
|
|
Info.MapTypesArray, Info);
|
|
InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
|
|
InputInfo.BasePointersArray =
|
|
Address(Info.BasePointersArray, CGM.getPointerAlign());
|
|
InputInfo.PointersArray =
|
|
Address(Info.PointersArray, CGM.getPointerAlign());
|
|
InputInfo.SizesArray =
|
|
Address(Info.SizesArray, CGM.getPointerAlign());
|
|
MapTypesArray = Info.MapTypesArray;
|
|
if (D.hasClausesOfKind<OMPDependClause>())
|
|
CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
|
|
else
|
|
emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
|
|
};
|
|
|
|
if (IfCond) {
|
|
emitOMPIfClause(CGF, IfCond, TargetThenGen,
|
|
[](CodeGenFunction &CGF, PrePostActionTy &) {});
|
|
} else {
|
|
RegionCodeGenTy ThenRCG(TargetThenGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// Kind of parameter in a function with 'declare simd' directive.
|
|
enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
|
|
/// Attribute set of the parameter.
|
|
struct ParamAttrTy {
|
|
ParamKindTy Kind = Vector;
|
|
llvm::APSInt StrideOrArg;
|
|
llvm::APSInt Alignment;
|
|
};
|
|
} // namespace
|
|
|
|
static unsigned evaluateCDTSize(const FunctionDecl *FD,
|
|
ArrayRef<ParamAttrTy> ParamAttrs) {
|
|
// Every vector variant of a SIMD-enabled function has a vector length (VLEN).
|
|
// If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
|
|
// of that clause. The VLEN value must be power of 2.
|
|
// In other case the notion of the function`s "characteristic data type" (CDT)
|
|
// is used to compute the vector length.
|
|
// CDT is defined in the following order:
|
|
// a) For non-void function, the CDT is the return type.
|
|
// b) If the function has any non-uniform, non-linear parameters, then the
|
|
// CDT is the type of the first such parameter.
|
|
// c) If the CDT determined by a) or b) above is struct, union, or class
|
|
// type which is pass-by-value (except for the type that maps to the
|
|
// built-in complex data type), the characteristic data type is int.
|
|
// d) If none of the above three cases is applicable, the CDT is int.
|
|
// The VLEN is then determined based on the CDT and the size of vector
|
|
// register of that ISA for which current vector version is generated. The
|
|
// VLEN is computed using the formula below:
|
|
// VLEN = sizeof(vector_register) / sizeof(CDT),
|
|
// where vector register size specified in section 3.2.1 Registers and the
|
|
// Stack Frame of original AMD64 ABI document.
|
|
QualType RetType = FD->getReturnType();
|
|
if (RetType.isNull())
|
|
return 0;
|
|
ASTContext &C = FD->getASTContext();
|
|
QualType CDT;
|
|
if (!RetType.isNull() && !RetType->isVoidType()) {
|
|
CDT = RetType;
|
|
} else {
|
|
unsigned Offset = 0;
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
if (ParamAttrs[Offset].Kind == Vector)
|
|
CDT = C.getPointerType(C.getRecordType(MD->getParent()));
|
|
++Offset;
|
|
}
|
|
if (CDT.isNull()) {
|
|
for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
|
|
if (ParamAttrs[I + Offset].Kind == Vector) {
|
|
CDT = FD->getParamDecl(I)->getType();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (CDT.isNull())
|
|
CDT = C.IntTy;
|
|
CDT = CDT->getCanonicalTypeUnqualified();
|
|
if (CDT->isRecordType() || CDT->isUnionType())
|
|
CDT = C.IntTy;
|
|
return C.getTypeSize(CDT);
|
|
}
|
|
|
|
static void
|
|
emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
|
|
const llvm::APSInt &VLENVal,
|
|
ArrayRef<ParamAttrTy> ParamAttrs,
|
|
OMPDeclareSimdDeclAttr::BranchStateTy State) {
|
|
struct ISADataTy {
|
|
char ISA;
|
|
unsigned VecRegSize;
|
|
};
|
|
ISADataTy ISAData[] = {
|
|
{
|
|
'b', 128
|
|
}, // SSE
|
|
{
|
|
'c', 256
|
|
}, // AVX
|
|
{
|
|
'd', 256
|
|
}, // AVX2
|
|
{
|
|
'e', 512
|
|
}, // AVX512
|
|
};
|
|
llvm::SmallVector<char, 2> Masked;
|
|
switch (State) {
|
|
case OMPDeclareSimdDeclAttr::BS_Undefined:
|
|
Masked.push_back('N');
|
|
Masked.push_back('M');
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
|
|
Masked.push_back('N');
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Inbranch:
|
|
Masked.push_back('M');
|
|
break;
|
|
}
|
|
for (char Mask : Masked) {
|
|
for (const ISADataTy &Data : ISAData) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
Out << "_ZGV" << Data.ISA << Mask;
|
|
if (!VLENVal) {
|
|
unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
|
|
assert(NumElts && "Non-zero simdlen/cdtsize expected");
|
|
Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
|
|
} else {
|
|
Out << VLENVal;
|
|
}
|
|
for (const ParamAttrTy &ParamAttr : ParamAttrs) {
|
|
switch (ParamAttr.Kind){
|
|
case LinearWithVarStride:
|
|
Out << 's' << ParamAttr.StrideOrArg;
|
|
break;
|
|
case Linear:
|
|
Out << 'l';
|
|
if (!!ParamAttr.StrideOrArg)
|
|
Out << ParamAttr.StrideOrArg;
|
|
break;
|
|
case Uniform:
|
|
Out << 'u';
|
|
break;
|
|
case Vector:
|
|
Out << 'v';
|
|
break;
|
|
}
|
|
if (!!ParamAttr.Alignment)
|
|
Out << 'a' << ParamAttr.Alignment;
|
|
}
|
|
Out << '_' << Fn->getName();
|
|
Fn->addFnAttr(Out.str());
|
|
}
|
|
}
|
|
}
|
|
|
|
// This are the Functions that are needed to mangle the name of the
|
|
// vector functions generated by the compiler, according to the rules
|
|
// defined in the "Vector Function ABI specifications for AArch64",
|
|
// available at
|
|
// https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
|
|
|
|
/// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
|
|
///
|
|
/// TODO: Need to implement the behavior for reference marked with a
|
|
/// var or no linear modifiers (1.b in the section). For this, we
|
|
/// need to extend ParamKindTy to support the linear modifiers.
|
|
static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
|
|
QT = QT.getCanonicalType();
|
|
|
|
if (QT->isVoidType())
|
|
return false;
|
|
|
|
if (Kind == ParamKindTy::Uniform)
|
|
return false;
|
|
|
|
if (Kind == ParamKindTy::Linear)
|
|
return false;
|
|
|
|
// TODO: Handle linear references with modifiers
|
|
|
|
if (Kind == ParamKindTy::LinearWithVarStride)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
|
|
static bool getAArch64PBV(QualType QT, ASTContext &C) {
|
|
QT = QT.getCanonicalType();
|
|
unsigned Size = C.getTypeSize(QT);
|
|
|
|
// Only scalars and complex within 16 bytes wide set PVB to true.
|
|
if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
|
|
return false;
|
|
|
|
if (QT->isFloatingType())
|
|
return true;
|
|
|
|
if (QT->isIntegerType())
|
|
return true;
|
|
|
|
if (QT->isPointerType())
|
|
return true;
|
|
|
|
// TODO: Add support for complex types (section 3.1.2, item 2).
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Computes the lane size (LS) of a return type or of an input parameter,
|
|
/// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
|
|
/// TODO: Add support for references, section 3.2.1, item 1.
|
|
static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
|
|
if (getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
|
|
QualType PTy = QT.getCanonicalType()->getPointeeType();
|
|
if (getAArch64PBV(PTy, C))
|
|
return C.getTypeSize(PTy);
|
|
}
|
|
if (getAArch64PBV(QT, C))
|
|
return C.getTypeSize(QT);
|
|
|
|
return C.getTypeSize(C.getUIntPtrType());
|
|
}
|
|
|
|
// Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
|
|
// signature of the scalar function, as defined in 3.2.2 of the
|
|
// AAVFABI.
|
|
static std::tuple<unsigned, unsigned, bool>
|
|
getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
|
|
QualType RetType = FD->getReturnType().getCanonicalType();
|
|
|
|
ASTContext &C = FD->getASTContext();
|
|
|
|
bool OutputBecomesInput = false;
|
|
|
|
llvm::SmallVector<unsigned, 8> Sizes;
|
|
if (!RetType->isVoidType()) {
|
|
Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
|
|
if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
|
|
OutputBecomesInput = true;
|
|
}
|
|
for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
|
|
QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
|
|
Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
|
|
}
|
|
|
|
assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
|
|
// The LS of a function parameter / return value can only be a power
|
|
// of 2, starting from 8 bits, up to 128.
|
|
assert(std::all_of(Sizes.begin(), Sizes.end(),
|
|
[](unsigned Size) {
|
|
return Size == 8 || Size == 16 || Size == 32 ||
|
|
Size == 64 || Size == 128;
|
|
}) &&
|
|
"Invalid size");
|
|
|
|
return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
|
|
*std::max_element(std::begin(Sizes), std::end(Sizes)),
|
|
OutputBecomesInput);
|
|
}
|
|
|
|
/// Mangle the parameter part of the vector function name according to
|
|
/// their OpenMP classification. The mangling function is defined in
|
|
/// section 3.5 of the AAVFABI.
|
|
static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
for (const auto &ParamAttr : ParamAttrs) {
|
|
switch (ParamAttr.Kind) {
|
|
case LinearWithVarStride:
|
|
Out << "ls" << ParamAttr.StrideOrArg;
|
|
break;
|
|
case Linear:
|
|
Out << 'l';
|
|
// Don't print the step value if it is not present or if it is
|
|
// equal to 1.
|
|
if (!!ParamAttr.StrideOrArg && ParamAttr.StrideOrArg != 1)
|
|
Out << ParamAttr.StrideOrArg;
|
|
break;
|
|
case Uniform:
|
|
Out << 'u';
|
|
break;
|
|
case Vector:
|
|
Out << 'v';
|
|
break;
|
|
}
|
|
|
|
if (!!ParamAttr.Alignment)
|
|
Out << 'a' << ParamAttr.Alignment;
|
|
}
|
|
|
|
return Out.str();
|
|
}
|
|
|
|
// Function used to add the attribute. The parameter `VLEN` is
|
|
// templated to allow the use of "x" when targeting scalable functions
|
|
// for SVE.
|
|
template <typename T>
|
|
static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
|
|
char ISA, StringRef ParSeq,
|
|
StringRef MangledName, bool OutputBecomesInput,
|
|
llvm::Function *Fn) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
Out << Prefix << ISA << LMask << VLEN;
|
|
if (OutputBecomesInput)
|
|
Out << "v";
|
|
Out << ParSeq << "_" << MangledName;
|
|
Fn->addFnAttr(Out.str());
|
|
}
|
|
|
|
// Helper function to generate the Advanced SIMD names depending on
|
|
// the value of the NDS when simdlen is not present.
|
|
static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
|
|
StringRef Prefix, char ISA,
|
|
StringRef ParSeq, StringRef MangledName,
|
|
bool OutputBecomesInput,
|
|
llvm::Function *Fn) {
|
|
switch (NDS) {
|
|
case 8:
|
|
addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case 16:
|
|
addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case 32:
|
|
addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case 64:
|
|
case 128:
|
|
addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Scalar type is too wide.");
|
|
}
|
|
}
|
|
|
|
/// Emit vector function attributes for AArch64, as defined in the AAVFABI.
|
|
static void emitAArch64DeclareSimdFunction(
|
|
CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
|
|
ArrayRef<ParamAttrTy> ParamAttrs,
|
|
OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
|
|
char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
|
|
|
|
// Get basic data for building the vector signature.
|
|
const auto Data = getNDSWDS(FD, ParamAttrs);
|
|
const unsigned NDS = std::get<0>(Data);
|
|
const unsigned WDS = std::get<1>(Data);
|
|
const bool OutputBecomesInput = std::get<2>(Data);
|
|
|
|
// Check the values provided via `simdlen` by the user.
|
|
// 1. A `simdlen(1)` doesn't produce vector signatures,
|
|
if (UserVLEN == 1) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Warning,
|
|
"The clause simdlen(1) has no effect when targeting aarch64.");
|
|
CGM.getDiags().Report(SLoc, DiagID);
|
|
return;
|
|
}
|
|
|
|
// 2. Section 3.3.1, item 1: user input must be a power of 2 for
|
|
// Advanced SIMD output.
|
|
if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
|
|
"power of 2 when targeting Advanced SIMD.");
|
|
CGM.getDiags().Report(SLoc, DiagID);
|
|
return;
|
|
}
|
|
|
|
// 3. Section 3.4.1. SVE fixed lengh must obey the architectural
|
|
// limits.
|
|
if (ISA == 's' && UserVLEN != 0) {
|
|
if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
|
|
"lanes in the architectural constraints "
|
|
"for SVE (min is 128-bit, max is "
|
|
"2048-bit, by steps of 128-bit)");
|
|
CGM.getDiags().Report(SLoc, DiagID) << WDS;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Sort out parameter sequence.
|
|
const std::string ParSeq = mangleVectorParameters(ParamAttrs);
|
|
StringRef Prefix = "_ZGV";
|
|
// Generate simdlen from user input (if any).
|
|
if (UserVLEN) {
|
|
if (ISA == 's') {
|
|
// SVE generates only a masked function.
|
|
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
} else {
|
|
assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
|
|
// Advanced SIMD generates one or two functions, depending on
|
|
// the `[not]inbranch` clause.
|
|
switch (State) {
|
|
case OMPDeclareSimdDeclAttr::BS_Undefined:
|
|
addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
|
|
addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Inbranch:
|
|
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// If no user simdlen is provided, follow the AAVFABI rules for
|
|
// generating the vector length.
|
|
if (ISA == 's') {
|
|
// SVE, section 3.4.1, item 1.
|
|
addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
} else {
|
|
assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
|
|
// Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
|
|
// two vector names depending on the use of the clause
|
|
// `[not]inbranch`.
|
|
switch (State) {
|
|
case OMPDeclareSimdDeclAttr::BS_Undefined:
|
|
addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
|
|
addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Inbranch:
|
|
addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
|
|
llvm::Function *Fn) {
|
|
ASTContext &C = CGM.getContext();
|
|
FD = FD->getMostRecentDecl();
|
|
// Map params to their positions in function decl.
|
|
llvm::DenseMap<const Decl *, unsigned> ParamPositions;
|
|
if (isa<CXXMethodDecl>(FD))
|
|
ParamPositions.try_emplace(FD, 0);
|
|
unsigned ParamPos = ParamPositions.size();
|
|
for (const ParmVarDecl *P : FD->parameters()) {
|
|
ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
|
|
++ParamPos;
|
|
}
|
|
while (FD) {
|
|
for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
|
|
llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
|
|
// Mark uniform parameters.
|
|
for (const Expr *E : Attr->uniforms()) {
|
|
E = E->IgnoreParenImpCasts();
|
|
unsigned Pos;
|
|
if (isa<CXXThisExpr>(E)) {
|
|
Pos = ParamPositions[FD];
|
|
} else {
|
|
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
|
|
->getCanonicalDecl();
|
|
Pos = ParamPositions[PVD];
|
|
}
|
|
ParamAttrs[Pos].Kind = Uniform;
|
|
}
|
|
// Get alignment info.
|
|
auto NI = Attr->alignments_begin();
|
|
for (const Expr *E : Attr->aligneds()) {
|
|
E = E->IgnoreParenImpCasts();
|
|
unsigned Pos;
|
|
QualType ParmTy;
|
|
if (isa<CXXThisExpr>(E)) {
|
|
Pos = ParamPositions[FD];
|
|
ParmTy = E->getType();
|
|
} else {
|
|
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
|
|
->getCanonicalDecl();
|
|
Pos = ParamPositions[PVD];
|
|
ParmTy = PVD->getType();
|
|
}
|
|
ParamAttrs[Pos].Alignment =
|
|
(*NI)
|
|
? (*NI)->EvaluateKnownConstInt(C)
|
|
: llvm::APSInt::getUnsigned(
|
|
C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
|
|
.getQuantity());
|
|
++NI;
|
|
}
|
|
// Mark linear parameters.
|
|
auto SI = Attr->steps_begin();
|
|
auto MI = Attr->modifiers_begin();
|
|
for (const Expr *E : Attr->linears()) {
|
|
E = E->IgnoreParenImpCasts();
|
|
unsigned Pos;
|
|
if (isa<CXXThisExpr>(E)) {
|
|
Pos = ParamPositions[FD];
|
|
} else {
|
|
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
|
|
->getCanonicalDecl();
|
|
Pos = ParamPositions[PVD];
|
|
}
|
|
ParamAttrTy &ParamAttr = ParamAttrs[Pos];
|
|
ParamAttr.Kind = Linear;
|
|
if (*SI) {
|
|
Expr::EvalResult Result;
|
|
if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
|
|
if (const auto *DRE =
|
|
cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
|
|
if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
|
|
ParamAttr.Kind = LinearWithVarStride;
|
|
ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
|
|
ParamPositions[StridePVD->getCanonicalDecl()]);
|
|
}
|
|
}
|
|
} else {
|
|
ParamAttr.StrideOrArg = Result.Val.getInt();
|
|
}
|
|
}
|
|
++SI;
|
|
++MI;
|
|
}
|
|
llvm::APSInt VLENVal;
|
|
SourceLocation ExprLoc;
|
|
const Expr *VLENExpr = Attr->getSimdlen();
|
|
if (VLENExpr) {
|
|
VLENVal = VLENExpr->EvaluateKnownConstInt(C);
|
|
ExprLoc = VLENExpr->getExprLoc();
|
|
}
|
|
OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
|
|
if (CGM.getTriple().getArch() == llvm::Triple::x86 ||
|
|
CGM.getTriple().getArch() == llvm::Triple::x86_64) {
|
|
emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
|
|
} else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
|
|
unsigned VLEN = VLENVal.getExtValue();
|
|
StringRef MangledName = Fn->getName();
|
|
if (CGM.getTarget().hasFeature("sve"))
|
|
emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
|
|
MangledName, 's', 128, Fn, ExprLoc);
|
|
if (CGM.getTarget().hasFeature("neon"))
|
|
emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
|
|
MangledName, 'n', 128, Fn, ExprLoc);
|
|
}
|
|
}
|
|
FD = FD->getPreviousDecl();
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// Cleanup action for doacross support.
|
|
class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
|
|
public:
|
|
static const int DoacrossFinArgs = 2;
|
|
|
|
private:
|
|
llvm::FunctionCallee RTLFn;
|
|
llvm::Value *Args[DoacrossFinArgs];
|
|
|
|
public:
|
|
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
|
|
ArrayRef<llvm::Value *> CallArgs)
|
|
: RTLFn(RTLFn) {
|
|
assert(CallArgs.size() == DoacrossFinArgs);
|
|
std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
|
|
}
|
|
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
CGF.EmitRuntimeCall(RTLFn, Args);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
|
|
const OMPLoopDirective &D,
|
|
ArrayRef<Expr *> NumIterations) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
ASTContext &C = CGM.getContext();
|
|
QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
|
|
RecordDecl *RD;
|
|
if (KmpDimTy.isNull()) {
|
|
// Build struct kmp_dim { // loop bounds info casted to kmp_int64
|
|
// kmp_int64 lo; // lower
|
|
// kmp_int64 up; // upper
|
|
// kmp_int64 st; // stride
|
|
// };
|
|
RD = C.buildImplicitRecord("kmp_dim");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(C, RD, Int64Ty);
|
|
addFieldToRecordDecl(C, RD, Int64Ty);
|
|
addFieldToRecordDecl(C, RD, Int64Ty);
|
|
RD->completeDefinition();
|
|
KmpDimTy = C.getRecordType(RD);
|
|
} else {
|
|
RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
|
|
}
|
|
llvm::APInt Size(/*numBits=*/32, NumIterations.size());
|
|
QualType ArrayTy =
|
|
C.getConstantArrayType(KmpDimTy, Size, ArrayType::Normal, 0);
|
|
|
|
Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
|
|
CGF.EmitNullInitialization(DimsAddr, ArrayTy);
|
|
enum { LowerFD = 0, UpperFD, StrideFD };
|
|
// Fill dims with data.
|
|
for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
|
|
LValue DimsLVal = CGF.MakeAddrLValue(
|
|
CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
|
|
// dims.upper = num_iterations;
|
|
LValue UpperLVal = CGF.EmitLValueForField(
|
|
DimsLVal, *std::next(RD->field_begin(), UpperFD));
|
|
llvm::Value *NumIterVal =
|
|
CGF.EmitScalarConversion(CGF.EmitScalarExpr(NumIterations[I]),
|
|
D.getNumIterations()->getType(), Int64Ty,
|
|
D.getNumIterations()->getExprLoc());
|
|
CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
|
|
// dims.stride = 1;
|
|
LValue StrideLVal = CGF.EmitLValueForField(
|
|
DimsLVal, *std::next(RD->field_begin(), StrideFD));
|
|
CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
|
|
StrideLVal);
|
|
}
|
|
|
|
// Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
|
|
// kmp_int32 num_dims, struct kmp_dim * dims);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, D.getBeginLoc()),
|
|
getThreadID(CGF, D.getBeginLoc()),
|
|
llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
|
|
CGM.VoidPtrTy)};
|
|
|
|
llvm::FunctionCallee RTLFn =
|
|
createRuntimeFunction(OMPRTL__kmpc_doacross_init);
|
|
CGF.EmitRuntimeCall(RTLFn, Args);
|
|
llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
|
|
emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
|
|
llvm::FunctionCallee FiniRTLFn =
|
|
createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
|
|
CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
|
|
llvm::makeArrayRef(FiniArgs));
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
|
|
const OMPDependClause *C) {
|
|
QualType Int64Ty =
|
|
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
|
|
llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
|
|
QualType ArrayTy = CGM.getContext().getConstantArrayType(
|
|
Int64Ty, Size, ArrayType::Normal, 0);
|
|
Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
|
|
for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
|
|
const Expr *CounterVal = C->getLoopData(I);
|
|
assert(CounterVal);
|
|
llvm::Value *CntVal = CGF.EmitScalarConversion(
|
|
CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
|
|
CounterVal->getExprLoc());
|
|
CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
|
|
/*Volatile=*/false, Int64Ty);
|
|
}
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, C->getBeginLoc()),
|
|
getThreadID(CGF, C->getBeginLoc()),
|
|
CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
|
|
llvm::FunctionCallee RTLFn;
|
|
if (C->getDependencyKind() == OMPC_DEPEND_source) {
|
|
RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
|
|
} else {
|
|
assert(C->getDependencyKind() == OMPC_DEPEND_sink);
|
|
RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
|
|
}
|
|
CGF.EmitRuntimeCall(RTLFn, Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
llvm::FunctionCallee Callee,
|
|
ArrayRef<llvm::Value *> Args) const {
|
|
assert(Loc.isValid() && "Outlined function call location must be valid.");
|
|
auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
|
|
|
|
if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
|
|
if (Fn->doesNotThrow()) {
|
|
CGF.EmitNounwindRuntimeCall(Fn, Args);
|
|
return;
|
|
}
|
|
}
|
|
CGF.EmitRuntimeCall(Callee, Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitOutlinedFunctionCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
|
|
ArrayRef<llvm::Value *> Args) const {
|
|
emitCall(CGF, Loc, OutlinedFn, Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
|
if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
|
|
HasEmittedDeclareTargetRegion = true;
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
|
|
const VarDecl *NativeParam,
|
|
const VarDecl *TargetParam) const {
|
|
return CGF.GetAddrOfLocalVar(NativeParam);
|
|
}
|
|
|
|
namespace {
|
|
/// Cleanup action for allocate support.
|
|
class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
|
|
public:
|
|
static const int CleanupArgs = 3;
|
|
|
|
private:
|
|
llvm::FunctionCallee RTLFn;
|
|
llvm::Value *Args[CleanupArgs];
|
|
|
|
public:
|
|
OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,
|
|
ArrayRef<llvm::Value *> CallArgs)
|
|
: RTLFn(RTLFn) {
|
|
assert(CallArgs.size() == CleanupArgs &&
|
|
"Size of arguments does not match.");
|
|
std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
|
|
}
|
|
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
CGF.EmitRuntimeCall(RTLFn, Args);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
|
|
const VarDecl *VD) {
|
|
if (!VD)
|
|
return Address::invalid();
|
|
const VarDecl *CVD = VD->getCanonicalDecl();
|
|
if (!CVD->hasAttr<OMPAllocateDeclAttr>())
|
|
return Address::invalid();
|
|
const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
|
|
// Use the default allocation.
|
|
if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc &&
|
|
!AA->getAllocator())
|
|
return Address::invalid();
|
|
llvm::Value *Size;
|
|
CharUnits Align = CGM.getContext().getDeclAlign(CVD);
|
|
if (CVD->getType()->isVariablyModifiedType()) {
|
|
Size = CGF.getTypeSize(CVD->getType());
|
|
// Align the size: ((size + align - 1) / align) * align
|
|
Size = CGF.Builder.CreateNUWAdd(
|
|
Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
|
|
Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
|
|
Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
|
|
} else {
|
|
CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
|
|
Size = CGM.getSize(Sz.alignTo(Align));
|
|
}
|
|
llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
|
|
assert(AA->getAllocator() &&
|
|
"Expected allocator expression for non-default allocator.");
|
|
llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
|
|
// According to the standard, the original allocator type is a enum (integer).
|
|
// Convert to pointer type, if required.
|
|
if (Allocator->getType()->isIntegerTy())
|
|
Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
|
|
else if (Allocator->getType()->isPointerTy())
|
|
Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
|
|
CGM.VoidPtrTy);
|
|
llvm::Value *Args[] = {ThreadID, Size, Allocator};
|
|
|
|
llvm::Value *Addr =
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_alloc), Args,
|
|
CVD->getName() + ".void.addr");
|
|
llvm::Value *FiniArgs[OMPAllocateCleanupTy::CleanupArgs] = {ThreadID, Addr,
|
|
Allocator};
|
|
llvm::FunctionCallee FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_free);
|
|
|
|
CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
|
|
llvm::makeArrayRef(FiniArgs));
|
|
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
Addr,
|
|
CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
|
|
CVD->getName() + ".addr");
|
|
return Address(Addr, Align);
|
|
}
|
|
|
|
llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
const VarDecl *PartIDVar, const VarDecl *TaskTVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
|
|
bool Tied, unsigned &NumberOfParts) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
llvm::Function *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars,
|
|
const Expr *IfCond) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitCriticalRegion(
|
|
CodeGenFunction &CGF, StringRef CriticalName,
|
|
const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
|
|
const Expr *Hint) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &MasterOpGen,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
|
|
CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitSingleRegion(
|
|
CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
|
|
SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
|
|
ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
|
|
ArrayRef<const Expr *> AssignmentOps) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &OrderedOpGen,
|
|
SourceLocation Loc,
|
|
bool IsThreads) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
OpenMPDirectiveKind Kind,
|
|
bool EmitChecks,
|
|
bool ForceSimpleCall) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitForDispatchInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
|
|
bool Ordered, const DispatchRTInput &DispatchValues) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitForStaticInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
|
|
const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
unsigned IVSize,
|
|
bool IVSigned) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
OpenMPDirectiveKind DKind) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
unsigned IVSize, bool IVSigned,
|
|
Address IL, Address LB,
|
|
Address UB, Address ST) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
|
|
llvm::Value *NumThreads,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
|
|
OpenMPProcBindClauseKind ProcBind,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
|
|
const VarDecl *VD,
|
|
Address VDAddr,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
|
|
const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
|
|
CodeGenFunction *CGF) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
|
|
CodeGenFunction &CGF, QualType VarType, StringRef Name) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
|
|
ArrayRef<const Expr *> Vars,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OMPExecutableDirective &D,
|
|
llvm::Function *TaskFunction,
|
|
QualType SharedsTy, Address Shareds,
|
|
const Expr *IfCond,
|
|
const OMPTaskDataTy &Data) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskLoopCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
|
|
llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
|
|
const Expr *IfCond, const OMPTaskDataTy &Data) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitReduction(
|
|
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
|
|
ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
|
|
ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
|
|
assert(Options.SimpleReduction && "Only simple reduction is expected.");
|
|
CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
|
|
ReductionOps, Options);
|
|
}
|
|
|
|
llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
|
|
ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
ReductionCodeGen &RCG,
|
|
unsigned N) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
llvm::Value *ReductionsPtr,
|
|
LValue SharedLVal) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitCancellationPointCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
OpenMPDirectiveKind CancelRegion) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc, const Expr *IfCond,
|
|
OpenMPDirectiveKind CancelRegion) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
|
|
const OMPExecutableDirective &D, StringRef ParentName,
|
|
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTargetCall(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D,
|
|
llvm::Function *OutlinedFn,
|
|
llvm::Value *OutlinedFnID,
|
|
const Expr *IfCond,
|
|
const Expr *Device) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
|
|
return false;
|
|
}
|
|
|
|
llvm::Function *CGOpenMPSIMDRuntime::emitRegistrationFunction() {
|
|
return nullptr;
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D,
|
|
SourceLocation Loc,
|
|
llvm::Function *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
|
|
const Expr *NumTeams,
|
|
const Expr *ThreadLimit,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTargetDataCalls(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
|
|
const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
|
|
const Expr *Device) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
|
|
const OMPLoopDirective &D,
|
|
ArrayRef<Expr *> NumIterations) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
|
|
const OMPDependClause *C) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
const VarDecl *
|
|
CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
|
|
const VarDecl *NativeParam) const {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
Address
|
|
CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
|
|
const VarDecl *NativeParam,
|
|
const VarDecl *TargetParam) const {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|