forked from OSchip/llvm-project
2251 lines
88 KiB
C++
2251 lines
88 KiB
C++
//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This contains code dealing with code generation of C++ expressions
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "CGCUDARuntime.h"
|
||
#include "CGCXXABI.h"
|
||
#include "CGDebugInfo.h"
|
||
#include "CGObjCRuntime.h"
|
||
#include "CodeGenFunction.h"
|
||
#include "ConstantEmitter.h"
|
||
#include "TargetInfo.h"
|
||
#include "clang/Basic/CodeGenOptions.h"
|
||
#include "clang/CodeGen/CGFunctionInfo.h"
|
||
#include "llvm/IR/Intrinsics.h"
|
||
|
||
using namespace clang;
|
||
using namespace CodeGen;
|
||
|
||
namespace {
|
||
struct MemberCallInfo {
|
||
RequiredArgs ReqArgs;
|
||
// Number of prefix arguments for the call. Ignores the `this` pointer.
|
||
unsigned PrefixSize;
|
||
};
|
||
}
|
||
|
||
static MemberCallInfo
|
||
commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
|
||
llvm::Value *This, llvm::Value *ImplicitParam,
|
||
QualType ImplicitParamTy, const CallExpr *CE,
|
||
CallArgList &Args, CallArgList *RtlArgs) {
|
||
assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
|
||
isa<CXXOperatorCallExpr>(CE));
|
||
assert(MD->isInstance() &&
|
||
"Trying to emit a member or operator call expr on a static method!");
|
||
|
||
// Push the this ptr.
|
||
const CXXRecordDecl *RD =
|
||
CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
|
||
Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
|
||
|
||
// If there is an implicit parameter (e.g. VTT), emit it.
|
||
if (ImplicitParam) {
|
||
Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
|
||
}
|
||
|
||
const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
|
||
RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
|
||
unsigned PrefixSize = Args.size() - 1;
|
||
|
||
// And the rest of the call args.
|
||
if (RtlArgs) {
|
||
// Special case: if the caller emitted the arguments right-to-left already
|
||
// (prior to emitting the *this argument), we're done. This happens for
|
||
// assignment operators.
|
||
Args.addFrom(*RtlArgs);
|
||
} else if (CE) {
|
||
// Special case: skip first argument of CXXOperatorCall (it is "this").
|
||
unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
|
||
CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
|
||
CE->getDirectCallee());
|
||
} else {
|
||
assert(
|
||
FPT->getNumParams() == 0 &&
|
||
"No CallExpr specified for function with non-zero number of arguments");
|
||
}
|
||
return {required, PrefixSize};
|
||
}
|
||
|
||
RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
|
||
const CXXMethodDecl *MD, const CGCallee &Callee,
|
||
ReturnValueSlot ReturnValue,
|
||
llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
|
||
const CallExpr *CE, CallArgList *RtlArgs) {
|
||
const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
|
||
CallArgList Args;
|
||
MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
|
||
*this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
|
||
auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
|
||
Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
|
||
return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
|
||
CE ? CE->getExprLoc() : SourceLocation());
|
||
}
|
||
|
||
RValue CodeGenFunction::EmitCXXDestructorCall(
|
||
GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
|
||
llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
|
||
const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
|
||
|
||
assert(!ThisTy.isNull());
|
||
assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
|
||
"Pointer/Object mixup");
|
||
|
||
LangAS SrcAS = ThisTy.getAddressSpace();
|
||
LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
|
||
if (SrcAS != DstAS) {
|
||
QualType DstTy = DtorDecl->getThisType();
|
||
llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
|
||
This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
|
||
NewType);
|
||
}
|
||
|
||
CallArgList Args;
|
||
commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
|
||
ImplicitParamTy, CE, Args, nullptr);
|
||
return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
|
||
ReturnValueSlot(), Args);
|
||
}
|
||
|
||
RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
|
||
const CXXPseudoDestructorExpr *E) {
|
||
QualType DestroyedType = E->getDestroyedType();
|
||
if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
|
||
// Automatic Reference Counting:
|
||
// If the pseudo-expression names a retainable object with weak or
|
||
// strong lifetime, the object shall be released.
|
||
Expr *BaseExpr = E->getBase();
|
||
Address BaseValue = Address::invalid();
|
||
Qualifiers BaseQuals;
|
||
|
||
// If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
|
||
if (E->isArrow()) {
|
||
BaseValue = EmitPointerWithAlignment(BaseExpr);
|
||
const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
|
||
BaseQuals = PTy->getPointeeType().getQualifiers();
|
||
} else {
|
||
LValue BaseLV = EmitLValue(BaseExpr);
|
||
BaseValue = BaseLV.getAddress();
|
||
QualType BaseTy = BaseExpr->getType();
|
||
BaseQuals = BaseTy.getQualifiers();
|
||
}
|
||
|
||
switch (DestroyedType.getObjCLifetime()) {
|
||
case Qualifiers::OCL_None:
|
||
case Qualifiers::OCL_ExplicitNone:
|
||
case Qualifiers::OCL_Autoreleasing:
|
||
break;
|
||
|
||
case Qualifiers::OCL_Strong:
|
||
EmitARCRelease(Builder.CreateLoad(BaseValue,
|
||
DestroyedType.isVolatileQualified()),
|
||
ARCPreciseLifetime);
|
||
break;
|
||
|
||
case Qualifiers::OCL_Weak:
|
||
EmitARCDestroyWeak(BaseValue);
|
||
break;
|
||
}
|
||
} else {
|
||
// C++ [expr.pseudo]p1:
|
||
// The result shall only be used as the operand for the function call
|
||
// operator (), and the result of such a call has type void. The only
|
||
// effect is the evaluation of the postfix-expression before the dot or
|
||
// arrow.
|
||
EmitIgnoredExpr(E->getBase());
|
||
}
|
||
|
||
return RValue::get(nullptr);
|
||
}
|
||
|
||
static CXXRecordDecl *getCXXRecord(const Expr *E) {
|
||
QualType T = E->getType();
|
||
if (const PointerType *PTy = T->getAs<PointerType>())
|
||
T = PTy->getPointeeType();
|
||
const RecordType *Ty = T->castAs<RecordType>();
|
||
return cast<CXXRecordDecl>(Ty->getDecl());
|
||
}
|
||
|
||
// Note: This function also emit constructor calls to support a MSVC
|
||
// extensions allowing explicit constructor function call.
|
||
RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
|
||
ReturnValueSlot ReturnValue) {
|
||
const Expr *callee = CE->getCallee()->IgnoreParens();
|
||
|
||
if (isa<BinaryOperator>(callee))
|
||
return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
|
||
|
||
const MemberExpr *ME = cast<MemberExpr>(callee);
|
||
const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
|
||
|
||
if (MD->isStatic()) {
|
||
// The method is static, emit it as we would a regular call.
|
||
CGCallee callee =
|
||
CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
|
||
return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
|
||
ReturnValue);
|
||
}
|
||
|
||
bool HasQualifier = ME->hasQualifier();
|
||
NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
|
||
bool IsArrow = ME->isArrow();
|
||
const Expr *Base = ME->getBase();
|
||
|
||
return EmitCXXMemberOrOperatorMemberCallExpr(
|
||
CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
|
||
}
|
||
|
||
RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
|
||
const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
|
||
bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
|
||
const Expr *Base) {
|
||
assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
|
||
|
||
// Compute the object pointer.
|
||
bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
|
||
|
||
const CXXMethodDecl *DevirtualizedMethod = nullptr;
|
||
if (CanUseVirtualCall &&
|
||
MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
|
||
const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
|
||
DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
|
||
assert(DevirtualizedMethod);
|
||
const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
|
||
const Expr *Inner = Base->ignoreParenBaseCasts();
|
||
if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
|
||
MD->getReturnType().getCanonicalType())
|
||
// If the return types are not the same, this might be a case where more
|
||
// code needs to run to compensate for it. For example, the derived
|
||
// method might return a type that inherits form from the return
|
||
// type of MD and has a prefix.
|
||
// For now we just avoid devirtualizing these covariant cases.
|
||
DevirtualizedMethod = nullptr;
|
||
else if (getCXXRecord(Inner) == DevirtualizedClass)
|
||
// If the class of the Inner expression is where the dynamic method
|
||
// is defined, build the this pointer from it.
|
||
Base = Inner;
|
||
else if (getCXXRecord(Base) != DevirtualizedClass) {
|
||
// If the method is defined in a class that is not the best dynamic
|
||
// one or the one of the full expression, we would have to build
|
||
// a derived-to-base cast to compute the correct this pointer, but
|
||
// we don't have support for that yet, so do a virtual call.
|
||
DevirtualizedMethod = nullptr;
|
||
}
|
||
}
|
||
|
||
// C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
|
||
// operator before the LHS.
|
||
CallArgList RtlArgStorage;
|
||
CallArgList *RtlArgs = nullptr;
|
||
if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
|
||
if (OCE->isAssignmentOp()) {
|
||
RtlArgs = &RtlArgStorage;
|
||
EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
|
||
drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
|
||
/*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
|
||
}
|
||
}
|
||
|
||
LValue This;
|
||
if (IsArrow) {
|
||
LValueBaseInfo BaseInfo;
|
||
TBAAAccessInfo TBAAInfo;
|
||
Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
|
||
This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
|
||
} else {
|
||
This = EmitLValue(Base);
|
||
}
|
||
|
||
if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
|
||
// This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
|
||
// constructing a new complete object of type Ctor.
|
||
assert(!RtlArgs);
|
||
assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
|
||
CallArgList Args;
|
||
commonEmitCXXMemberOrOperatorCall(
|
||
*this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
|
||
/*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
|
||
|
||
EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
|
||
/*Delegating=*/false, This.getAddress(), Args,
|
||
AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
|
||
/*NewPointerIsChecked=*/false);
|
||
return RValue::get(nullptr);
|
||
}
|
||
|
||
if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
|
||
if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
|
||
if (!MD->getParent()->mayInsertExtraPadding()) {
|
||
if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
|
||
// We don't like to generate the trivial copy/move assignment operator
|
||
// when it isn't necessary; just produce the proper effect here.
|
||
LValue RHS = isa<CXXOperatorCallExpr>(CE)
|
||
? MakeNaturalAlignAddrLValue(
|
||
(*RtlArgs)[0].getRValue(*this).getScalarVal(),
|
||
(*(CE->arg_begin() + 1))->getType())
|
||
: EmitLValue(*CE->arg_begin());
|
||
EmitAggregateAssign(This, RHS, CE->getType());
|
||
return RValue::get(This.getPointer());
|
||
}
|
||
llvm_unreachable("unknown trivial member function");
|
||
}
|
||
}
|
||
|
||
// Compute the function type we're calling.
|
||
const CXXMethodDecl *CalleeDecl =
|
||
DevirtualizedMethod ? DevirtualizedMethod : MD;
|
||
const CGFunctionInfo *FInfo = nullptr;
|
||
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
|
||
FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
|
||
GlobalDecl(Dtor, Dtor_Complete));
|
||
else
|
||
FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
|
||
|
||
llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
|
||
|
||
// C++11 [class.mfct.non-static]p2:
|
||
// If a non-static member function of a class X is called for an object that
|
||
// is not of type X, or of a type derived from X, the behavior is undefined.
|
||
SourceLocation CallLoc;
|
||
ASTContext &C = getContext();
|
||
if (CE)
|
||
CallLoc = CE->getExprLoc();
|
||
|
||
SanitizerSet SkippedChecks;
|
||
if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
|
||
auto *IOA = CMCE->getImplicitObjectArgument();
|
||
bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
|
||
if (IsImplicitObjectCXXThis)
|
||
SkippedChecks.set(SanitizerKind::Alignment, true);
|
||
if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
|
||
SkippedChecks.set(SanitizerKind::Null, true);
|
||
}
|
||
EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
|
||
C.getRecordType(CalleeDecl->getParent()),
|
||
/*Alignment=*/CharUnits::Zero(), SkippedChecks);
|
||
|
||
// C++ [class.virtual]p12:
|
||
// Explicit qualification with the scope operator (5.1) suppresses the
|
||
// virtual call mechanism.
|
||
//
|
||
// We also don't emit a virtual call if the base expression has a record type
|
||
// because then we know what the type is.
|
||
bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
|
||
|
||
if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
|
||
assert(CE->arg_begin() == CE->arg_end() &&
|
||
"Destructor shouldn't have explicit parameters");
|
||
assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
|
||
if (UseVirtualCall) {
|
||
CGM.getCXXABI().EmitVirtualDestructorCall(
|
||
*this, Dtor, Dtor_Complete, This.getAddress(),
|
||
cast<CXXMemberCallExpr>(CE));
|
||
} else {
|
||
GlobalDecl GD(Dtor, Dtor_Complete);
|
||
CGCallee Callee;
|
||
if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
|
||
Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
|
||
else if (!DevirtualizedMethod)
|
||
Callee =
|
||
CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
|
||
else {
|
||
Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
|
||
}
|
||
|
||
QualType ThisTy =
|
||
IsArrow ? Base->getType()->getPointeeType() : Base->getType();
|
||
EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
|
||
/*ImplicitParam=*/nullptr,
|
||
/*ImplicitParamTy=*/QualType(), nullptr);
|
||
}
|
||
return RValue::get(nullptr);
|
||
}
|
||
|
||
// FIXME: Uses of 'MD' past this point need to be audited. We may need to use
|
||
// 'CalleeDecl' instead.
|
||
|
||
CGCallee Callee;
|
||
if (UseVirtualCall) {
|
||
Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
|
||
} else {
|
||
if (SanOpts.has(SanitizerKind::CFINVCall) &&
|
||
MD->getParent()->isDynamicClass()) {
|
||
llvm::Value *VTable;
|
||
const CXXRecordDecl *RD;
|
||
std::tie(VTable, RD) =
|
||
CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
|
||
MD->getParent());
|
||
EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
|
||
}
|
||
|
||
if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
|
||
Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
|
||
else if (!DevirtualizedMethod)
|
||
Callee =
|
||
CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
|
||
else {
|
||
Callee =
|
||
CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
|
||
GlobalDecl(DevirtualizedMethod));
|
||
}
|
||
}
|
||
|
||
if (MD->isVirtual()) {
|
||
Address NewThisAddr =
|
||
CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
|
||
*this, CalleeDecl, This.getAddress(), UseVirtualCall);
|
||
This.setAddress(NewThisAddr);
|
||
}
|
||
|
||
return EmitCXXMemberOrOperatorCall(
|
||
CalleeDecl, Callee, ReturnValue, This.getPointer(),
|
||
/*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
|
||
}
|
||
|
||
RValue
|
||
CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
|
||
ReturnValueSlot ReturnValue) {
|
||
const BinaryOperator *BO =
|
||
cast<BinaryOperator>(E->getCallee()->IgnoreParens());
|
||
const Expr *BaseExpr = BO->getLHS();
|
||
const Expr *MemFnExpr = BO->getRHS();
|
||
|
||
const MemberPointerType *MPT =
|
||
MemFnExpr->getType()->castAs<MemberPointerType>();
|
||
|
||
const FunctionProtoType *FPT =
|
||
MPT->getPointeeType()->castAs<FunctionProtoType>();
|
||
const CXXRecordDecl *RD =
|
||
cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
|
||
|
||
// Emit the 'this' pointer.
|
||
Address This = Address::invalid();
|
||
if (BO->getOpcode() == BO_PtrMemI)
|
||
This = EmitPointerWithAlignment(BaseExpr);
|
||
else
|
||
This = EmitLValue(BaseExpr).getAddress();
|
||
|
||
EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
|
||
QualType(MPT->getClass(), 0));
|
||
|
||
// Get the member function pointer.
|
||
llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
|
||
|
||
// Ask the ABI to load the callee. Note that This is modified.
|
||
llvm::Value *ThisPtrForCall = nullptr;
|
||
CGCallee Callee =
|
||
CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
|
||
ThisPtrForCall, MemFnPtr, MPT);
|
||
|
||
CallArgList Args;
|
||
|
||
QualType ThisType =
|
||
getContext().getPointerType(getContext().getTagDeclType(RD));
|
||
|
||
// Push the this ptr.
|
||
Args.add(RValue::get(ThisPtrForCall), ThisType);
|
||
|
||
RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
|
||
|
||
// And the rest of the call args
|
||
EmitCallArgs(Args, FPT, E->arguments());
|
||
return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
|
||
/*PrefixSize=*/0),
|
||
Callee, ReturnValue, Args, nullptr, E->getExprLoc());
|
||
}
|
||
|
||
RValue
|
||
CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
|
||
const CXXMethodDecl *MD,
|
||
ReturnValueSlot ReturnValue) {
|
||
assert(MD->isInstance() &&
|
||
"Trying to emit a member call expr on a static method!");
|
||
return EmitCXXMemberOrOperatorMemberCallExpr(
|
||
E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
|
||
/*IsArrow=*/false, E->getArg(0));
|
||
}
|
||
|
||
RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
|
||
ReturnValueSlot ReturnValue) {
|
||
return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
|
||
}
|
||
|
||
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
|
||
Address DestPtr,
|
||
const CXXRecordDecl *Base) {
|
||
if (Base->isEmpty())
|
||
return;
|
||
|
||
DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
|
||
|
||
const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
|
||
CharUnits NVSize = Layout.getNonVirtualSize();
|
||
|
||
// We cannot simply zero-initialize the entire base sub-object if vbptrs are
|
||
// present, they are initialized by the most derived class before calling the
|
||
// constructor.
|
||
SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
|
||
Stores.emplace_back(CharUnits::Zero(), NVSize);
|
||
|
||
// Each store is split by the existence of a vbptr.
|
||
CharUnits VBPtrWidth = CGF.getPointerSize();
|
||
std::vector<CharUnits> VBPtrOffsets =
|
||
CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
|
||
for (CharUnits VBPtrOffset : VBPtrOffsets) {
|
||
// Stop before we hit any virtual base pointers located in virtual bases.
|
||
if (VBPtrOffset >= NVSize)
|
||
break;
|
||
std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
|
||
CharUnits LastStoreOffset = LastStore.first;
|
||
CharUnits LastStoreSize = LastStore.second;
|
||
|
||
CharUnits SplitBeforeOffset = LastStoreOffset;
|
||
CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
|
||
assert(!SplitBeforeSize.isNegative() && "negative store size!");
|
||
if (!SplitBeforeSize.isZero())
|
||
Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
|
||
|
||
CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
|
||
CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
|
||
assert(!SplitAfterSize.isNegative() && "negative store size!");
|
||
if (!SplitAfterSize.isZero())
|
||
Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
|
||
}
|
||
|
||
// If the type contains a pointer to data member we can't memset it to zero.
|
||
// Instead, create a null constant and copy it to the destination.
|
||
// TODO: there are other patterns besides zero that we can usefully memset,
|
||
// like -1, which happens to be the pattern used by member-pointers.
|
||
// TODO: isZeroInitializable can be over-conservative in the case where a
|
||
// virtual base contains a member pointer.
|
||
llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
|
||
if (!NullConstantForBase->isNullValue()) {
|
||
llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
|
||
CGF.CGM.getModule(), NullConstantForBase->getType(),
|
||
/*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
|
||
NullConstantForBase, Twine());
|
||
|
||
CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
|
||
DestPtr.getAlignment());
|
||
NullVariable->setAlignment(Align.getQuantity());
|
||
|
||
Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
|
||
|
||
// Get and call the appropriate llvm.memcpy overload.
|
||
for (std::pair<CharUnits, CharUnits> Store : Stores) {
|
||
CharUnits StoreOffset = Store.first;
|
||
CharUnits StoreSize = Store.second;
|
||
llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
|
||
CGF.Builder.CreateMemCpy(
|
||
CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
|
||
CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
|
||
StoreSizeVal);
|
||
}
|
||
|
||
// Otherwise, just memset the whole thing to zero. This is legal
|
||
// because in LLVM, all default initializers (other than the ones we just
|
||
// handled above) are guaranteed to have a bit pattern of all zeros.
|
||
} else {
|
||
for (std::pair<CharUnits, CharUnits> Store : Stores) {
|
||
CharUnits StoreOffset = Store.first;
|
||
CharUnits StoreSize = Store.second;
|
||
llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
|
||
CGF.Builder.CreateMemSet(
|
||
CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
|
||
CGF.Builder.getInt8(0), StoreSizeVal);
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
|
||
AggValueSlot Dest) {
|
||
assert(!Dest.isIgnored() && "Must have a destination!");
|
||
const CXXConstructorDecl *CD = E->getConstructor();
|
||
|
||
// If we require zero initialization before (or instead of) calling the
|
||
// constructor, as can be the case with a non-user-provided default
|
||
// constructor, emit the zero initialization now, unless destination is
|
||
// already zeroed.
|
||
if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
|
||
switch (E->getConstructionKind()) {
|
||
case CXXConstructExpr::CK_Delegating:
|
||
case CXXConstructExpr::CK_Complete:
|
||
EmitNullInitialization(Dest.getAddress(), E->getType());
|
||
break;
|
||
case CXXConstructExpr::CK_VirtualBase:
|
||
case CXXConstructExpr::CK_NonVirtualBase:
|
||
EmitNullBaseClassInitialization(*this, Dest.getAddress(),
|
||
CD->getParent());
|
||
break;
|
||
}
|
||
}
|
||
|
||
// If this is a call to a trivial default constructor, do nothing.
|
||
if (CD->isTrivial() && CD->isDefaultConstructor())
|
||
return;
|
||
|
||
// Elide the constructor if we're constructing from a temporary.
|
||
// The temporary check is required because Sema sets this on NRVO
|
||
// returns.
|
||
if (getLangOpts().ElideConstructors && E->isElidable()) {
|
||
assert(getContext().hasSameUnqualifiedType(E->getType(),
|
||
E->getArg(0)->getType()));
|
||
if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
|
||
EmitAggExpr(E->getArg(0), Dest);
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (const ArrayType *arrayType
|
||
= getContext().getAsArrayType(E->getType())) {
|
||
EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
|
||
Dest.isSanitizerChecked());
|
||
} else {
|
||
CXXCtorType Type = Ctor_Complete;
|
||
bool ForVirtualBase = false;
|
||
bool Delegating = false;
|
||
|
||
switch (E->getConstructionKind()) {
|
||
case CXXConstructExpr::CK_Delegating:
|
||
// We should be emitting a constructor; GlobalDecl will assert this
|
||
Type = CurGD.getCtorType();
|
||
Delegating = true;
|
||
break;
|
||
|
||
case CXXConstructExpr::CK_Complete:
|
||
Type = Ctor_Complete;
|
||
break;
|
||
|
||
case CXXConstructExpr::CK_VirtualBase:
|
||
ForVirtualBase = true;
|
||
LLVM_FALLTHROUGH;
|
||
|
||
case CXXConstructExpr::CK_NonVirtualBase:
|
||
Type = Ctor_Base;
|
||
}
|
||
|
||
// Call the constructor.
|
||
EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
|
||
}
|
||
}
|
||
|
||
void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
|
||
const Expr *Exp) {
|
||
if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
|
||
Exp = E->getSubExpr();
|
||
assert(isa<CXXConstructExpr>(Exp) &&
|
||
"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
|
||
const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
|
||
const CXXConstructorDecl *CD = E->getConstructor();
|
||
RunCleanupsScope Scope(*this);
|
||
|
||
// If we require zero initialization before (or instead of) calling the
|
||
// constructor, as can be the case with a non-user-provided default
|
||
// constructor, emit the zero initialization now.
|
||
// FIXME. Do I still need this for a copy ctor synthesis?
|
||
if (E->requiresZeroInitialization())
|
||
EmitNullInitialization(Dest, E->getType());
|
||
|
||
assert(!getContext().getAsConstantArrayType(E->getType())
|
||
&& "EmitSynthesizedCXXCopyCtor - Copied-in Array");
|
||
EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
|
||
}
|
||
|
||
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
|
||
const CXXNewExpr *E) {
|
||
if (!E->isArray())
|
||
return CharUnits::Zero();
|
||
|
||
// No cookie is required if the operator new[] being used is the
|
||
// reserved placement operator new[].
|
||
if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
|
||
return CharUnits::Zero();
|
||
|
||
return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
|
||
}
|
||
|
||
static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
|
||
const CXXNewExpr *e,
|
||
unsigned minElements,
|
||
llvm::Value *&numElements,
|
||
llvm::Value *&sizeWithoutCookie) {
|
||
QualType type = e->getAllocatedType();
|
||
|
||
if (!e->isArray()) {
|
||
CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
|
||
sizeWithoutCookie
|
||
= llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
|
||
return sizeWithoutCookie;
|
||
}
|
||
|
||
// The width of size_t.
|
||
unsigned sizeWidth = CGF.SizeTy->getBitWidth();
|
||
|
||
// Figure out the cookie size.
|
||
llvm::APInt cookieSize(sizeWidth,
|
||
CalculateCookiePadding(CGF, e).getQuantity());
|
||
|
||
// Emit the array size expression.
|
||
// We multiply the size of all dimensions for NumElements.
|
||
// e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
|
||
numElements =
|
||
ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
|
||
if (!numElements)
|
||
numElements = CGF.EmitScalarExpr(*e->getArraySize());
|
||
assert(isa<llvm::IntegerType>(numElements->getType()));
|
||
|
||
// The number of elements can be have an arbitrary integer type;
|
||
// essentially, we need to multiply it by a constant factor, add a
|
||
// cookie size, and verify that the result is representable as a
|
||
// size_t. That's just a gloss, though, and it's wrong in one
|
||
// important way: if the count is negative, it's an error even if
|
||
// the cookie size would bring the total size >= 0.
|
||
bool isSigned
|
||
= (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
|
||
llvm::IntegerType *numElementsType
|
||
= cast<llvm::IntegerType>(numElements->getType());
|
||
unsigned numElementsWidth = numElementsType->getBitWidth();
|
||
|
||
// Compute the constant factor.
|
||
llvm::APInt arraySizeMultiplier(sizeWidth, 1);
|
||
while (const ConstantArrayType *CAT
|
||
= CGF.getContext().getAsConstantArrayType(type)) {
|
||
type = CAT->getElementType();
|
||
arraySizeMultiplier *= CAT->getSize();
|
||
}
|
||
|
||
CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
|
||
llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
|
||
typeSizeMultiplier *= arraySizeMultiplier;
|
||
|
||
// This will be a size_t.
|
||
llvm::Value *size;
|
||
|
||
// If someone is doing 'new int[42]' there is no need to do a dynamic check.
|
||
// Don't bloat the -O0 code.
|
||
if (llvm::ConstantInt *numElementsC =
|
||
dyn_cast<llvm::ConstantInt>(numElements)) {
|
||
const llvm::APInt &count = numElementsC->getValue();
|
||
|
||
bool hasAnyOverflow = false;
|
||
|
||
// If 'count' was a negative number, it's an overflow.
|
||
if (isSigned && count.isNegative())
|
||
hasAnyOverflow = true;
|
||
|
||
// We want to do all this arithmetic in size_t. If numElements is
|
||
// wider than that, check whether it's already too big, and if so,
|
||
// overflow.
|
||
else if (numElementsWidth > sizeWidth &&
|
||
numElementsWidth - sizeWidth > count.countLeadingZeros())
|
||
hasAnyOverflow = true;
|
||
|
||
// Okay, compute a count at the right width.
|
||
llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
|
||
|
||
// If there is a brace-initializer, we cannot allocate fewer elements than
|
||
// there are initializers. If we do, that's treated like an overflow.
|
||
if (adjustedCount.ult(minElements))
|
||
hasAnyOverflow = true;
|
||
|
||
// Scale numElements by that. This might overflow, but we don't
|
||
// care because it only overflows if allocationSize does, too, and
|
||
// if that overflows then we shouldn't use this.
|
||
numElements = llvm::ConstantInt::get(CGF.SizeTy,
|
||
adjustedCount * arraySizeMultiplier);
|
||
|
||
// Compute the size before cookie, and track whether it overflowed.
|
||
bool overflow;
|
||
llvm::APInt allocationSize
|
||
= adjustedCount.umul_ov(typeSizeMultiplier, overflow);
|
||
hasAnyOverflow |= overflow;
|
||
|
||
// Add in the cookie, and check whether it's overflowed.
|
||
if (cookieSize != 0) {
|
||
// Save the current size without a cookie. This shouldn't be
|
||
// used if there was overflow.
|
||
sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
|
||
|
||
allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
|
||
hasAnyOverflow |= overflow;
|
||
}
|
||
|
||
// On overflow, produce a -1 so operator new will fail.
|
||
if (hasAnyOverflow) {
|
||
size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
|
||
} else {
|
||
size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
|
||
}
|
||
|
||
// Otherwise, we might need to use the overflow intrinsics.
|
||
} else {
|
||
// There are up to five conditions we need to test for:
|
||
// 1) if isSigned, we need to check whether numElements is negative;
|
||
// 2) if numElementsWidth > sizeWidth, we need to check whether
|
||
// numElements is larger than something representable in size_t;
|
||
// 3) if minElements > 0, we need to check whether numElements is smaller
|
||
// than that.
|
||
// 4) we need to compute
|
||
// sizeWithoutCookie := numElements * typeSizeMultiplier
|
||
// and check whether it overflows; and
|
||
// 5) if we need a cookie, we need to compute
|
||
// size := sizeWithoutCookie + cookieSize
|
||
// and check whether it overflows.
|
||
|
||
llvm::Value *hasOverflow = nullptr;
|
||
|
||
// If numElementsWidth > sizeWidth, then one way or another, we're
|
||
// going to have to do a comparison for (2), and this happens to
|
||
// take care of (1), too.
|
||
if (numElementsWidth > sizeWidth) {
|
||
llvm::APInt threshold(numElementsWidth, 1);
|
||
threshold <<= sizeWidth;
|
||
|
||
llvm::Value *thresholdV
|
||
= llvm::ConstantInt::get(numElementsType, threshold);
|
||
|
||
hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
|
||
numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
|
||
|
||
// Otherwise, if we're signed, we want to sext up to size_t.
|
||
} else if (isSigned) {
|
||
if (numElementsWidth < sizeWidth)
|
||
numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
|
||
|
||
// If there's a non-1 type size multiplier, then we can do the
|
||
// signedness check at the same time as we do the multiply
|
||
// because a negative number times anything will cause an
|
||
// unsigned overflow. Otherwise, we have to do it here. But at least
|
||
// in this case, we can subsume the >= minElements check.
|
||
if (typeSizeMultiplier == 1)
|
||
hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
|
||
llvm::ConstantInt::get(CGF.SizeTy, minElements));
|
||
|
||
// Otherwise, zext up to size_t if necessary.
|
||
} else if (numElementsWidth < sizeWidth) {
|
||
numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
|
||
}
|
||
|
||
assert(numElements->getType() == CGF.SizeTy);
|
||
|
||
if (minElements) {
|
||
// Don't allow allocation of fewer elements than we have initializers.
|
||
if (!hasOverflow) {
|
||
hasOverflow = CGF.Builder.CreateICmpULT(numElements,
|
||
llvm::ConstantInt::get(CGF.SizeTy, minElements));
|
||
} else if (numElementsWidth > sizeWidth) {
|
||
// The other existing overflow subsumes this check.
|
||
// We do an unsigned comparison, since any signed value < -1 is
|
||
// taken care of either above or below.
|
||
hasOverflow = CGF.Builder.CreateOr(hasOverflow,
|
||
CGF.Builder.CreateICmpULT(numElements,
|
||
llvm::ConstantInt::get(CGF.SizeTy, minElements)));
|
||
}
|
||
}
|
||
|
||
size = numElements;
|
||
|
||
// Multiply by the type size if necessary. This multiplier
|
||
// includes all the factors for nested arrays.
|
||
//
|
||
// This step also causes numElements to be scaled up by the
|
||
// nested-array factor if necessary. Overflow on this computation
|
||
// can be ignored because the result shouldn't be used if
|
||
// allocation fails.
|
||
if (typeSizeMultiplier != 1) {
|
||
llvm::Function *umul_with_overflow
|
||
= CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
|
||
|
||
llvm::Value *tsmV =
|
||
llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
|
||
llvm::Value *result =
|
||
CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
|
||
|
||
llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
|
||
if (hasOverflow)
|
||
hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
|
||
else
|
||
hasOverflow = overflowed;
|
||
|
||
size = CGF.Builder.CreateExtractValue(result, 0);
|
||
|
||
// Also scale up numElements by the array size multiplier.
|
||
if (arraySizeMultiplier != 1) {
|
||
// If the base element type size is 1, then we can re-use the
|
||
// multiply we just did.
|
||
if (typeSize.isOne()) {
|
||
assert(arraySizeMultiplier == typeSizeMultiplier);
|
||
numElements = size;
|
||
|
||
// Otherwise we need a separate multiply.
|
||
} else {
|
||
llvm::Value *asmV =
|
||
llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
|
||
numElements = CGF.Builder.CreateMul(numElements, asmV);
|
||
}
|
||
}
|
||
} else {
|
||
// numElements doesn't need to be scaled.
|
||
assert(arraySizeMultiplier == 1);
|
||
}
|
||
|
||
// Add in the cookie size if necessary.
|
||
if (cookieSize != 0) {
|
||
sizeWithoutCookie = size;
|
||
|
||
llvm::Function *uadd_with_overflow
|
||
= CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
|
||
|
||
llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
|
||
llvm::Value *result =
|
||
CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
|
||
|
||
llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
|
||
if (hasOverflow)
|
||
hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
|
||
else
|
||
hasOverflow = overflowed;
|
||
|
||
size = CGF.Builder.CreateExtractValue(result, 0);
|
||
}
|
||
|
||
// If we had any possibility of dynamic overflow, make a select to
|
||
// overwrite 'size' with an all-ones value, which should cause
|
||
// operator new to throw.
|
||
if (hasOverflow)
|
||
size = CGF.Builder.CreateSelect(hasOverflow,
|
||
llvm::Constant::getAllOnesValue(CGF.SizeTy),
|
||
size);
|
||
}
|
||
|
||
if (cookieSize == 0)
|
||
sizeWithoutCookie = size;
|
||
else
|
||
assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
|
||
|
||
return size;
|
||
}
|
||
|
||
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
|
||
QualType AllocType, Address NewPtr,
|
||
AggValueSlot::Overlap_t MayOverlap) {
|
||
// FIXME: Refactor with EmitExprAsInit.
|
||
switch (CGF.getEvaluationKind(AllocType)) {
|
||
case TEK_Scalar:
|
||
CGF.EmitScalarInit(Init, nullptr,
|
||
CGF.MakeAddrLValue(NewPtr, AllocType), false);
|
||
return;
|
||
case TEK_Complex:
|
||
CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
|
||
/*isInit*/ true);
|
||
return;
|
||
case TEK_Aggregate: {
|
||
AggValueSlot Slot
|
||
= AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
|
||
AggValueSlot::IsDestructed,
|
||
AggValueSlot::DoesNotNeedGCBarriers,
|
||
AggValueSlot::IsNotAliased,
|
||
MayOverlap, AggValueSlot::IsNotZeroed,
|
||
AggValueSlot::IsSanitizerChecked);
|
||
CGF.EmitAggExpr(Init, Slot);
|
||
return;
|
||
}
|
||
}
|
||
llvm_unreachable("bad evaluation kind");
|
||
}
|
||
|
||
void CodeGenFunction::EmitNewArrayInitializer(
|
||
const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
|
||
Address BeginPtr, llvm::Value *NumElements,
|
||
llvm::Value *AllocSizeWithoutCookie) {
|
||
// If we have a type with trivial initialization and no initializer,
|
||
// there's nothing to do.
|
||
if (!E->hasInitializer())
|
||
return;
|
||
|
||
Address CurPtr = BeginPtr;
|
||
|
||
unsigned InitListElements = 0;
|
||
|
||
const Expr *Init = E->getInitializer();
|
||
Address EndOfInit = Address::invalid();
|
||
QualType::DestructionKind DtorKind = ElementType.isDestructedType();
|
||
EHScopeStack::stable_iterator Cleanup;
|
||
llvm::Instruction *CleanupDominator = nullptr;
|
||
|
||
CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
|
||
CharUnits ElementAlign =
|
||
BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
|
||
|
||
// Attempt to perform zero-initialization using memset.
|
||
auto TryMemsetInitialization = [&]() -> bool {
|
||
// FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
|
||
// we can initialize with a memset to -1.
|
||
if (!CGM.getTypes().isZeroInitializable(ElementType))
|
||
return false;
|
||
|
||
// Optimization: since zero initialization will just set the memory
|
||
// to all zeroes, generate a single memset to do it in one shot.
|
||
|
||
// Subtract out the size of any elements we've already initialized.
|
||
auto *RemainingSize = AllocSizeWithoutCookie;
|
||
if (InitListElements) {
|
||
// We know this can't overflow; we check this when doing the allocation.
|
||
auto *InitializedSize = llvm::ConstantInt::get(
|
||
RemainingSize->getType(),
|
||
getContext().getTypeSizeInChars(ElementType).getQuantity() *
|
||
InitListElements);
|
||
RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
|
||
}
|
||
|
||
// Create the memset.
|
||
Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
|
||
return true;
|
||
};
|
||
|
||
// If the initializer is an initializer list, first do the explicit elements.
|
||
if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
|
||
// Initializing from a (braced) string literal is a special case; the init
|
||
// list element does not initialize a (single) array element.
|
||
if (ILE->isStringLiteralInit()) {
|
||
// Initialize the initial portion of length equal to that of the string
|
||
// literal. The allocation must be for at least this much; we emitted a
|
||
// check for that earlier.
|
||
AggValueSlot Slot =
|
||
AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
|
||
AggValueSlot::IsDestructed,
|
||
AggValueSlot::DoesNotNeedGCBarriers,
|
||
AggValueSlot::IsNotAliased,
|
||
AggValueSlot::DoesNotOverlap,
|
||
AggValueSlot::IsNotZeroed,
|
||
AggValueSlot::IsSanitizerChecked);
|
||
EmitAggExpr(ILE->getInit(0), Slot);
|
||
|
||
// Move past these elements.
|
||
InitListElements =
|
||
cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
|
||
->getSize().getZExtValue();
|
||
CurPtr =
|
||
Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
|
||
Builder.getSize(InitListElements),
|
||
"string.init.end"),
|
||
CurPtr.getAlignment().alignmentAtOffset(InitListElements *
|
||
ElementSize));
|
||
|
||
// Zero out the rest, if any remain.
|
||
llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
|
||
if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
|
||
bool OK = TryMemsetInitialization();
|
||
(void)OK;
|
||
assert(OK && "couldn't memset character type?");
|
||
}
|
||
return;
|
||
}
|
||
|
||
InitListElements = ILE->getNumInits();
|
||
|
||
// If this is a multi-dimensional array new, we will initialize multiple
|
||
// elements with each init list element.
|
||
QualType AllocType = E->getAllocatedType();
|
||
if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
|
||
AllocType->getAsArrayTypeUnsafe())) {
|
||
ElementTy = ConvertTypeForMem(AllocType);
|
||
CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
|
||
InitListElements *= getContext().getConstantArrayElementCount(CAT);
|
||
}
|
||
|
||
// Enter a partial-destruction Cleanup if necessary.
|
||
if (needsEHCleanup(DtorKind)) {
|
||
// In principle we could tell the Cleanup where we are more
|
||
// directly, but the control flow can get so varied here that it
|
||
// would actually be quite complex. Therefore we go through an
|
||
// alloca.
|
||
EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
|
||
"array.init.end");
|
||
CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
|
||
pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
|
||
ElementType, ElementAlign,
|
||
getDestroyer(DtorKind));
|
||
Cleanup = EHStack.stable_begin();
|
||
}
|
||
|
||
CharUnits StartAlign = CurPtr.getAlignment();
|
||
for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
|
||
// Tell the cleanup that it needs to destroy up to this
|
||
// element. TODO: some of these stores can be trivially
|
||
// observed to be unnecessary.
|
||
if (EndOfInit.isValid()) {
|
||
auto FinishedPtr =
|
||
Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
|
||
Builder.CreateStore(FinishedPtr, EndOfInit);
|
||
}
|
||
// FIXME: If the last initializer is an incomplete initializer list for
|
||
// an array, and we have an array filler, we can fold together the two
|
||
// initialization loops.
|
||
StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
|
||
ILE->getInit(i)->getType(), CurPtr,
|
||
AggValueSlot::DoesNotOverlap);
|
||
CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
|
||
Builder.getSize(1),
|
||
"array.exp.next"),
|
||
StartAlign.alignmentAtOffset((i + 1) * ElementSize));
|
||
}
|
||
|
||
// The remaining elements are filled with the array filler expression.
|
||
Init = ILE->getArrayFiller();
|
||
|
||
// Extract the initializer for the individual array elements by pulling
|
||
// out the array filler from all the nested initializer lists. This avoids
|
||
// generating a nested loop for the initialization.
|
||
while (Init && Init->getType()->isConstantArrayType()) {
|
||
auto *SubILE = dyn_cast<InitListExpr>(Init);
|
||
if (!SubILE)
|
||
break;
|
||
assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
|
||
Init = SubILE->getArrayFiller();
|
||
}
|
||
|
||
// Switch back to initializing one base element at a time.
|
||
CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
|
||
}
|
||
|
||
// If all elements have already been initialized, skip any further
|
||
// initialization.
|
||
llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
|
||
if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
|
||
// If there was a Cleanup, deactivate it.
|
||
if (CleanupDominator)
|
||
DeactivateCleanupBlock(Cleanup, CleanupDominator);
|
||
return;
|
||
}
|
||
|
||
assert(Init && "have trailing elements to initialize but no initializer");
|
||
|
||
// If this is a constructor call, try to optimize it out, and failing that
|
||
// emit a single loop to initialize all remaining elements.
|
||
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
|
||
CXXConstructorDecl *Ctor = CCE->getConstructor();
|
||
if (Ctor->isTrivial()) {
|
||
// If new expression did not specify value-initialization, then there
|
||
// is no initialization.
|
||
if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
|
||
return;
|
||
|
||
if (TryMemsetInitialization())
|
||
return;
|
||
}
|
||
|
||
// Store the new Cleanup position for irregular Cleanups.
|
||
//
|
||
// FIXME: Share this cleanup with the constructor call emission rather than
|
||
// having it create a cleanup of its own.
|
||
if (EndOfInit.isValid())
|
||
Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
|
||
|
||
// Emit a constructor call loop to initialize the remaining elements.
|
||
if (InitListElements)
|
||
NumElements = Builder.CreateSub(
|
||
NumElements,
|
||
llvm::ConstantInt::get(NumElements->getType(), InitListElements));
|
||
EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
|
||
/*NewPointerIsChecked*/true,
|
||
CCE->requiresZeroInitialization());
|
||
return;
|
||
}
|
||
|
||
// If this is value-initialization, we can usually use memset.
|
||
ImplicitValueInitExpr IVIE(ElementType);
|
||
if (isa<ImplicitValueInitExpr>(Init)) {
|
||
if (TryMemsetInitialization())
|
||
return;
|
||
|
||
// Switch to an ImplicitValueInitExpr for the element type. This handles
|
||
// only one case: multidimensional array new of pointers to members. In
|
||
// all other cases, we already have an initializer for the array element.
|
||
Init = &IVIE;
|
||
}
|
||
|
||
// At this point we should have found an initializer for the individual
|
||
// elements of the array.
|
||
assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
|
||
"got wrong type of element to initialize");
|
||
|
||
// If we have an empty initializer list, we can usually use memset.
|
||
if (auto *ILE = dyn_cast<InitListExpr>(Init))
|
||
if (ILE->getNumInits() == 0 && TryMemsetInitialization())
|
||
return;
|
||
|
||
// If we have a struct whose every field is value-initialized, we can
|
||
// usually use memset.
|
||
if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
|
||
if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
|
||
if (RType->getDecl()->isStruct()) {
|
||
unsigned NumElements = 0;
|
||
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
|
||
NumElements = CXXRD->getNumBases();
|
||
for (auto *Field : RType->getDecl()->fields())
|
||
if (!Field->isUnnamedBitfield())
|
||
++NumElements;
|
||
// FIXME: Recurse into nested InitListExprs.
|
||
if (ILE->getNumInits() == NumElements)
|
||
for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
|
||
if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
|
||
--NumElements;
|
||
if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Create the loop blocks.
|
||
llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
|
||
llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
|
||
llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
|
||
|
||
// Find the end of the array, hoisted out of the loop.
|
||
llvm::Value *EndPtr =
|
||
Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
|
||
|
||
// If the number of elements isn't constant, we have to now check if there is
|
||
// anything left to initialize.
|
||
if (!ConstNum) {
|
||
llvm::Value *IsEmpty =
|
||
Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
|
||
Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
|
||
}
|
||
|
||
// Enter the loop.
|
||
EmitBlock(LoopBB);
|
||
|
||
// Set up the current-element phi.
|
||
llvm::PHINode *CurPtrPhi =
|
||
Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
|
||
CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
|
||
|
||
CurPtr = Address(CurPtrPhi, ElementAlign);
|
||
|
||
// Store the new Cleanup position for irregular Cleanups.
|
||
if (EndOfInit.isValid())
|
||
Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
|
||
|
||
// Enter a partial-destruction Cleanup if necessary.
|
||
if (!CleanupDominator && needsEHCleanup(DtorKind)) {
|
||
pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
|
||
ElementType, ElementAlign,
|
||
getDestroyer(DtorKind));
|
||
Cleanup = EHStack.stable_begin();
|
||
CleanupDominator = Builder.CreateUnreachable();
|
||
}
|
||
|
||
// Emit the initializer into this element.
|
||
StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
|
||
AggValueSlot::DoesNotOverlap);
|
||
|
||
// Leave the Cleanup if we entered one.
|
||
if (CleanupDominator) {
|
||
DeactivateCleanupBlock(Cleanup, CleanupDominator);
|
||
CleanupDominator->eraseFromParent();
|
||
}
|
||
|
||
// Advance to the next element by adjusting the pointer type as necessary.
|
||
llvm::Value *NextPtr =
|
||
Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
|
||
"array.next");
|
||
|
||
// Check whether we've gotten to the end of the array and, if so,
|
||
// exit the loop.
|
||
llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
|
||
Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
|
||
CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
|
||
|
||
EmitBlock(ContBB);
|
||
}
|
||
|
||
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
|
||
QualType ElementType, llvm::Type *ElementTy,
|
||
Address NewPtr, llvm::Value *NumElements,
|
||
llvm::Value *AllocSizeWithoutCookie) {
|
||
ApplyDebugLocation DL(CGF, E);
|
||
if (E->isArray())
|
||
CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
|
||
AllocSizeWithoutCookie);
|
||
else if (const Expr *Init = E->getInitializer())
|
||
StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
|
||
AggValueSlot::DoesNotOverlap);
|
||
}
|
||
|
||
/// Emit a call to an operator new or operator delete function, as implicitly
|
||
/// created by new-expressions and delete-expressions.
|
||
static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
|
||
const FunctionDecl *CalleeDecl,
|
||
const FunctionProtoType *CalleeType,
|
||
const CallArgList &Args) {
|
||
llvm::CallBase *CallOrInvoke;
|
||
llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
|
||
CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
|
||
RValue RV =
|
||
CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
|
||
Args, CalleeType, /*ChainCall=*/false),
|
||
Callee, ReturnValueSlot(), Args, &CallOrInvoke);
|
||
|
||
/// C++1y [expr.new]p10:
|
||
/// [In a new-expression,] an implementation is allowed to omit a call
|
||
/// to a replaceable global allocation function.
|
||
///
|
||
/// We model such elidable calls with the 'builtin' attribute.
|
||
llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
|
||
if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
|
||
Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
|
||
CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
|
||
llvm::Attribute::Builtin);
|
||
}
|
||
|
||
return RV;
|
||
}
|
||
|
||
RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
|
||
const CallExpr *TheCall,
|
||
bool IsDelete) {
|
||
CallArgList Args;
|
||
EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
|
||
// Find the allocation or deallocation function that we're calling.
|
||
ASTContext &Ctx = getContext();
|
||
DeclarationName Name = Ctx.DeclarationNames
|
||
.getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
|
||
|
||
for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
|
||
if (auto *FD = dyn_cast<FunctionDecl>(Decl))
|
||
if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
|
||
return EmitNewDeleteCall(*this, FD, Type, Args);
|
||
llvm_unreachable("predeclared global operator new/delete is missing");
|
||
}
|
||
|
||
namespace {
|
||
/// The parameters to pass to a usual operator delete.
|
||
struct UsualDeleteParams {
|
||
bool DestroyingDelete = false;
|
||
bool Size = false;
|
||
bool Alignment = false;
|
||
};
|
||
}
|
||
|
||
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
|
||
UsualDeleteParams Params;
|
||
|
||
const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
|
||
auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
|
||
|
||
// The first argument is always a void*.
|
||
++AI;
|
||
|
||
// The next parameter may be a std::destroying_delete_t.
|
||
if (FD->isDestroyingOperatorDelete()) {
|
||
Params.DestroyingDelete = true;
|
||
assert(AI != AE);
|
||
++AI;
|
||
}
|
||
|
||
// Figure out what other parameters we should be implicitly passing.
|
||
if (AI != AE && (*AI)->isIntegerType()) {
|
||
Params.Size = true;
|
||
++AI;
|
||
}
|
||
|
||
if (AI != AE && (*AI)->isAlignValT()) {
|
||
Params.Alignment = true;
|
||
++AI;
|
||
}
|
||
|
||
assert(AI == AE && "unexpected usual deallocation function parameter");
|
||
return Params;
|
||
}
|
||
|
||
namespace {
|
||
/// A cleanup to call the given 'operator delete' function upon abnormal
|
||
/// exit from a new expression. Templated on a traits type that deals with
|
||
/// ensuring that the arguments dominate the cleanup if necessary.
|
||
template<typename Traits>
|
||
class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
|
||
/// Type used to hold llvm::Value*s.
|
||
typedef typename Traits::ValueTy ValueTy;
|
||
/// Type used to hold RValues.
|
||
typedef typename Traits::RValueTy RValueTy;
|
||
struct PlacementArg {
|
||
RValueTy ArgValue;
|
||
QualType ArgType;
|
||
};
|
||
|
||
unsigned NumPlacementArgs : 31;
|
||
unsigned PassAlignmentToPlacementDelete : 1;
|
||
const FunctionDecl *OperatorDelete;
|
||
ValueTy Ptr;
|
||
ValueTy AllocSize;
|
||
CharUnits AllocAlign;
|
||
|
||
PlacementArg *getPlacementArgs() {
|
||
return reinterpret_cast<PlacementArg *>(this + 1);
|
||
}
|
||
|
||
public:
|
||
static size_t getExtraSize(size_t NumPlacementArgs) {
|
||
return NumPlacementArgs * sizeof(PlacementArg);
|
||
}
|
||
|
||
CallDeleteDuringNew(size_t NumPlacementArgs,
|
||
const FunctionDecl *OperatorDelete, ValueTy Ptr,
|
||
ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
|
||
CharUnits AllocAlign)
|
||
: NumPlacementArgs(NumPlacementArgs),
|
||
PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
|
||
OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
|
||
AllocAlign(AllocAlign) {}
|
||
|
||
void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
|
||
assert(I < NumPlacementArgs && "index out of range");
|
||
getPlacementArgs()[I] = {Arg, Type};
|
||
}
|
||
|
||
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
||
const FunctionProtoType *FPT =
|
||
OperatorDelete->getType()->getAs<FunctionProtoType>();
|
||
CallArgList DeleteArgs;
|
||
|
||
// The first argument is always a void* (or C* for a destroying operator
|
||
// delete for class type C).
|
||
DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
|
||
|
||
// Figure out what other parameters we should be implicitly passing.
|
||
UsualDeleteParams Params;
|
||
if (NumPlacementArgs) {
|
||
// A placement deallocation function is implicitly passed an alignment
|
||
// if the placement allocation function was, but is never passed a size.
|
||
Params.Alignment = PassAlignmentToPlacementDelete;
|
||
} else {
|
||
// For a non-placement new-expression, 'operator delete' can take a
|
||
// size and/or an alignment if it has the right parameters.
|
||
Params = getUsualDeleteParams(OperatorDelete);
|
||
}
|
||
|
||
assert(!Params.DestroyingDelete &&
|
||
"should not call destroying delete in a new-expression");
|
||
|
||
// The second argument can be a std::size_t (for non-placement delete).
|
||
if (Params.Size)
|
||
DeleteArgs.add(Traits::get(CGF, AllocSize),
|
||
CGF.getContext().getSizeType());
|
||
|
||
// The next (second or third) argument can be a std::align_val_t, which
|
||
// is an enum whose underlying type is std::size_t.
|
||
// FIXME: Use the right type as the parameter type. Note that in a call
|
||
// to operator delete(size_t, ...), we may not have it available.
|
||
if (Params.Alignment)
|
||
DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
|
||
CGF.SizeTy, AllocAlign.getQuantity())),
|
||
CGF.getContext().getSizeType());
|
||
|
||
// Pass the rest of the arguments, which must match exactly.
|
||
for (unsigned I = 0; I != NumPlacementArgs; ++I) {
|
||
auto Arg = getPlacementArgs()[I];
|
||
DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
|
||
}
|
||
|
||
// Call 'operator delete'.
|
||
EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
|
||
}
|
||
};
|
||
}
|
||
|
||
/// Enter a cleanup to call 'operator delete' if the initializer in a
|
||
/// new-expression throws.
|
||
static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
|
||
const CXXNewExpr *E,
|
||
Address NewPtr,
|
||
llvm::Value *AllocSize,
|
||
CharUnits AllocAlign,
|
||
const CallArgList &NewArgs) {
|
||
unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
|
||
|
||
// If we're not inside a conditional branch, then the cleanup will
|
||
// dominate and we can do the easier (and more efficient) thing.
|
||
if (!CGF.isInConditionalBranch()) {
|
||
struct DirectCleanupTraits {
|
||
typedef llvm::Value *ValueTy;
|
||
typedef RValue RValueTy;
|
||
static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
|
||
static RValue get(CodeGenFunction &, RValueTy V) { return V; }
|
||
};
|
||
|
||
typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
|
||
|
||
DirectCleanup *Cleanup = CGF.EHStack
|
||
.pushCleanupWithExtra<DirectCleanup>(EHCleanup,
|
||
E->getNumPlacementArgs(),
|
||
E->getOperatorDelete(),
|
||
NewPtr.getPointer(),
|
||
AllocSize,
|
||
E->passAlignment(),
|
||
AllocAlign);
|
||
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
|
||
auto &Arg = NewArgs[I + NumNonPlacementArgs];
|
||
Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
// Otherwise, we need to save all this stuff.
|
||
DominatingValue<RValue>::saved_type SavedNewPtr =
|
||
DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
|
||
DominatingValue<RValue>::saved_type SavedAllocSize =
|
||
DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
|
||
|
||
struct ConditionalCleanupTraits {
|
||
typedef DominatingValue<RValue>::saved_type ValueTy;
|
||
typedef DominatingValue<RValue>::saved_type RValueTy;
|
||
static RValue get(CodeGenFunction &CGF, ValueTy V) {
|
||
return V.restore(CGF);
|
||
}
|
||
};
|
||
typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
|
||
|
||
ConditionalCleanup *Cleanup = CGF.EHStack
|
||
.pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
|
||
E->getNumPlacementArgs(),
|
||
E->getOperatorDelete(),
|
||
SavedNewPtr,
|
||
SavedAllocSize,
|
||
E->passAlignment(),
|
||
AllocAlign);
|
||
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
|
||
auto &Arg = NewArgs[I + NumNonPlacementArgs];
|
||
Cleanup->setPlacementArg(
|
||
I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
|
||
}
|
||
|
||
CGF.initFullExprCleanup();
|
||
}
|
||
|
||
llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
|
||
// The element type being allocated.
|
||
QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
|
||
|
||
// 1. Build a call to the allocation function.
|
||
FunctionDecl *allocator = E->getOperatorNew();
|
||
|
||
// If there is a brace-initializer, cannot allocate fewer elements than inits.
|
||
unsigned minElements = 0;
|
||
if (E->isArray() && E->hasInitializer()) {
|
||
const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
|
||
if (ILE && ILE->isStringLiteralInit())
|
||
minElements =
|
||
cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
|
||
->getSize().getZExtValue();
|
||
else if (ILE)
|
||
minElements = ILE->getNumInits();
|
||
}
|
||
|
||
llvm::Value *numElements = nullptr;
|
||
llvm::Value *allocSizeWithoutCookie = nullptr;
|
||
llvm::Value *allocSize =
|
||
EmitCXXNewAllocSize(*this, E, minElements, numElements,
|
||
allocSizeWithoutCookie);
|
||
CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
|
||
|
||
// Emit the allocation call. If the allocator is a global placement
|
||
// operator, just "inline" it directly.
|
||
Address allocation = Address::invalid();
|
||
CallArgList allocatorArgs;
|
||
if (allocator->isReservedGlobalPlacementOperator()) {
|
||
assert(E->getNumPlacementArgs() == 1);
|
||
const Expr *arg = *E->placement_arguments().begin();
|
||
|
||
LValueBaseInfo BaseInfo;
|
||
allocation = EmitPointerWithAlignment(arg, &BaseInfo);
|
||
|
||
// The pointer expression will, in many cases, be an opaque void*.
|
||
// In these cases, discard the computed alignment and use the
|
||
// formal alignment of the allocated type.
|
||
if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
|
||
allocation = Address(allocation.getPointer(), allocAlign);
|
||
|
||
// Set up allocatorArgs for the call to operator delete if it's not
|
||
// the reserved global operator.
|
||
if (E->getOperatorDelete() &&
|
||
!E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
|
||
allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
|
||
allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
|
||
}
|
||
|
||
} else {
|
||
const FunctionProtoType *allocatorType =
|
||
allocator->getType()->castAs<FunctionProtoType>();
|
||
unsigned ParamsToSkip = 0;
|
||
|
||
// The allocation size is the first argument.
|
||
QualType sizeType = getContext().getSizeType();
|
||
allocatorArgs.add(RValue::get(allocSize), sizeType);
|
||
++ParamsToSkip;
|
||
|
||
if (allocSize != allocSizeWithoutCookie) {
|
||
CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
|
||
allocAlign = std::max(allocAlign, cookieAlign);
|
||
}
|
||
|
||
// The allocation alignment may be passed as the second argument.
|
||
if (E->passAlignment()) {
|
||
QualType AlignValT = sizeType;
|
||
if (allocatorType->getNumParams() > 1) {
|
||
AlignValT = allocatorType->getParamType(1);
|
||
assert(getContext().hasSameUnqualifiedType(
|
||
AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
|
||
sizeType) &&
|
||
"wrong type for alignment parameter");
|
||
++ParamsToSkip;
|
||
} else {
|
||
// Corner case, passing alignment to 'operator new(size_t, ...)'.
|
||
assert(allocator->isVariadic() && "can't pass alignment to allocator");
|
||
}
|
||
allocatorArgs.add(
|
||
RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
|
||
AlignValT);
|
||
}
|
||
|
||
// FIXME: Why do we not pass a CalleeDecl here?
|
||
EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
|
||
/*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
|
||
|
||
RValue RV =
|
||
EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
|
||
|
||
// If this was a call to a global replaceable allocation function that does
|
||
// not take an alignment argument, the allocator is known to produce
|
||
// storage that's suitably aligned for any object that fits, up to a known
|
||
// threshold. Otherwise assume it's suitably aligned for the allocated type.
|
||
CharUnits allocationAlign = allocAlign;
|
||
if (!E->passAlignment() &&
|
||
allocator->isReplaceableGlobalAllocationFunction()) {
|
||
unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
|
||
Target.getNewAlign(), getContext().getTypeSize(allocType)));
|
||
allocationAlign = std::max(
|
||
allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
|
||
}
|
||
|
||
allocation = Address(RV.getScalarVal(), allocationAlign);
|
||
}
|
||
|
||
// Emit a null check on the allocation result if the allocation
|
||
// function is allowed to return null (because it has a non-throwing
|
||
// exception spec or is the reserved placement new) and we have an
|
||
// interesting initializer will be running sanitizers on the initialization.
|
||
bool nullCheck = E->shouldNullCheckAllocation() &&
|
||
(!allocType.isPODType(getContext()) || E->hasInitializer() ||
|
||
sanitizePerformTypeCheck());
|
||
|
||
llvm::BasicBlock *nullCheckBB = nullptr;
|
||
llvm::BasicBlock *contBB = nullptr;
|
||
|
||
// The null-check means that the initializer is conditionally
|
||
// evaluated.
|
||
ConditionalEvaluation conditional(*this);
|
||
|
||
if (nullCheck) {
|
||
conditional.begin(*this);
|
||
|
||
nullCheckBB = Builder.GetInsertBlock();
|
||
llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
|
||
contBB = createBasicBlock("new.cont");
|
||
|
||
llvm::Value *isNull =
|
||
Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
|
||
Builder.CreateCondBr(isNull, contBB, notNullBB);
|
||
EmitBlock(notNullBB);
|
||
}
|
||
|
||
// If there's an operator delete, enter a cleanup to call it if an
|
||
// exception is thrown.
|
||
EHScopeStack::stable_iterator operatorDeleteCleanup;
|
||
llvm::Instruction *cleanupDominator = nullptr;
|
||
if (E->getOperatorDelete() &&
|
||
!E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
|
||
EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
|
||
allocatorArgs);
|
||
operatorDeleteCleanup = EHStack.stable_begin();
|
||
cleanupDominator = Builder.CreateUnreachable();
|
||
}
|
||
|
||
assert((allocSize == allocSizeWithoutCookie) ==
|
||
CalculateCookiePadding(*this, E).isZero());
|
||
if (allocSize != allocSizeWithoutCookie) {
|
||
assert(E->isArray());
|
||
allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
|
||
numElements,
|
||
E, allocType);
|
||
}
|
||
|
||
llvm::Type *elementTy = ConvertTypeForMem(allocType);
|
||
Address result = Builder.CreateElementBitCast(allocation, elementTy);
|
||
|
||
// Passing pointer through launder.invariant.group to avoid propagation of
|
||
// vptrs information which may be included in previous type.
|
||
// To not break LTO with different optimizations levels, we do it regardless
|
||
// of optimization level.
|
||
if (CGM.getCodeGenOpts().StrictVTablePointers &&
|
||
allocator->isReservedGlobalPlacementOperator())
|
||
result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
|
||
result.getAlignment());
|
||
|
||
// Emit sanitizer checks for pointer value now, so that in the case of an
|
||
// array it was checked only once and not at each constructor call. We may
|
||
// have already checked that the pointer is non-null.
|
||
// FIXME: If we have an array cookie and a potentially-throwing allocator,
|
||
// we'll null check the wrong pointer here.
|
||
SanitizerSet SkippedChecks;
|
||
SkippedChecks.set(SanitizerKind::Null, nullCheck);
|
||
EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
|
||
E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
|
||
result.getPointer(), allocType, result.getAlignment(),
|
||
SkippedChecks, numElements);
|
||
|
||
EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
|
||
allocSizeWithoutCookie);
|
||
if (E->isArray()) {
|
||
// NewPtr is a pointer to the base element type. If we're
|
||
// allocating an array of arrays, we'll need to cast back to the
|
||
// array pointer type.
|
||
llvm::Type *resultType = ConvertTypeForMem(E->getType());
|
||
if (result.getType() != resultType)
|
||
result = Builder.CreateBitCast(result, resultType);
|
||
}
|
||
|
||
// Deactivate the 'operator delete' cleanup if we finished
|
||
// initialization.
|
||
if (operatorDeleteCleanup.isValid()) {
|
||
DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
|
||
cleanupDominator->eraseFromParent();
|
||
}
|
||
|
||
llvm::Value *resultPtr = result.getPointer();
|
||
if (nullCheck) {
|
||
conditional.end(*this);
|
||
|
||
llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
|
||
EmitBlock(contBB);
|
||
|
||
llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
|
||
PHI->addIncoming(resultPtr, notNullBB);
|
||
PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
|
||
nullCheckBB);
|
||
|
||
resultPtr = PHI;
|
||
}
|
||
|
||
return resultPtr;
|
||
}
|
||
|
||
void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
|
||
llvm::Value *Ptr, QualType DeleteTy,
|
||
llvm::Value *NumElements,
|
||
CharUnits CookieSize) {
|
||
assert((!NumElements && CookieSize.isZero()) ||
|
||
DeleteFD->getOverloadedOperator() == OO_Array_Delete);
|
||
|
||
const FunctionProtoType *DeleteFTy =
|
||
DeleteFD->getType()->getAs<FunctionProtoType>();
|
||
|
||
CallArgList DeleteArgs;
|
||
|
||
auto Params = getUsualDeleteParams(DeleteFD);
|
||
auto ParamTypeIt = DeleteFTy->param_type_begin();
|
||
|
||
// Pass the pointer itself.
|
||
QualType ArgTy = *ParamTypeIt++;
|
||
llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
|
||
DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
|
||
|
||
// Pass the std::destroying_delete tag if present.
|
||
if (Params.DestroyingDelete) {
|
||
QualType DDTag = *ParamTypeIt++;
|
||
// Just pass an 'undef'. We expect the tag type to be an empty struct.
|
||
auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
|
||
DeleteArgs.add(RValue::get(V), DDTag);
|
||
}
|
||
|
||
// Pass the size if the delete function has a size_t parameter.
|
||
if (Params.Size) {
|
||
QualType SizeType = *ParamTypeIt++;
|
||
CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
|
||
llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
|
||
DeleteTypeSize.getQuantity());
|
||
|
||
// For array new, multiply by the number of elements.
|
||
if (NumElements)
|
||
Size = Builder.CreateMul(Size, NumElements);
|
||
|
||
// If there is a cookie, add the cookie size.
|
||
if (!CookieSize.isZero())
|
||
Size = Builder.CreateAdd(
|
||
Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
|
||
|
||
DeleteArgs.add(RValue::get(Size), SizeType);
|
||
}
|
||
|
||
// Pass the alignment if the delete function has an align_val_t parameter.
|
||
if (Params.Alignment) {
|
||
QualType AlignValType = *ParamTypeIt++;
|
||
CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
|
||
getContext().getTypeAlignIfKnown(DeleteTy));
|
||
llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
|
||
DeleteTypeAlign.getQuantity());
|
||
DeleteArgs.add(RValue::get(Align), AlignValType);
|
||
}
|
||
|
||
assert(ParamTypeIt == DeleteFTy->param_type_end() &&
|
||
"unknown parameter to usual delete function");
|
||
|
||
// Emit the call to delete.
|
||
EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
|
||
}
|
||
|
||
namespace {
|
||
/// Calls the given 'operator delete' on a single object.
|
||
struct CallObjectDelete final : EHScopeStack::Cleanup {
|
||
llvm::Value *Ptr;
|
||
const FunctionDecl *OperatorDelete;
|
||
QualType ElementType;
|
||
|
||
CallObjectDelete(llvm::Value *Ptr,
|
||
const FunctionDecl *OperatorDelete,
|
||
QualType ElementType)
|
||
: Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
|
||
|
||
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
||
CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
|
||
}
|
||
};
|
||
}
|
||
|
||
void
|
||
CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
|
||
llvm::Value *CompletePtr,
|
||
QualType ElementType) {
|
||
EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
|
||
OperatorDelete, ElementType);
|
||
}
|
||
|
||
/// Emit the code for deleting a single object with a destroying operator
|
||
/// delete. If the element type has a non-virtual destructor, Ptr has already
|
||
/// been converted to the type of the parameter of 'operator delete'. Otherwise
|
||
/// Ptr points to an object of the static type.
|
||
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
|
||
const CXXDeleteExpr *DE, Address Ptr,
|
||
QualType ElementType) {
|
||
auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
|
||
if (Dtor && Dtor->isVirtual())
|
||
CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
|
||
Dtor);
|
||
else
|
||
CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
|
||
}
|
||
|
||
/// Emit the code for deleting a single object.
|
||
static void EmitObjectDelete(CodeGenFunction &CGF,
|
||
const CXXDeleteExpr *DE,
|
||
Address Ptr,
|
||
QualType ElementType) {
|
||
// C++11 [expr.delete]p3:
|
||
// If the static type of the object to be deleted is different from its
|
||
// dynamic type, the static type shall be a base class of the dynamic type
|
||
// of the object to be deleted and the static type shall have a virtual
|
||
// destructor or the behavior is undefined.
|
||
CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
|
||
DE->getExprLoc(), Ptr.getPointer(),
|
||
ElementType);
|
||
|
||
const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
|
||
assert(!OperatorDelete->isDestroyingOperatorDelete());
|
||
|
||
// Find the destructor for the type, if applicable. If the
|
||
// destructor is virtual, we'll just emit the vcall and return.
|
||
const CXXDestructorDecl *Dtor = nullptr;
|
||
if (const RecordType *RT = ElementType->getAs<RecordType>()) {
|
||
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
||
if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
|
||
Dtor = RD->getDestructor();
|
||
|
||
if (Dtor->isVirtual()) {
|
||
CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
|
||
Dtor);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Make sure that we call delete even if the dtor throws.
|
||
// This doesn't have to a conditional cleanup because we're going
|
||
// to pop it off in a second.
|
||
CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
|
||
Ptr.getPointer(),
|
||
OperatorDelete, ElementType);
|
||
|
||
if (Dtor)
|
||
CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
|
||
/*ForVirtualBase=*/false,
|
||
/*Delegating=*/false,
|
||
Ptr, ElementType);
|
||
else if (auto Lifetime = ElementType.getObjCLifetime()) {
|
||
switch (Lifetime) {
|
||
case Qualifiers::OCL_None:
|
||
case Qualifiers::OCL_ExplicitNone:
|
||
case Qualifiers::OCL_Autoreleasing:
|
||
break;
|
||
|
||
case Qualifiers::OCL_Strong:
|
||
CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
|
||
break;
|
||
|
||
case Qualifiers::OCL_Weak:
|
||
CGF.EmitARCDestroyWeak(Ptr);
|
||
break;
|
||
}
|
||
}
|
||
|
||
CGF.PopCleanupBlock();
|
||
}
|
||
|
||
namespace {
|
||
/// Calls the given 'operator delete' on an array of objects.
|
||
struct CallArrayDelete final : EHScopeStack::Cleanup {
|
||
llvm::Value *Ptr;
|
||
const FunctionDecl *OperatorDelete;
|
||
llvm::Value *NumElements;
|
||
QualType ElementType;
|
||
CharUnits CookieSize;
|
||
|
||
CallArrayDelete(llvm::Value *Ptr,
|
||
const FunctionDecl *OperatorDelete,
|
||
llvm::Value *NumElements,
|
||
QualType ElementType,
|
||
CharUnits CookieSize)
|
||
: Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
|
||
ElementType(ElementType), CookieSize(CookieSize) {}
|
||
|
||
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
||
CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
|
||
CookieSize);
|
||
}
|
||
};
|
||
}
|
||
|
||
/// Emit the code for deleting an array of objects.
|
||
static void EmitArrayDelete(CodeGenFunction &CGF,
|
||
const CXXDeleteExpr *E,
|
||
Address deletedPtr,
|
||
QualType elementType) {
|
||
llvm::Value *numElements = nullptr;
|
||
llvm::Value *allocatedPtr = nullptr;
|
||
CharUnits cookieSize;
|
||
CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
|
||
numElements, allocatedPtr, cookieSize);
|
||
|
||
assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
|
||
|
||
// Make sure that we call delete even if one of the dtors throws.
|
||
const FunctionDecl *operatorDelete = E->getOperatorDelete();
|
||
CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
|
||
allocatedPtr, operatorDelete,
|
||
numElements, elementType,
|
||
cookieSize);
|
||
|
||
// Destroy the elements.
|
||
if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
|
||
assert(numElements && "no element count for a type with a destructor!");
|
||
|
||
CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
|
||
CharUnits elementAlign =
|
||
deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
|
||
|
||
llvm::Value *arrayBegin = deletedPtr.getPointer();
|
||
llvm::Value *arrayEnd =
|
||
CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
|
||
|
||
// Note that it is legal to allocate a zero-length array, and we
|
||
// can never fold the check away because the length should always
|
||
// come from a cookie.
|
||
CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
|
||
CGF.getDestroyer(dtorKind),
|
||
/*checkZeroLength*/ true,
|
||
CGF.needsEHCleanup(dtorKind));
|
||
}
|
||
|
||
// Pop the cleanup block.
|
||
CGF.PopCleanupBlock();
|
||
}
|
||
|
||
void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
|
||
const Expr *Arg = E->getArgument();
|
||
Address Ptr = EmitPointerWithAlignment(Arg);
|
||
|
||
// Null check the pointer.
|
||
llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
|
||
llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
|
||
|
||
llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
|
||
|
||
Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
|
||
EmitBlock(DeleteNotNull);
|
||
|
||
QualType DeleteTy = E->getDestroyedType();
|
||
|
||
// A destroying operator delete overrides the entire operation of the
|
||
// delete expression.
|
||
if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
|
||
EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
|
||
EmitBlock(DeleteEnd);
|
||
return;
|
||
}
|
||
|
||
// We might be deleting a pointer to array. If so, GEP down to the
|
||
// first non-array element.
|
||
// (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
|
||
if (DeleteTy->isConstantArrayType()) {
|
||
llvm::Value *Zero = Builder.getInt32(0);
|
||
SmallVector<llvm::Value*,8> GEP;
|
||
|
||
GEP.push_back(Zero); // point at the outermost array
|
||
|
||
// For each layer of array type we're pointing at:
|
||
while (const ConstantArrayType *Arr
|
||
= getContext().getAsConstantArrayType(DeleteTy)) {
|
||
// 1. Unpeel the array type.
|
||
DeleteTy = Arr->getElementType();
|
||
|
||
// 2. GEP to the first element of the array.
|
||
GEP.push_back(Zero);
|
||
}
|
||
|
||
Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
|
||
Ptr.getAlignment());
|
||
}
|
||
|
||
assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
|
||
|
||
if (E->isArrayForm()) {
|
||
EmitArrayDelete(*this, E, Ptr, DeleteTy);
|
||
} else {
|
||
EmitObjectDelete(*this, E, Ptr, DeleteTy);
|
||
}
|
||
|
||
EmitBlock(DeleteEnd);
|
||
}
|
||
|
||
static bool isGLValueFromPointerDeref(const Expr *E) {
|
||
E = E->IgnoreParens();
|
||
|
||
if (const auto *CE = dyn_cast<CastExpr>(E)) {
|
||
if (!CE->getSubExpr()->isGLValue())
|
||
return false;
|
||
return isGLValueFromPointerDeref(CE->getSubExpr());
|
||
}
|
||
|
||
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
|
||
return isGLValueFromPointerDeref(OVE->getSourceExpr());
|
||
|
||
if (const auto *BO = dyn_cast<BinaryOperator>(E))
|
||
if (BO->getOpcode() == BO_Comma)
|
||
return isGLValueFromPointerDeref(BO->getRHS());
|
||
|
||
if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
|
||
return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
|
||
isGLValueFromPointerDeref(ACO->getFalseExpr());
|
||
|
||
// C++11 [expr.sub]p1:
|
||
// The expression E1[E2] is identical (by definition) to *((E1)+(E2))
|
||
if (isa<ArraySubscriptExpr>(E))
|
||
return true;
|
||
|
||
if (const auto *UO = dyn_cast<UnaryOperator>(E))
|
||
if (UO->getOpcode() == UO_Deref)
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
|
||
llvm::Type *StdTypeInfoPtrTy) {
|
||
// Get the vtable pointer.
|
||
Address ThisPtr = CGF.EmitLValue(E).getAddress();
|
||
|
||
QualType SrcRecordTy = E->getType();
|
||
|
||
// C++ [class.cdtor]p4:
|
||
// If the operand of typeid refers to the object under construction or
|
||
// destruction and the static type of the operand is neither the constructor
|
||
// or destructor’s class nor one of its bases, the behavior is undefined.
|
||
CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
|
||
ThisPtr.getPointer(), SrcRecordTy);
|
||
|
||
// C++ [expr.typeid]p2:
|
||
// If the glvalue expression is obtained by applying the unary * operator to
|
||
// a pointer and the pointer is a null pointer value, the typeid expression
|
||
// throws the std::bad_typeid exception.
|
||
//
|
||
// However, this paragraph's intent is not clear. We choose a very generous
|
||
// interpretation which implores us to consider comma operators, conditional
|
||
// operators, parentheses and other such constructs.
|
||
if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
|
||
isGLValueFromPointerDeref(E), SrcRecordTy)) {
|
||
llvm::BasicBlock *BadTypeidBlock =
|
||
CGF.createBasicBlock("typeid.bad_typeid");
|
||
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
|
||
|
||
llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
|
||
CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
|
||
|
||
CGF.EmitBlock(BadTypeidBlock);
|
||
CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
|
||
CGF.EmitBlock(EndBlock);
|
||
}
|
||
|
||
return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
|
||
StdTypeInfoPtrTy);
|
||
}
|
||
|
||
llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
|
||
llvm::Type *StdTypeInfoPtrTy =
|
||
ConvertType(E->getType())->getPointerTo();
|
||
|
||
if (E->isTypeOperand()) {
|
||
llvm::Constant *TypeInfo =
|
||
CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
|
||
return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
|
||
}
|
||
|
||
// C++ [expr.typeid]p2:
|
||
// When typeid is applied to a glvalue expression whose type is a
|
||
// polymorphic class type, the result refers to a std::type_info object
|
||
// representing the type of the most derived object (that is, the dynamic
|
||
// type) to which the glvalue refers.
|
||
if (E->isPotentiallyEvaluated())
|
||
return EmitTypeidFromVTable(*this, E->getExprOperand(),
|
||
StdTypeInfoPtrTy);
|
||
|
||
QualType OperandTy = E->getExprOperand()->getType();
|
||
return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
|
||
StdTypeInfoPtrTy);
|
||
}
|
||
|
||
static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
|
||
QualType DestTy) {
|
||
llvm::Type *DestLTy = CGF.ConvertType(DestTy);
|
||
if (DestTy->isPointerType())
|
||
return llvm::Constant::getNullValue(DestLTy);
|
||
|
||
/// C++ [expr.dynamic.cast]p9:
|
||
/// A failed cast to reference type throws std::bad_cast
|
||
if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
|
||
return nullptr;
|
||
|
||
CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
|
||
return llvm::UndefValue::get(DestLTy);
|
||
}
|
||
|
||
llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
|
||
const CXXDynamicCastExpr *DCE) {
|
||
CGM.EmitExplicitCastExprType(DCE, this);
|
||
QualType DestTy = DCE->getTypeAsWritten();
|
||
|
||
QualType SrcTy = DCE->getSubExpr()->getType();
|
||
|
||
// C++ [expr.dynamic.cast]p7:
|
||
// If T is "pointer to cv void," then the result is a pointer to the most
|
||
// derived object pointed to by v.
|
||
const PointerType *DestPTy = DestTy->getAs<PointerType>();
|
||
|
||
bool isDynamicCastToVoid;
|
||
QualType SrcRecordTy;
|
||
QualType DestRecordTy;
|
||
if (DestPTy) {
|
||
isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
|
||
SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
|
||
DestRecordTy = DestPTy->getPointeeType();
|
||
} else {
|
||
isDynamicCastToVoid = false;
|
||
SrcRecordTy = SrcTy;
|
||
DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
|
||
}
|
||
|
||
// C++ [class.cdtor]p5:
|
||
// If the operand of the dynamic_cast refers to the object under
|
||
// construction or destruction and the static type of the operand is not a
|
||
// pointer to or object of the constructor or destructor’s own class or one
|
||
// of its bases, the dynamic_cast results in undefined behavior.
|
||
EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
|
||
SrcRecordTy);
|
||
|
||
if (DCE->isAlwaysNull())
|
||
if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
|
||
return T;
|
||
|
||
assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
|
||
|
||
// C++ [expr.dynamic.cast]p4:
|
||
// If the value of v is a null pointer value in the pointer case, the result
|
||
// is the null pointer value of type T.
|
||
bool ShouldNullCheckSrcValue =
|
||
CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
|
||
SrcRecordTy);
|
||
|
||
llvm::BasicBlock *CastNull = nullptr;
|
||
llvm::BasicBlock *CastNotNull = nullptr;
|
||
llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
|
||
|
||
if (ShouldNullCheckSrcValue) {
|
||
CastNull = createBasicBlock("dynamic_cast.null");
|
||
CastNotNull = createBasicBlock("dynamic_cast.notnull");
|
||
|
||
llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
|
||
Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
|
||
EmitBlock(CastNotNull);
|
||
}
|
||
|
||
llvm::Value *Value;
|
||
if (isDynamicCastToVoid) {
|
||
Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
|
||
DestTy);
|
||
} else {
|
||
assert(DestRecordTy->isRecordType() &&
|
||
"destination type must be a record type!");
|
||
Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
|
||
DestTy, DestRecordTy, CastEnd);
|
||
CastNotNull = Builder.GetInsertBlock();
|
||
}
|
||
|
||
if (ShouldNullCheckSrcValue) {
|
||
EmitBranch(CastEnd);
|
||
|
||
EmitBlock(CastNull);
|
||
EmitBranch(CastEnd);
|
||
}
|
||
|
||
EmitBlock(CastEnd);
|
||
|
||
if (ShouldNullCheckSrcValue) {
|
||
llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
|
||
PHI->addIncoming(Value, CastNotNull);
|
||
PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
|
||
|
||
Value = PHI;
|
||
}
|
||
|
||
return Value;
|
||
}
|