forked from OSchip/llvm-project
1249 lines
42 KiB
C++
1249 lines
42 KiB
C++
//===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// The InductiveRangeCheckElimination pass splits a loop's iteration space into
|
|
// three disjoint ranges. It does that in a way such that the loop running in
|
|
// the middle loop provably does not need range checks. As an example, it will
|
|
// convert
|
|
//
|
|
// len = < known positive >
|
|
// for (i = 0; i < n; i++) {
|
|
// if (0 <= i && i < len) {
|
|
// do_something();
|
|
// } else {
|
|
// throw_out_of_bounds();
|
|
// }
|
|
// }
|
|
//
|
|
// to
|
|
//
|
|
// len = < known positive >
|
|
// limit = smin(n, len)
|
|
// // no first segment
|
|
// for (i = 0; i < limit; i++) {
|
|
// if (0 <= i && i < len) { // this check is fully redundant
|
|
// do_something();
|
|
// } else {
|
|
// throw_out_of_bounds();
|
|
// }
|
|
// }
|
|
// for (i = limit; i < n; i++) {
|
|
// if (0 <= i && i < len) {
|
|
// do_something();
|
|
// } else {
|
|
// throw_out_of_bounds();
|
|
// }
|
|
// }
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/Optional.h"
|
|
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
|
|
#include "llvm/Pass.h"
|
|
|
|
#include <array>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
|
|
cl::init(64));
|
|
|
|
static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
#define DEBUG_TYPE "irce"
|
|
|
|
namespace {
|
|
|
|
/// An inductive range check is conditional branch in a loop with
|
|
///
|
|
/// 1. a very cold successor (i.e. the branch jumps to that successor very
|
|
/// rarely)
|
|
///
|
|
/// and
|
|
///
|
|
/// 2. a condition that is provably true for some range of values taken by the
|
|
/// containing loop's induction variable.
|
|
///
|
|
/// Currently all inductive range checks are branches conditional on an
|
|
/// expression of the form
|
|
///
|
|
/// 0 <= (Offset + Scale * I) < Length
|
|
///
|
|
/// where `I' is the canonical induction variable of a loop to which Offset and
|
|
/// Scale are loop invariant, and Length is >= 0. Currently the 'false' branch
|
|
/// is considered cold, looking at profiling data to verify that is a TODO.
|
|
|
|
class InductiveRangeCheck {
|
|
const SCEV *Offset;
|
|
const SCEV *Scale;
|
|
Value *Length;
|
|
BranchInst *Branch;
|
|
|
|
InductiveRangeCheck() :
|
|
Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { }
|
|
|
|
public:
|
|
const SCEV *getOffset() const { return Offset; }
|
|
const SCEV *getScale() const { return Scale; }
|
|
Value *getLength() const { return Length; }
|
|
|
|
void print(raw_ostream &OS) const {
|
|
OS << "InductiveRangeCheck:\n";
|
|
OS << " Offset: ";
|
|
Offset->print(OS);
|
|
OS << " Scale: ";
|
|
Scale->print(OS);
|
|
OS << " Length: ";
|
|
Length->print(OS);
|
|
OS << " Branch: ";
|
|
getBranch()->print(OS);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void dump() {
|
|
print(dbgs());
|
|
}
|
|
#endif
|
|
|
|
BranchInst *getBranch() const { return Branch; }
|
|
|
|
/// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
|
|
/// R.getEnd() sle R.getBegin(), then R denotes the empty range.
|
|
|
|
class Range {
|
|
Value *Begin;
|
|
Value *End;
|
|
|
|
public:
|
|
Range(Value *Begin, Value *End) : Begin(Begin), End(End) {
|
|
assert(Begin->getType() == End->getType() && "ill-typed range!");
|
|
}
|
|
|
|
Type *getType() const { return Begin->getType(); }
|
|
Value *getBegin() const { return Begin; }
|
|
Value *getEnd() const { return End; }
|
|
};
|
|
|
|
typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
|
|
|
|
/// This is the value the condition of the branch needs to evaluate to for the
|
|
/// branch to take the hot successor (see (1) above).
|
|
bool getPassingDirection() { return true; }
|
|
|
|
/// Computes a range for the induction variable in which the range check is
|
|
/// redundant and can be constant-folded away.
|
|
Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
|
|
IRBuilder<> &B) const;
|
|
|
|
/// Create an inductive range check out of BI if possible, else return
|
|
/// nullptr.
|
|
static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
|
|
Loop *L, ScalarEvolution &SE,
|
|
BranchProbabilityInfo &BPI);
|
|
};
|
|
|
|
class InductiveRangeCheckElimination : public LoopPass {
|
|
InductiveRangeCheck::AllocatorTy Allocator;
|
|
|
|
public:
|
|
static char ID;
|
|
InductiveRangeCheckElimination() : LoopPass(ID) {
|
|
initializeInductiveRangeCheckEliminationPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addRequiredID(LCSSAID);
|
|
AU.addRequired<ScalarEvolution>();
|
|
AU.addRequired<BranchProbabilityInfo>();
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
|
|
};
|
|
|
|
char InductiveRangeCheckElimination::ID = 0;
|
|
}
|
|
|
|
INITIALIZE_PASS(InductiveRangeCheckElimination, "irce",
|
|
"Inductive range check elimination", false, false)
|
|
|
|
static bool IsLowerBoundCheck(Value *Check, Value *&IndexV) {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
|
|
Value *LHS = nullptr, *RHS = nullptr;
|
|
|
|
if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
|
|
return false;
|
|
|
|
switch (Pred) {
|
|
default:
|
|
return false;
|
|
|
|
case ICmpInst::ICMP_SLE:
|
|
std::swap(LHS, RHS);
|
|
// fallthrough
|
|
case ICmpInst::ICMP_SGE:
|
|
if (!match(RHS, m_ConstantInt<0>()))
|
|
return false;
|
|
IndexV = LHS;
|
|
return true;
|
|
|
|
case ICmpInst::ICMP_SLT:
|
|
std::swap(LHS, RHS);
|
|
// fallthrough
|
|
case ICmpInst::ICMP_SGT:
|
|
if (!match(RHS, m_ConstantInt<-1>()))
|
|
return false;
|
|
IndexV = LHS;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool IsUpperBoundCheck(Value *Check, Value *Index, Value *&UpperLimit) {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
|
|
Value *LHS = nullptr, *RHS = nullptr;
|
|
|
|
if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
|
|
return false;
|
|
|
|
switch (Pred) {
|
|
default:
|
|
return false;
|
|
|
|
case ICmpInst::ICMP_SGT:
|
|
std::swap(LHS, RHS);
|
|
// fallthrough
|
|
case ICmpInst::ICMP_SLT:
|
|
if (LHS != Index)
|
|
return false;
|
|
UpperLimit = RHS;
|
|
return true;
|
|
|
|
case ICmpInst::ICMP_UGT:
|
|
std::swap(LHS, RHS);
|
|
// fallthrough
|
|
case ICmpInst::ICMP_ULT:
|
|
if (LHS != Index)
|
|
return false;
|
|
UpperLimit = RHS;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Split a condition into something semantically equivalent to (0 <= I <
|
|
/// Limit), both comparisons signed and Len loop invariant on L and positive.
|
|
/// On success, return true and set Index to I and UpperLimit to Limit. Return
|
|
/// false on failure (we may still write to UpperLimit and Index on failure).
|
|
/// It does not try to interpret I as a loop index.
|
|
///
|
|
static bool SplitRangeCheckCondition(Loop *L, ScalarEvolution &SE,
|
|
Value *Condition, const SCEV *&Index,
|
|
Value *&UpperLimit) {
|
|
|
|
// TODO: currently this catches some silly cases like comparing "%idx slt 1".
|
|
// Our transformations are still correct, but less likely to be profitable in
|
|
// those cases. We have to come up with some heuristics that pick out the
|
|
// range checks that are more profitable to clone a loop for. This function
|
|
// in general can be made more robust.
|
|
|
|
using namespace llvm::PatternMatch;
|
|
|
|
Value *A = nullptr;
|
|
Value *B = nullptr;
|
|
ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
|
|
|
|
// In these early checks we assume that the matched UpperLimit is positive.
|
|
// We'll verify that fact later, before returning true.
|
|
|
|
if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
|
|
Value *IndexV = nullptr;
|
|
Value *ExpectedUpperBoundCheck = nullptr;
|
|
|
|
if (IsLowerBoundCheck(A, IndexV))
|
|
ExpectedUpperBoundCheck = B;
|
|
else if (IsLowerBoundCheck(B, IndexV))
|
|
ExpectedUpperBoundCheck = A;
|
|
else
|
|
return false;
|
|
|
|
if (!IsUpperBoundCheck(ExpectedUpperBoundCheck, IndexV, UpperLimit))
|
|
return false;
|
|
|
|
Index = SE.getSCEV(IndexV);
|
|
|
|
if (isa<SCEVCouldNotCompute>(Index))
|
|
return false;
|
|
|
|
} else if (match(Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
|
|
switch (Pred) {
|
|
default:
|
|
return false;
|
|
|
|
case ICmpInst::ICMP_SGT:
|
|
std::swap(A, B);
|
|
// fall through
|
|
case ICmpInst::ICMP_SLT:
|
|
UpperLimit = B;
|
|
Index = SE.getSCEV(A);
|
|
if (isa<SCEVCouldNotCompute>(Index) || !SE.isKnownNonNegative(Index))
|
|
return false;
|
|
break;
|
|
|
|
case ICmpInst::ICMP_UGT:
|
|
std::swap(A, B);
|
|
// fall through
|
|
case ICmpInst::ICMP_ULT:
|
|
UpperLimit = B;
|
|
Index = SE.getSCEV(A);
|
|
if (isa<SCEVCouldNotCompute>(Index))
|
|
return false;
|
|
break;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
const SCEV *UpperLimitSCEV = SE.getSCEV(UpperLimit);
|
|
if (isa<SCEVCouldNotCompute>(UpperLimitSCEV) ||
|
|
!SE.isKnownNonNegative(UpperLimitSCEV))
|
|
return false;
|
|
|
|
if (SE.getLoopDisposition(UpperLimitSCEV, L) !=
|
|
ScalarEvolution::LoopInvariant) {
|
|
DEBUG(dbgs() << " in function: " << L->getHeader()->getParent()->getName()
|
|
<< " ";
|
|
dbgs() << " UpperLimit is not loop invariant: "
|
|
<< UpperLimit->getName() << "\n";);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
InductiveRangeCheck *
|
|
InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
|
|
Loop *L, ScalarEvolution &SE,
|
|
BranchProbabilityInfo &BPI) {
|
|
|
|
if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
|
|
return nullptr;
|
|
|
|
BranchProbability LikelyTaken(15, 16);
|
|
|
|
if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken)
|
|
return nullptr;
|
|
|
|
Value *Length = nullptr;
|
|
const SCEV *IndexSCEV = nullptr;
|
|
|
|
if (!SplitRangeCheckCondition(L, SE, BI->getCondition(), IndexSCEV, Length))
|
|
return nullptr;
|
|
|
|
assert(IndexSCEV && Length && "contract with SplitRangeCheckCondition!");
|
|
|
|
const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
|
|
bool IsAffineIndex =
|
|
IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
|
|
|
|
if (!IsAffineIndex)
|
|
return nullptr;
|
|
|
|
InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
|
|
IRC->Length = Length;
|
|
IRC->Offset = IndexAddRec->getStart();
|
|
IRC->Scale = IndexAddRec->getStepRecurrence(SE);
|
|
IRC->Branch = BI;
|
|
return IRC;
|
|
}
|
|
|
|
static Value *MaybeSimplify(Value *V) {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (Value *Simplified = SimplifyInstruction(I))
|
|
return Simplified;
|
|
return V;
|
|
}
|
|
|
|
static Value *ConstructSMinOf(Value *X, Value *Y, IRBuilder<> &B) {
|
|
return MaybeSimplify(B.CreateSelect(B.CreateICmpSLT(X, Y), X, Y));
|
|
}
|
|
|
|
static Value *ConstructSMaxOf(Value *X, Value *Y, IRBuilder<> &B) {
|
|
return MaybeSimplify(B.CreateSelect(B.CreateICmpSGT(X, Y), X, Y));
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This class is used to constrain loops to run within a given iteration space.
|
|
/// The algorithm this class implements is given a Loop and a range [Begin,
|
|
/// End). The algorithm then tries to break out a "main loop" out of the loop
|
|
/// it is given in a way that the "main loop" runs with the induction variable
|
|
/// in a subset of [Begin, End). The algorithm emits appropriate pre and post
|
|
/// loops to run any remaining iterations. The pre loop runs any iterations in
|
|
/// which the induction variable is < Begin, and the post loop runs any
|
|
/// iterations in which the induction variable is >= End.
|
|
///
|
|
class LoopConstrainer {
|
|
|
|
// Keeps track of the structure of a loop. This is similar to llvm::Loop,
|
|
// except that it is more lightweight and can track the state of a loop
|
|
// through changing and potentially invalid IR. This structure also
|
|
// formalizes the kinds of loops we can deal with -- ones that have a single
|
|
// latch that is also an exiting block *and* have a canonical induction
|
|
// variable.
|
|
struct LoopStructure {
|
|
const char *Tag;
|
|
|
|
BasicBlock *Header;
|
|
BasicBlock *Latch;
|
|
|
|
// `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
|
|
// successor is `LatchExit', the exit block of the loop.
|
|
BranchInst *LatchBr;
|
|
BasicBlock *LatchExit;
|
|
unsigned LatchBrExitIdx;
|
|
|
|
// The canonical induction variable. It's value is `CIVStart` on the 0th
|
|
// itertion and `CIVNext` for all iterations after that.
|
|
PHINode *CIV;
|
|
Value *CIVStart;
|
|
Value *CIVNext;
|
|
|
|
LoopStructure() : Tag(""), Header(nullptr), Latch(nullptr),
|
|
LatchBr(nullptr), LatchExit(nullptr),
|
|
LatchBrExitIdx(-1), CIV(nullptr),
|
|
CIVStart(nullptr), CIVNext(nullptr) { }
|
|
|
|
template <typename M> LoopStructure map(M Map) const {
|
|
LoopStructure Result;
|
|
Result.Tag = Tag;
|
|
Result.Header = cast<BasicBlock>(Map(Header));
|
|
Result.Latch = cast<BasicBlock>(Map(Latch));
|
|
Result.LatchBr = cast<BranchInst>(Map(LatchBr));
|
|
Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
|
|
Result.LatchBrExitIdx = LatchBrExitIdx;
|
|
Result.CIV = cast<PHINode>(Map(CIV));
|
|
Result.CIVNext = Map(CIVNext);
|
|
Result.CIVStart = Map(CIVStart);
|
|
return Result;
|
|
}
|
|
};
|
|
|
|
// The representation of a clone of the original loop we started out with.
|
|
struct ClonedLoop {
|
|
// The cloned blocks
|
|
std::vector<BasicBlock *> Blocks;
|
|
|
|
// `Map` maps values in the clonee into values in the cloned version
|
|
ValueToValueMapTy Map;
|
|
|
|
// An instance of `LoopStructure` for the cloned loop
|
|
LoopStructure Structure;
|
|
};
|
|
|
|
// Result of rewriting the range of a loop. See changeIterationSpaceEnd for
|
|
// more details on what these fields mean.
|
|
struct RewrittenRangeInfo {
|
|
BasicBlock *PseudoExit;
|
|
BasicBlock *ExitSelector;
|
|
std::vector<PHINode *> PHIValuesAtPseudoExit;
|
|
|
|
RewrittenRangeInfo() : PseudoExit(nullptr), ExitSelector(nullptr) { }
|
|
};
|
|
|
|
// Calculated subranges we restrict the iteration space of the main loop to.
|
|
// See the implementation of `calculateSubRanges' for more details on how
|
|
// these fields are computed. `ExitPreLoopAt' is `None' if we don't need a
|
|
// pre loop. `ExitMainLoopAt' is `None' if we don't need a post loop.
|
|
struct SubRanges {
|
|
Optional<Value *> ExitPreLoopAt;
|
|
Optional<Value *> ExitMainLoopAt;
|
|
};
|
|
|
|
// A utility function that does a `replaceUsesOfWith' on the incoming block
|
|
// set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
|
|
// incoming block list with `ReplaceBy'.
|
|
static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
|
|
BasicBlock *ReplaceBy);
|
|
|
|
// Try to "parse" `OriginalLoop' and populate the various out parameters.
|
|
// Returns true on success, false on failure.
|
|
//
|
|
bool recognizeLoop(LoopStructure &LoopStructureOut,
|
|
const SCEV *&LatchCountOut, BasicBlock *&PreHeaderOut,
|
|
const char *&FailureReasonOut) const;
|
|
|
|
// Compute a safe set of limits for the main loop to run in -- effectively the
|
|
// intersection of `Range' and the iteration space of the original loop.
|
|
// Return the header count (1 + the latch taken count) in `HeaderCount'.
|
|
// Return None if unable to compute the set of subranges.
|
|
//
|
|
Optional<SubRanges> calculateSubRanges(Value *&HeaderCount) const;
|
|
|
|
// Clone `OriginalLoop' and return the result in CLResult. The IR after
|
|
// running `cloneLoop' is well formed except for the PHI nodes in CLResult --
|
|
// the PHI nodes say that there is an incoming edge from `OriginalPreheader`
|
|
// but there is no such edge.
|
|
//
|
|
void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
|
|
|
|
// Rewrite the iteration space of the loop denoted by (LS, Preheader). The
|
|
// iteration space of the rewritten loop ends at ExitLoopAt. The start of the
|
|
// iteration space is not changed. `ExitLoopAt' is assumed to be slt
|
|
// `OriginalHeaderCount'.
|
|
//
|
|
// If there are iterations left to execute, control is made to jump to
|
|
// `ContinuationBlock', otherwise they take the normal loop exit. The
|
|
// returned `RewrittenRangeInfo' object is populated as follows:
|
|
//
|
|
// .PseudoExit is a basic block that unconditionally branches to
|
|
// `ContinuationBlock'.
|
|
//
|
|
// .ExitSelector is a basic block that decides, on exit from the loop,
|
|
// whether to branch to the "true" exit or to `PseudoExit'.
|
|
//
|
|
// .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
|
|
// for each PHINode in the loop header on taking the pseudo exit.
|
|
//
|
|
// After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
|
|
// preheader because it is made to branch to the loop header only
|
|
// conditionally.
|
|
//
|
|
RewrittenRangeInfo
|
|
changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
|
|
Value *ExitLoopAt,
|
|
BasicBlock *ContinuationBlock) const;
|
|
|
|
// The loop denoted by `LS' has `OldPreheader' as its preheader. This
|
|
// function creates a new preheader for `LS' and returns it.
|
|
//
|
|
BasicBlock *createPreheader(const LoopConstrainer::LoopStructure &LS,
|
|
BasicBlock *OldPreheader, const char *Tag) const;
|
|
|
|
// `ContinuationBlockAndPreheader' was the continuation block for some call to
|
|
// `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
|
|
// This function rewrites the PHI nodes in `LS.Header' to start with the
|
|
// correct value.
|
|
void rewriteIncomingValuesForPHIs(
|
|
LoopConstrainer::LoopStructure &LS,
|
|
BasicBlock *ContinuationBlockAndPreheader,
|
|
const LoopConstrainer::RewrittenRangeInfo &RRI) const;
|
|
|
|
// Even though we do not preserve any passes at this time, we at least need to
|
|
// keep the parent loop structure consistent. The `LPPassManager' seems to
|
|
// verify this after running a loop pass. This function adds the list of
|
|
// blocks denoted by BBs to this loops parent loop if required.
|
|
void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
|
|
|
|
// Some global state.
|
|
Function &F;
|
|
LLVMContext &Ctx;
|
|
ScalarEvolution &SE;
|
|
|
|
// Information about the original loop we started out with.
|
|
Loop &OriginalLoop;
|
|
LoopInfo &OriginalLoopInfo;
|
|
const SCEV *LatchTakenCount;
|
|
BasicBlock *OriginalPreheader;
|
|
Value *OriginalHeaderCount;
|
|
|
|
// The preheader of the main loop. This may or may not be different from
|
|
// `OriginalPreheader'.
|
|
BasicBlock *MainLoopPreheader;
|
|
|
|
// The range we need to run the main loop in.
|
|
InductiveRangeCheck::Range Range;
|
|
|
|
// The structure of the main loop (see comment at the beginning of this class
|
|
// for a definition)
|
|
LoopStructure MainLoopStructure;
|
|
|
|
public:
|
|
LoopConstrainer(Loop &L, LoopInfo &LI, ScalarEvolution &SE,
|
|
InductiveRangeCheck::Range R)
|
|
: F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), SE(SE),
|
|
OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
|
|
OriginalPreheader(nullptr), OriginalHeaderCount(nullptr),
|
|
MainLoopPreheader(nullptr), Range(R) { }
|
|
|
|
// Entry point for the algorithm. Returns true on success.
|
|
bool run();
|
|
};
|
|
|
|
}
|
|
|
|
void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
|
|
BasicBlock *ReplaceBy) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingBlock(i) == Block)
|
|
PN->setIncomingBlock(i, ReplaceBy);
|
|
}
|
|
|
|
bool LoopConstrainer::recognizeLoop(LoopStructure &LoopStructureOut,
|
|
const SCEV *&LatchCountOut,
|
|
BasicBlock *&PreheaderOut,
|
|
const char *&FailureReason) const {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
assert(OriginalLoop.isLoopSimplifyForm() &&
|
|
"should follow from addRequired<>");
|
|
|
|
BasicBlock *Latch = OriginalLoop.getLoopLatch();
|
|
if (!OriginalLoop.isLoopExiting(Latch)) {
|
|
FailureReason = "no loop latch";
|
|
return false;
|
|
}
|
|
|
|
PHINode *CIV = OriginalLoop.getCanonicalInductionVariable();
|
|
if (!CIV) {
|
|
FailureReason = "no CIV";
|
|
return false;
|
|
}
|
|
|
|
BasicBlock *Header = OriginalLoop.getHeader();
|
|
BasicBlock *Preheader = OriginalLoop.getLoopPreheader();
|
|
if (!Preheader) {
|
|
FailureReason = "no preheader";
|
|
return false;
|
|
}
|
|
|
|
Value *CIVNext = CIV->getIncomingValueForBlock(Latch);
|
|
Value *CIVStart = CIV->getIncomingValueForBlock(Preheader);
|
|
|
|
const SCEV *LatchCount = SE.getExitCount(&OriginalLoop, Latch);
|
|
if (isa<SCEVCouldNotCompute>(LatchCount)) {
|
|
FailureReason = "could not compute latch count";
|
|
return false;
|
|
}
|
|
|
|
// While SCEV does most of the analysis for us, we still have to
|
|
// modify the latch; and currently we can only deal with certain
|
|
// kinds of latches. This can be made more sophisticated as needed.
|
|
|
|
BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
|
|
|
|
if (!LatchBr || LatchBr->isUnconditional()) {
|
|
FailureReason = "latch terminator not conditional branch";
|
|
return false;
|
|
}
|
|
|
|
// Currently we only support a latch condition of the form:
|
|
//
|
|
// %condition = icmp slt %civNext, %limit
|
|
// br i1 %condition, label %header, label %exit
|
|
|
|
if (LatchBr->getSuccessor(0) != Header) {
|
|
FailureReason = "unknown latch form (header not first successor)";
|
|
return false;
|
|
}
|
|
|
|
Value *CIVComparedTo = nullptr;
|
|
ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
|
|
if (!(match(LatchBr->getCondition(),
|
|
m_ICmp(Pred, m_Specific(CIVNext), m_Value(CIVComparedTo))) &&
|
|
Pred == ICmpInst::ICMP_SLT)) {
|
|
FailureReason = "unknown latch form (not slt)";
|
|
return false;
|
|
}
|
|
|
|
// IndVarSimplify will sometimes leave behind (in SCEV's cache) backedge-taken
|
|
// counts that are narrower than the canonical induction variable. These
|
|
// values are still accurate, and we could probably use them after sign/zero
|
|
// extension; but for now we just bail out of the transformation to keep
|
|
// things simple.
|
|
const SCEV *CIVComparedToSCEV = SE.getSCEV(CIVComparedTo);
|
|
if (isa<SCEVCouldNotCompute>(CIVComparedToSCEV) ||
|
|
CIVComparedToSCEV->getType() != LatchCount->getType()) {
|
|
FailureReason = "could not relate CIV to latch expression";
|
|
return false;
|
|
}
|
|
|
|
const SCEV *ShouldBeOne = SE.getMinusSCEV(CIVComparedToSCEV, LatchCount);
|
|
const SCEVConstant *SCEVOne = dyn_cast<SCEVConstant>(ShouldBeOne);
|
|
if (!SCEVOne || SCEVOne->getValue()->getValue() != 1) {
|
|
FailureReason = "unexpected header count in latch";
|
|
return false;
|
|
}
|
|
|
|
unsigned LatchBrExitIdx = 1;
|
|
BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
|
|
|
|
assert(SE.getLoopDisposition(LatchCount, &OriginalLoop) ==
|
|
ScalarEvolution::LoopInvariant &&
|
|
"loop variant exit count doesn't make sense!");
|
|
|
|
assert(!OriginalLoop.contains(LatchExit) && "expected an exit block!");
|
|
|
|
LoopStructureOut.Tag = "main";
|
|
LoopStructureOut.Header = Header;
|
|
LoopStructureOut.Latch = Latch;
|
|
LoopStructureOut.LatchBr = LatchBr;
|
|
LoopStructureOut.LatchExit = LatchExit;
|
|
LoopStructureOut.LatchBrExitIdx = LatchBrExitIdx;
|
|
LoopStructureOut.CIV = CIV;
|
|
LoopStructureOut.CIVNext = CIVNext;
|
|
LoopStructureOut.CIVStart = CIVStart;
|
|
|
|
LatchCountOut = LatchCount;
|
|
PreheaderOut = Preheader;
|
|
FailureReason = nullptr;
|
|
|
|
return true;
|
|
}
|
|
|
|
Optional<LoopConstrainer::SubRanges>
|
|
LoopConstrainer::calculateSubRanges(Value *&HeaderCountOut) const {
|
|
IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
|
|
|
|
if (Range.getType() != Ty)
|
|
return None;
|
|
|
|
SCEVExpander Expander(SE, "irce");
|
|
Instruction *InsertPt = OriginalPreheader->getTerminator();
|
|
|
|
Value *LatchCountV =
|
|
MaybeSimplify(Expander.expandCodeFor(LatchTakenCount, Ty, InsertPt));
|
|
|
|
IRBuilder<> B(InsertPt);
|
|
|
|
LoopConstrainer::SubRanges Result;
|
|
|
|
// I think we can be more aggressive here and make this nuw / nsw if the
|
|
// addition that feeds into the icmp for the latch's terminating branch is nuw
|
|
// / nsw. In any case, a wrapping 2's complement addition is safe.
|
|
ConstantInt *One = ConstantInt::get(Ty, 1);
|
|
HeaderCountOut = MaybeSimplify(B.CreateAdd(LatchCountV, One, "header.count"));
|
|
|
|
const SCEV *RangeBegin = SE.getSCEV(Range.getBegin());
|
|
const SCEV *RangeEnd = SE.getSCEV(Range.getEnd());
|
|
const SCEV *HeaderCountSCEV = SE.getSCEV(HeaderCountOut);
|
|
const SCEV *Zero = SE.getConstant(Ty, 0);
|
|
|
|
// In some cases we can prove that we don't need a pre or post loop
|
|
|
|
bool ProvablyNoPreloop =
|
|
SE.isKnownPredicate(ICmpInst::ICMP_SLE, RangeBegin, Zero);
|
|
if (!ProvablyNoPreloop)
|
|
Result.ExitPreLoopAt = ConstructSMinOf(HeaderCountOut, Range.getBegin(), B);
|
|
|
|
bool ProvablyNoPostLoop =
|
|
SE.isKnownPredicate(ICmpInst::ICMP_SLE, HeaderCountSCEV, RangeEnd);
|
|
if (!ProvablyNoPostLoop)
|
|
Result.ExitMainLoopAt = ConstructSMinOf(HeaderCountOut, Range.getEnd(), B);
|
|
|
|
return Result;
|
|
}
|
|
|
|
void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
|
|
const char *Tag) const {
|
|
for (BasicBlock *BB : OriginalLoop.getBlocks()) {
|
|
BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
|
|
Result.Blocks.push_back(Clone);
|
|
Result.Map[BB] = Clone;
|
|
}
|
|
|
|
auto GetClonedValue = [&Result](Value *V) {
|
|
assert(V && "null values not in domain!");
|
|
auto It = Result.Map.find(V);
|
|
if (It == Result.Map.end())
|
|
return V;
|
|
return static_cast<Value *>(It->second);
|
|
};
|
|
|
|
Result.Structure = MainLoopStructure.map(GetClonedValue);
|
|
Result.Structure.Tag = Tag;
|
|
|
|
for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
|
|
BasicBlock *ClonedBB = Result.Blocks[i];
|
|
BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
|
|
|
|
assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
|
|
|
|
for (Instruction &I : *ClonedBB)
|
|
RemapInstruction(&I, Result.Map,
|
|
RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
|
|
|
|
// Exit blocks will now have one more predecessor and their PHI nodes need
|
|
// to be edited to reflect that. No phi nodes need to be introduced because
|
|
// the loop is in LCSSA.
|
|
|
|
for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
|
|
SBBI != SBBE; ++SBBI) {
|
|
|
|
if (OriginalLoop.contains(*SBBI))
|
|
continue; // not an exit block
|
|
|
|
for (Instruction &I : **SBBI) {
|
|
if (!isa<PHINode>(&I))
|
|
break;
|
|
|
|
PHINode *PN = cast<PHINode>(&I);
|
|
Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
|
|
PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
|
|
const LoopStructure &LS, BasicBlock *Preheader, Value *ExitLoopAt,
|
|
BasicBlock *ContinuationBlock) const {
|
|
|
|
// We start with a loop with a single latch:
|
|
//
|
|
// +--------------------+
|
|
// | |
|
|
// | preheader |
|
|
// | |
|
|
// +--------+-----------+
|
|
// | ----------------\
|
|
// | / |
|
|
// +--------v----v------+ |
|
|
// | | |
|
|
// | header | |
|
|
// | | |
|
|
// +--------------------+ |
|
|
// |
|
|
// ..... |
|
|
// |
|
|
// +--------------------+ |
|
|
// | | |
|
|
// | latch >----------/
|
|
// | |
|
|
// +-------v------------+
|
|
// |
|
|
// |
|
|
// | +--------------------+
|
|
// | | |
|
|
// +---> original exit |
|
|
// | |
|
|
// +--------------------+
|
|
//
|
|
// We change the control flow to look like
|
|
//
|
|
//
|
|
// +--------------------+
|
|
// | |
|
|
// | preheader >-------------------------+
|
|
// | | |
|
|
// +--------v-----------+ |
|
|
// | /-------------+ |
|
|
// | / | |
|
|
// +--------v--v--------+ | |
|
|
// | | | |
|
|
// | header | | +--------+ |
|
|
// | | | | | |
|
|
// +--------------------+ | | +-----v-----v-----------+
|
|
// | | | |
|
|
// | | | .pseudo.exit |
|
|
// | | | |
|
|
// | | +-----------v-----------+
|
|
// | | |
|
|
// ..... | | |
|
|
// | | +--------v-------------+
|
|
// +--------------------+ | | | |
|
|
// | | | | | ContinuationBlock |
|
|
// | latch >------+ | | |
|
|
// | | | +----------------------+
|
|
// +---------v----------+ |
|
|
// | |
|
|
// | |
|
|
// | +---------------^-----+
|
|
// | | |
|
|
// +-----> .exit.selector |
|
|
// | |
|
|
// +----------v----------+
|
|
// |
|
|
// +--------------------+ |
|
|
// | | |
|
|
// | original exit <----+
|
|
// | |
|
|
// +--------------------+
|
|
//
|
|
|
|
RewrittenRangeInfo RRI;
|
|
|
|
auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
|
|
RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
|
|
&F, BBInsertLocation);
|
|
RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
|
|
BBInsertLocation);
|
|
|
|
BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
|
|
|
|
IRBuilder<> B(PreheaderJump);
|
|
|
|
// EnterLoopCond - is it okay to start executing this `LS'?
|
|
Value *EnterLoopCond = B.CreateICmpSLT(LS.CIVStart, ExitLoopAt);
|
|
B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
|
|
PreheaderJump->eraseFromParent();
|
|
|
|
assert(LS.LatchBrExitIdx == 1 && "generalize this as needed!");
|
|
|
|
B.SetInsertPoint(LS.LatchBr);
|
|
|
|
// ContinueCond - is it okay to execute the next iteration in `LS'?
|
|
Value *ContinueCond = B.CreateICmpSLT(LS.CIVNext, ExitLoopAt);
|
|
|
|
LS.LatchBr->setCondition(ContinueCond);
|
|
assert(LS.LatchBr->getSuccessor(LS.LatchBrExitIdx) == LS.LatchExit &&
|
|
"invariant!");
|
|
LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
|
|
|
|
B.SetInsertPoint(RRI.ExitSelector);
|
|
|
|
// IterationsLeft - are there any more iterations left, given the original
|
|
// upper bound on the induction variable? If not, we branch to the "real"
|
|
// exit.
|
|
Value *IterationsLeft = B.CreateICmpSLT(LS.CIVNext, OriginalHeaderCount);
|
|
B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
|
|
|
|
BranchInst *BranchToContinuation =
|
|
BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
|
|
|
|
// We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
|
|
// each of the PHI nodes in the loop header. This feeds into the initial
|
|
// value of the same PHI nodes if/when we continue execution.
|
|
for (Instruction &I : *LS.Header) {
|
|
if (!isa<PHINode>(&I))
|
|
break;
|
|
|
|
PHINode *PN = cast<PHINode>(&I);
|
|
|
|
PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
|
|
BranchToContinuation);
|
|
|
|
NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
|
|
NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
|
|
RRI.ExitSelector);
|
|
RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
|
|
}
|
|
|
|
// The latch exit now has a branch from `RRI.ExitSelector' instead of
|
|
// `LS.Latch'. The PHI nodes need to be updated to reflect that.
|
|
for (Instruction &I : *LS.LatchExit) {
|
|
if (PHINode *PN = dyn_cast<PHINode>(&I))
|
|
replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
|
|
else
|
|
break;
|
|
}
|
|
|
|
return RRI;
|
|
}
|
|
|
|
void LoopConstrainer::rewriteIncomingValuesForPHIs(
|
|
LoopConstrainer::LoopStructure &LS, BasicBlock *ContinuationBlock,
|
|
const LoopConstrainer::RewrittenRangeInfo &RRI) const {
|
|
|
|
unsigned PHIIndex = 0;
|
|
for (Instruction &I : *LS.Header) {
|
|
if (!isa<PHINode>(&I))
|
|
break;
|
|
|
|
PHINode *PN = cast<PHINode>(&I);
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
|
|
if (PN->getIncomingBlock(i) == ContinuationBlock)
|
|
PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
|
|
}
|
|
|
|
LS.CIVStart = LS.CIV->getIncomingValueForBlock(ContinuationBlock);
|
|
}
|
|
|
|
BasicBlock *
|
|
LoopConstrainer::createPreheader(const LoopConstrainer::LoopStructure &LS,
|
|
BasicBlock *OldPreheader,
|
|
const char *Tag) const {
|
|
|
|
BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
|
|
BranchInst::Create(LS.Header, Preheader);
|
|
|
|
for (Instruction &I : *LS.Header) {
|
|
if (!isa<PHINode>(&I))
|
|
break;
|
|
|
|
PHINode *PN = cast<PHINode>(&I);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
|
|
replacePHIBlock(PN, OldPreheader, Preheader);
|
|
}
|
|
|
|
return Preheader;
|
|
}
|
|
|
|
void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
|
|
Loop *ParentLoop = OriginalLoop.getParentLoop();
|
|
if (!ParentLoop)
|
|
return;
|
|
|
|
for (BasicBlock *BB : BBs)
|
|
ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
|
|
}
|
|
|
|
bool LoopConstrainer::run() {
|
|
BasicBlock *Preheader = nullptr;
|
|
const char *CouldNotProceedBecause = nullptr;
|
|
if (!recognizeLoop(MainLoopStructure, LatchTakenCount, Preheader,
|
|
CouldNotProceedBecause)) {
|
|
DEBUG(dbgs() << "irce: could not recognize loop, " << CouldNotProceedBecause
|
|
<< "\n";);
|
|
return false;
|
|
}
|
|
|
|
OriginalPreheader = Preheader;
|
|
MainLoopPreheader = Preheader;
|
|
|
|
Optional<SubRanges> MaybeSR = calculateSubRanges(OriginalHeaderCount);
|
|
if (!MaybeSR.hasValue()) {
|
|
DEBUG(dbgs() << "irce: could not compute subranges\n");
|
|
return false;
|
|
}
|
|
SubRanges SR = MaybeSR.getValue();
|
|
|
|
// It would have been better to make `PreLoop' and `PostLoop'
|
|
// `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
|
|
// constructor.
|
|
ClonedLoop PreLoop, PostLoop;
|
|
bool NeedsPreLoop = SR.ExitPreLoopAt.hasValue();
|
|
bool NeedsPostLoop = SR.ExitMainLoopAt.hasValue();
|
|
|
|
// We clone these ahead of time so that we don't have to deal with changing
|
|
// and temporarily invalid IR as we transform the loops.
|
|
if (NeedsPreLoop)
|
|
cloneLoop(PreLoop, "preloop");
|
|
if (NeedsPostLoop)
|
|
cloneLoop(PostLoop, "postloop");
|
|
|
|
RewrittenRangeInfo PreLoopRRI;
|
|
|
|
if (NeedsPreLoop) {
|
|
Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
|
|
PreLoop.Structure.Header);
|
|
|
|
MainLoopPreheader =
|
|
createPreheader(MainLoopStructure, Preheader, "mainloop");
|
|
PreLoopRRI =
|
|
changeIterationSpaceEnd(PreLoop.Structure, Preheader,
|
|
SR.ExitPreLoopAt.getValue(), MainLoopPreheader);
|
|
rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
|
|
PreLoopRRI);
|
|
}
|
|
|
|
BasicBlock *PostLoopPreheader = nullptr;
|
|
RewrittenRangeInfo PostLoopRRI;
|
|
|
|
if (NeedsPostLoop) {
|
|
PostLoopPreheader =
|
|
createPreheader(PostLoop.Structure, Preheader, "postloop");
|
|
PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
|
|
SR.ExitMainLoopAt.getValue(),
|
|
PostLoopPreheader);
|
|
rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
|
|
PostLoopRRI);
|
|
}
|
|
|
|
BasicBlock *NewMainLoopPreheader =
|
|
MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
|
|
BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
|
|
PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
|
|
PostLoopRRI.ExitSelector, NewMainLoopPreheader};
|
|
|
|
// Some of the above may be nullptr, filter them out before passing to
|
|
// addToParentLoopIfNeeded.
|
|
auto NewBlocksEnd =
|
|
std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
|
|
|
|
addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
|
|
addToParentLoopIfNeeded(PreLoop.Blocks);
|
|
addToParentLoopIfNeeded(PostLoop.Blocks);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Computes and returns a range of values for the induction variable in which
|
|
/// the range check can be safely elided. If it cannot compute such a range,
|
|
/// returns None.
|
|
Optional<InductiveRangeCheck::Range>
|
|
InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
|
|
IRBuilder<> &B) const {
|
|
|
|
// Currently we support inequalities of the form:
|
|
//
|
|
// 0 <= Offset + 1 * CIV < L given L >= 0
|
|
//
|
|
// The inequality is satisfied by -Offset <= CIV < (L - Offset) [^1]. All
|
|
// additions and subtractions are twos-complement wrapping and comparisons are
|
|
// signed.
|
|
//
|
|
// Proof:
|
|
//
|
|
// If there exists CIV such that -Offset <= CIV < (L - Offset) then it
|
|
// follows that -Offset <= (-Offset + L) [== Eq. 1]. Since L >= 0, if
|
|
// (-Offset + L) sign-overflows then (-Offset + L) < (-Offset). Hence by
|
|
// [Eq. 1], (-Offset + L) could not have overflown.
|
|
//
|
|
// This means CIV = t + (-Offset) for t in [0, L). Hence (CIV + Offset) =
|
|
// t. Hence 0 <= (CIV + Offset) < L
|
|
|
|
// [^1]: Note that the solution does _not_ apply if L < 0; consider values
|
|
// Offset = 127, CIV = 126 and L = -2 in an i8 world.
|
|
|
|
const SCEVConstant *ScaleC = dyn_cast<SCEVConstant>(getScale());
|
|
if (!(ScaleC && ScaleC->getValue()->getValue() == 1)) {
|
|
DEBUG(dbgs() << "irce: could not compute safe iteration space for:\n";
|
|
print(dbgs()));
|
|
return None;
|
|
}
|
|
|
|
Value *OffsetV = SCEVExpander(SE, "safe.itr.space").expandCodeFor(
|
|
getOffset(), getOffset()->getType(), B.GetInsertPoint());
|
|
OffsetV = MaybeSimplify(OffsetV);
|
|
|
|
Value *Begin = MaybeSimplify(B.CreateNeg(OffsetV));
|
|
Value *End = MaybeSimplify(B.CreateSub(getLength(), OffsetV));
|
|
|
|
return InductiveRangeCheck::Range(Begin, End);
|
|
}
|
|
|
|
static Optional<InductiveRangeCheck::Range>
|
|
IntersectRange(const Optional<InductiveRangeCheck::Range> &R1,
|
|
const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
|
|
if (!R1.hasValue())
|
|
return R2;
|
|
auto &R1Value = R1.getValue();
|
|
|
|
// TODO: we could widen the smaller range and have this work; but for now we
|
|
// bail out to keep things simple.
|
|
if (R1Value.getType() != R2.getType())
|
|
return None;
|
|
|
|
Value *NewMin = ConstructSMaxOf(R1Value.getBegin(), R2.getBegin(), B);
|
|
Value *NewMax = ConstructSMinOf(R1Value.getEnd(), R2.getEnd(), B);
|
|
return InductiveRangeCheck::Range(NewMin, NewMax);
|
|
}
|
|
|
|
bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|
if (L->getBlocks().size() >= LoopSizeCutoff) {
|
|
DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
|
|
return false;
|
|
}
|
|
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader) {
|
|
DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
|
|
return false;
|
|
}
|
|
|
|
LLVMContext &Context = Preheader->getContext();
|
|
InductiveRangeCheck::AllocatorTy IRCAlloc;
|
|
SmallVector<InductiveRangeCheck *, 16> RangeChecks;
|
|
ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
|
|
BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
|
|
|
|
for (auto BBI : L->getBlocks())
|
|
if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
|
|
if (InductiveRangeCheck *IRC =
|
|
InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI))
|
|
RangeChecks.push_back(IRC);
|
|
|
|
if (RangeChecks.empty())
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "irce: looking at loop "; L->print(dbgs());
|
|
dbgs() << "irce: loop has " << RangeChecks.size()
|
|
<< " inductive range checks: \n";
|
|
for (InductiveRangeCheck *IRC : RangeChecks)
|
|
IRC->print(dbgs());
|
|
);
|
|
|
|
Optional<InductiveRangeCheck::Range> SafeIterRange;
|
|
Instruction *ExprInsertPt = Preheader->getTerminator();
|
|
|
|
SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
|
|
|
|
IRBuilder<> B(ExprInsertPt);
|
|
for (InductiveRangeCheck *IRC : RangeChecks) {
|
|
auto Result = IRC->computeSafeIterationSpace(SE, B);
|
|
if (Result.hasValue()) {
|
|
auto MaybeSafeIterRange =
|
|
IntersectRange(SafeIterRange, Result.getValue(), B);
|
|
if (MaybeSafeIterRange.hasValue()) {
|
|
RangeChecksToEliminate.push_back(IRC);
|
|
SafeIterRange = MaybeSafeIterRange.getValue();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!SafeIterRange.hasValue())
|
|
return false;
|
|
|
|
LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), SE,
|
|
SafeIterRange.getValue());
|
|
bool Changed = LC.run();
|
|
|
|
if (Changed) {
|
|
auto PrintConstrainedLoopInfo = [L]() {
|
|
dbgs() << "irce: in function ";
|
|
dbgs() << L->getHeader()->getParent()->getName() << ": ";
|
|
dbgs() << "constrained ";
|
|
L->print(dbgs());
|
|
};
|
|
|
|
DEBUG(PrintConstrainedLoopInfo());
|
|
|
|
if (PrintChangedLoops)
|
|
PrintConstrainedLoopInfo();
|
|
|
|
// Optimize away the now-redundant range checks.
|
|
|
|
for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
|
|
ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
|
|
? ConstantInt::getTrue(Context)
|
|
: ConstantInt::getFalse(Context);
|
|
IRC->getBranch()->setCondition(FoldedRangeCheck);
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
Pass *llvm::createInductiveRangeCheckEliminationPass() {
|
|
return new InductiveRangeCheckElimination;
|
|
}
|