forked from OSchip/llvm-project
2032 lines
72 KiB
C++
2032 lines
72 KiB
C++
//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements extra semantic analysis beyond what is enforced
|
|
// by the C type system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include <limits>
|
|
using namespace clang;
|
|
|
|
/// getLocationOfStringLiteralByte - Return a source location that points to the
|
|
/// specified byte of the specified string literal.
|
|
///
|
|
/// Strings are amazingly complex. They can be formed from multiple tokens and
|
|
/// can have escape sequences in them in addition to the usual trigraph and
|
|
/// escaped newline business. This routine handles this complexity.
|
|
///
|
|
SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
|
|
unsigned ByteNo) const {
|
|
assert(!SL->isWide() && "This doesn't work for wide strings yet");
|
|
|
|
// Loop over all of the tokens in this string until we find the one that
|
|
// contains the byte we're looking for.
|
|
unsigned TokNo = 0;
|
|
while (1) {
|
|
assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
|
|
SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
|
|
|
|
// Get the spelling of the string so that we can get the data that makes up
|
|
// the string literal, not the identifier for the macro it is potentially
|
|
// expanded through.
|
|
SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
|
|
|
|
// Re-lex the token to get its length and original spelling.
|
|
std::pair<FileID, unsigned> LocInfo =
|
|
SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
|
|
std::pair<const char *,const char *> Buffer =
|
|
SourceMgr.getBufferData(LocInfo.first);
|
|
const char *StrData = Buffer.first+LocInfo.second;
|
|
|
|
// Create a langops struct and enable trigraphs. This is sufficient for
|
|
// relexing tokens.
|
|
LangOptions LangOpts;
|
|
LangOpts.Trigraphs = true;
|
|
|
|
// Create a lexer starting at the beginning of this token.
|
|
Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
|
|
Buffer.second);
|
|
Token TheTok;
|
|
TheLexer.LexFromRawLexer(TheTok);
|
|
|
|
// Use the StringLiteralParser to compute the length of the string in bytes.
|
|
StringLiteralParser SLP(&TheTok, 1, PP);
|
|
unsigned TokNumBytes = SLP.GetStringLength();
|
|
|
|
// If the byte is in this token, return the location of the byte.
|
|
if (ByteNo < TokNumBytes ||
|
|
(ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
|
|
unsigned Offset =
|
|
StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
|
|
|
|
// Now that we know the offset of the token in the spelling, use the
|
|
// preprocessor to get the offset in the original source.
|
|
return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
|
|
}
|
|
|
|
// Move to the next string token.
|
|
++TokNo;
|
|
ByteNo -= TokNumBytes;
|
|
}
|
|
}
|
|
|
|
/// CheckablePrintfAttr - does a function call have a "printf" attribute
|
|
/// and arguments that merit checking?
|
|
bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
|
|
if (Format->getType() == "printf") return true;
|
|
if (Format->getType() == "printf0") {
|
|
// printf0 allows null "format" string; if so don't check format/args
|
|
unsigned format_idx = Format->getFormatIdx() - 1;
|
|
// Does the index refer to the implicit object argument?
|
|
if (isa<CXXMemberCallExpr>(TheCall)) {
|
|
if (format_idx == 0)
|
|
return false;
|
|
--format_idx;
|
|
}
|
|
if (format_idx < TheCall->getNumArgs()) {
|
|
Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
|
|
if (!Format->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
|
|
OwningExprResult TheCallResult(Owned(TheCall));
|
|
|
|
switch (BuiltinID) {
|
|
case Builtin::BI__builtin___CFStringMakeConstantString:
|
|
assert(TheCall->getNumArgs() == 1 &&
|
|
"Wrong # arguments to builtin CFStringMakeConstantString");
|
|
if (CheckObjCString(TheCall->getArg(0)))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_stdarg_start:
|
|
case Builtin::BI__builtin_va_start:
|
|
if (SemaBuiltinVAStart(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_isgreater:
|
|
case Builtin::BI__builtin_isgreaterequal:
|
|
case Builtin::BI__builtin_isless:
|
|
case Builtin::BI__builtin_islessequal:
|
|
case Builtin::BI__builtin_islessgreater:
|
|
case Builtin::BI__builtin_isunordered:
|
|
if (SemaBuiltinUnorderedCompare(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_isfinite:
|
|
case Builtin::BI__builtin_isinf:
|
|
case Builtin::BI__builtin_isinf_sign:
|
|
case Builtin::BI__builtin_isnan:
|
|
case Builtin::BI__builtin_isnormal:
|
|
if (SemaBuiltinUnaryFP(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_return_address:
|
|
case Builtin::BI__builtin_frame_address:
|
|
if (SemaBuiltinStackAddress(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_eh_return_data_regno:
|
|
if (SemaBuiltinEHReturnDataRegNo(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_shufflevector:
|
|
return SemaBuiltinShuffleVector(TheCall);
|
|
// TheCall will be freed by the smart pointer here, but that's fine, since
|
|
// SemaBuiltinShuffleVector guts it, but then doesn't release it.
|
|
case Builtin::BI__builtin_prefetch:
|
|
if (SemaBuiltinPrefetch(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_object_size:
|
|
if (SemaBuiltinObjectSize(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_longjmp:
|
|
if (SemaBuiltinLongjmp(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__sync_fetch_and_add:
|
|
case Builtin::BI__sync_fetch_and_sub:
|
|
case Builtin::BI__sync_fetch_and_or:
|
|
case Builtin::BI__sync_fetch_and_and:
|
|
case Builtin::BI__sync_fetch_and_xor:
|
|
case Builtin::BI__sync_fetch_and_nand:
|
|
case Builtin::BI__sync_add_and_fetch:
|
|
case Builtin::BI__sync_sub_and_fetch:
|
|
case Builtin::BI__sync_and_and_fetch:
|
|
case Builtin::BI__sync_or_and_fetch:
|
|
case Builtin::BI__sync_xor_and_fetch:
|
|
case Builtin::BI__sync_nand_and_fetch:
|
|
case Builtin::BI__sync_val_compare_and_swap:
|
|
case Builtin::BI__sync_bool_compare_and_swap:
|
|
case Builtin::BI__sync_lock_test_and_set:
|
|
case Builtin::BI__sync_lock_release:
|
|
if (SemaBuiltinAtomicOverloaded(TheCall))
|
|
return ExprError();
|
|
break;
|
|
}
|
|
|
|
return move(TheCallResult);
|
|
}
|
|
|
|
/// CheckFunctionCall - Check a direct function call for various correctness
|
|
/// and safety properties not strictly enforced by the C type system.
|
|
bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
|
|
// Get the IdentifierInfo* for the called function.
|
|
IdentifierInfo *FnInfo = FDecl->getIdentifier();
|
|
|
|
// None of the checks below are needed for functions that don't have
|
|
// simple names (e.g., C++ conversion functions).
|
|
if (!FnInfo)
|
|
return false;
|
|
|
|
// FIXME: This mechanism should be abstracted to be less fragile and
|
|
// more efficient. For example, just map function ids to custom
|
|
// handlers.
|
|
|
|
// Printf checking.
|
|
if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
|
|
if (CheckablePrintfAttr(Format, TheCall)) {
|
|
bool HasVAListArg = Format->getFirstArg() == 0;
|
|
if (!HasVAListArg) {
|
|
if (const FunctionProtoType *Proto
|
|
= FDecl->getType()->getAs<FunctionProtoType>())
|
|
HasVAListArg = !Proto->isVariadic();
|
|
}
|
|
CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
|
|
HasVAListArg ? 0 : Format->getFirstArg() - 1);
|
|
}
|
|
}
|
|
|
|
for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
|
|
NonNull = NonNull->getNext<NonNullAttr>())
|
|
CheckNonNullArguments(NonNull, TheCall);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
|
|
// Printf checking.
|
|
const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
|
|
if (!Format)
|
|
return false;
|
|
|
|
const VarDecl *V = dyn_cast<VarDecl>(NDecl);
|
|
if (!V)
|
|
return false;
|
|
|
|
QualType Ty = V->getType();
|
|
if (!Ty->isBlockPointerType())
|
|
return false;
|
|
|
|
if (!CheckablePrintfAttr(Format, TheCall))
|
|
return false;
|
|
|
|
bool HasVAListArg = Format->getFirstArg() == 0;
|
|
if (!HasVAListArg) {
|
|
const FunctionType *FT =
|
|
Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
|
|
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
|
|
HasVAListArg = !Proto->isVariadic();
|
|
}
|
|
CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
|
|
HasVAListArg ? 0 : Format->getFirstArg() - 1);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinAtomicOverloaded - We have a call to a function like
|
|
/// __sync_fetch_and_add, which is an overloaded function based on the pointer
|
|
/// type of its first argument. The main ActOnCallExpr routines have already
|
|
/// promoted the types of arguments because all of these calls are prototyped as
|
|
/// void(...).
|
|
///
|
|
/// This function goes through and does final semantic checking for these
|
|
/// builtins,
|
|
bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
|
|
DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
|
|
FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
|
|
|
|
// Ensure that we have at least one argument to do type inference from.
|
|
if (TheCall->getNumArgs() < 1)
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 << TheCall->getCallee()->getSourceRange();
|
|
|
|
// Inspect the first argument of the atomic builtin. This should always be
|
|
// a pointer type, whose element is an integral scalar or pointer type.
|
|
// Because it is a pointer type, we don't have to worry about any implicit
|
|
// casts here.
|
|
Expr *FirstArg = TheCall->getArg(0);
|
|
if (!FirstArg->getType()->isPointerType())
|
|
return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
|
|
<< FirstArg->getType() << FirstArg->getSourceRange();
|
|
|
|
QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
|
|
if (!ValType->isIntegerType() && !ValType->isPointerType() &&
|
|
!ValType->isBlockPointerType())
|
|
return Diag(DRE->getLocStart(),
|
|
diag::err_atomic_builtin_must_be_pointer_intptr)
|
|
<< FirstArg->getType() << FirstArg->getSourceRange();
|
|
|
|
// We need to figure out which concrete builtin this maps onto. For example,
|
|
// __sync_fetch_and_add with a 2 byte object turns into
|
|
// __sync_fetch_and_add_2.
|
|
#define BUILTIN_ROW(x) \
|
|
{ Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
|
|
Builtin::BI##x##_8, Builtin::BI##x##_16 }
|
|
|
|
static const unsigned BuiltinIndices[][5] = {
|
|
BUILTIN_ROW(__sync_fetch_and_add),
|
|
BUILTIN_ROW(__sync_fetch_and_sub),
|
|
BUILTIN_ROW(__sync_fetch_and_or),
|
|
BUILTIN_ROW(__sync_fetch_and_and),
|
|
BUILTIN_ROW(__sync_fetch_and_xor),
|
|
BUILTIN_ROW(__sync_fetch_and_nand),
|
|
|
|
BUILTIN_ROW(__sync_add_and_fetch),
|
|
BUILTIN_ROW(__sync_sub_and_fetch),
|
|
BUILTIN_ROW(__sync_and_and_fetch),
|
|
BUILTIN_ROW(__sync_or_and_fetch),
|
|
BUILTIN_ROW(__sync_xor_and_fetch),
|
|
BUILTIN_ROW(__sync_nand_and_fetch),
|
|
|
|
BUILTIN_ROW(__sync_val_compare_and_swap),
|
|
BUILTIN_ROW(__sync_bool_compare_and_swap),
|
|
BUILTIN_ROW(__sync_lock_test_and_set),
|
|
BUILTIN_ROW(__sync_lock_release)
|
|
};
|
|
#undef BUILTIN_ROW
|
|
|
|
// Determine the index of the size.
|
|
unsigned SizeIndex;
|
|
switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
|
|
case 1: SizeIndex = 0; break;
|
|
case 2: SizeIndex = 1; break;
|
|
case 4: SizeIndex = 2; break;
|
|
case 8: SizeIndex = 3; break;
|
|
case 16: SizeIndex = 4; break;
|
|
default:
|
|
return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
|
|
<< FirstArg->getType() << FirstArg->getSourceRange();
|
|
}
|
|
|
|
// Each of these builtins has one pointer argument, followed by some number of
|
|
// values (0, 1 or 2) followed by a potentially empty varags list of stuff
|
|
// that we ignore. Find out which row of BuiltinIndices to read from as well
|
|
// as the number of fixed args.
|
|
unsigned BuiltinID = FDecl->getBuiltinID();
|
|
unsigned BuiltinIndex, NumFixed = 1;
|
|
switch (BuiltinID) {
|
|
default: assert(0 && "Unknown overloaded atomic builtin!");
|
|
case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
|
|
case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
|
|
case Builtin::BI__sync_fetch_and_or: BuiltinIndex = 2; break;
|
|
case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
|
|
case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
|
|
case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
|
|
|
|
case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
|
|
case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
|
|
case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
|
|
case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 9; break;
|
|
case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
|
|
case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
|
|
|
|
case Builtin::BI__sync_val_compare_and_swap:
|
|
BuiltinIndex = 12;
|
|
NumFixed = 2;
|
|
break;
|
|
case Builtin::BI__sync_bool_compare_and_swap:
|
|
BuiltinIndex = 13;
|
|
NumFixed = 2;
|
|
break;
|
|
case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
|
|
case Builtin::BI__sync_lock_release:
|
|
BuiltinIndex = 15;
|
|
NumFixed = 0;
|
|
break;
|
|
}
|
|
|
|
// Now that we know how many fixed arguments we expect, first check that we
|
|
// have at least that many.
|
|
if (TheCall->getNumArgs() < 1+NumFixed)
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 << TheCall->getCallee()->getSourceRange();
|
|
|
|
|
|
// Get the decl for the concrete builtin from this, we can tell what the
|
|
// concrete integer type we should convert to is.
|
|
unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
|
|
const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
|
|
IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
|
|
FunctionDecl *NewBuiltinDecl =
|
|
cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
|
|
TUScope, false, DRE->getLocStart()));
|
|
const FunctionProtoType *BuiltinFT =
|
|
NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
|
|
ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
|
|
|
|
// If the first type needs to be converted (e.g. void** -> int*), do it now.
|
|
if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
|
|
ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
|
|
TheCall->setArg(0, FirstArg);
|
|
}
|
|
|
|
// Next, walk the valid ones promoting to the right type.
|
|
for (unsigned i = 0; i != NumFixed; ++i) {
|
|
Expr *Arg = TheCall->getArg(i+1);
|
|
|
|
// If the argument is an implicit cast, then there was a promotion due to
|
|
// "...", just remove it now.
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
|
|
Arg = ICE->getSubExpr();
|
|
ICE->setSubExpr(0);
|
|
ICE->Destroy(Context);
|
|
TheCall->setArg(i+1, Arg);
|
|
}
|
|
|
|
// GCC does an implicit conversion to the pointer or integer ValType. This
|
|
// can fail in some cases (1i -> int**), check for this error case now.
|
|
CastExpr::CastKind Kind = CastExpr::CK_Unknown;
|
|
CXXMethodDecl *ConversionDecl = 0;
|
|
if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
|
|
ConversionDecl))
|
|
return true;
|
|
|
|
// Okay, we have something that *can* be converted to the right type. Check
|
|
// to see if there is a potentially weird extension going on here. This can
|
|
// happen when you do an atomic operation on something like an char* and
|
|
// pass in 42. The 42 gets converted to char. This is even more strange
|
|
// for things like 45.123 -> char, etc.
|
|
// FIXME: Do this check.
|
|
ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
|
|
TheCall->setArg(i+1, Arg);
|
|
}
|
|
|
|
// Switch the DeclRefExpr to refer to the new decl.
|
|
DRE->setDecl(NewBuiltinDecl);
|
|
DRE->setType(NewBuiltinDecl->getType());
|
|
|
|
// Set the callee in the CallExpr.
|
|
// FIXME: This leaks the original parens and implicit casts.
|
|
Expr *PromotedCall = DRE;
|
|
UsualUnaryConversions(PromotedCall);
|
|
TheCall->setCallee(PromotedCall);
|
|
|
|
|
|
// Change the result type of the call to match the result type of the decl.
|
|
TheCall->setType(NewBuiltinDecl->getResultType());
|
|
return false;
|
|
}
|
|
|
|
|
|
/// CheckObjCString - Checks that the argument to the builtin
|
|
/// CFString constructor is correct
|
|
/// FIXME: GCC currently emits the following warning:
|
|
/// "warning: input conversion stopped due to an input byte that does not
|
|
/// belong to the input codeset UTF-8"
|
|
/// Note: It might also make sense to do the UTF-16 conversion here (would
|
|
/// simplify the backend).
|
|
bool Sema::CheckObjCString(Expr *Arg) {
|
|
Arg = Arg->IgnoreParenCasts();
|
|
StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
|
|
|
|
if (!Literal || Literal->isWide()) {
|
|
Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
|
|
<< Arg->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
const char *Data = Literal->getStrData();
|
|
unsigned Length = Literal->getByteLength();
|
|
|
|
for (unsigned i = 0; i < Length; ++i) {
|
|
if (!Data[i]) {
|
|
Diag(getLocationOfStringLiteralByte(Literal, i),
|
|
diag::warn_cfstring_literal_contains_nul_character)
|
|
<< Arg->getSourceRange();
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
|
|
/// Emit an error and return true on failure, return false on success.
|
|
bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
|
|
Expr *Fn = TheCall->getCallee();
|
|
if (TheCall->getNumArgs() > 2) {
|
|
Diag(TheCall->getArg(2)->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< 0 /*function call*/ << Fn->getSourceRange()
|
|
<< SourceRange(TheCall->getArg(2)->getLocStart(),
|
|
(*(TheCall->arg_end()-1))->getLocEnd());
|
|
return true;
|
|
}
|
|
|
|
if (TheCall->getNumArgs() < 2) {
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 /*function call*/;
|
|
}
|
|
|
|
// Determine whether the current function is variadic or not.
|
|
bool isVariadic;
|
|
if (CurBlock)
|
|
isVariadic = CurBlock->isVariadic;
|
|
else if (getCurFunctionDecl()) {
|
|
if (FunctionProtoType* FTP =
|
|
dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
|
|
isVariadic = FTP->isVariadic();
|
|
else
|
|
isVariadic = false;
|
|
} else {
|
|
isVariadic = getCurMethodDecl()->isVariadic();
|
|
}
|
|
|
|
if (!isVariadic) {
|
|
Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
|
|
return true;
|
|
}
|
|
|
|
// Verify that the second argument to the builtin is the last argument of the
|
|
// current function or method.
|
|
bool SecondArgIsLastNamedArgument = false;
|
|
const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
|
|
|
|
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
|
|
if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
|
|
// FIXME: This isn't correct for methods (results in bogus warning).
|
|
// Get the last formal in the current function.
|
|
const ParmVarDecl *LastArg;
|
|
if (CurBlock)
|
|
LastArg = *(CurBlock->TheDecl->param_end()-1);
|
|
else if (FunctionDecl *FD = getCurFunctionDecl())
|
|
LastArg = *(FD->param_end()-1);
|
|
else
|
|
LastArg = *(getCurMethodDecl()->param_end()-1);
|
|
SecondArgIsLastNamedArgument = PV == LastArg;
|
|
}
|
|
}
|
|
|
|
if (!SecondArgIsLastNamedArgument)
|
|
Diag(TheCall->getArg(1)->getLocStart(),
|
|
diag::warn_second_parameter_of_va_start_not_last_named_argument);
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
|
|
/// friends. This is declared to take (...), so we have to check everything.
|
|
bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
|
|
if (TheCall->getNumArgs() < 2)
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 /*function call*/;
|
|
if (TheCall->getNumArgs() > 2)
|
|
return Diag(TheCall->getArg(2)->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< 0 /*function call*/
|
|
<< SourceRange(TheCall->getArg(2)->getLocStart(),
|
|
(*(TheCall->arg_end()-1))->getLocEnd());
|
|
|
|
Expr *OrigArg0 = TheCall->getArg(0);
|
|
Expr *OrigArg1 = TheCall->getArg(1);
|
|
|
|
// Do standard promotions between the two arguments, returning their common
|
|
// type.
|
|
QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
|
|
|
|
// Make sure any conversions are pushed back into the call; this is
|
|
// type safe since unordered compare builtins are declared as "_Bool
|
|
// foo(...)".
|
|
TheCall->setArg(0, OrigArg0);
|
|
TheCall->setArg(1, OrigArg1);
|
|
|
|
if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
|
|
return false;
|
|
|
|
// If the common type isn't a real floating type, then the arguments were
|
|
// invalid for this operation.
|
|
if (!Res->isRealFloatingType())
|
|
return Diag(OrigArg0->getLocStart(),
|
|
diag::err_typecheck_call_invalid_ordered_compare)
|
|
<< OrigArg0->getType() << OrigArg1->getType()
|
|
<< SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isnan and
|
|
/// friends. This is declared to take (...), so we have to check everything.
|
|
bool Sema::SemaBuiltinUnaryFP(CallExpr *TheCall) {
|
|
if (TheCall->getNumArgs() < 1)
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 /*function call*/;
|
|
if (TheCall->getNumArgs() > 1)
|
|
return Diag(TheCall->getArg(1)->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< 0 /*function call*/
|
|
<< SourceRange(TheCall->getArg(1)->getLocStart(),
|
|
(*(TheCall->arg_end()-1))->getLocEnd());
|
|
|
|
Expr *OrigArg = TheCall->getArg(0);
|
|
|
|
if (OrigArg->isTypeDependent())
|
|
return false;
|
|
|
|
// This operation requires a floating-point number
|
|
if (!OrigArg->getType()->isRealFloatingType())
|
|
return Diag(OrigArg->getLocStart(),
|
|
diag::err_typecheck_call_invalid_unary_fp)
|
|
<< OrigArg->getType() << OrigArg->getSourceRange();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
|
|
// The signature for these builtins is exact; the only thing we need
|
|
// to check is that the argument is a constant.
|
|
SourceLocation Loc;
|
|
if (!TheCall->getArg(0)->isTypeDependent() &&
|
|
!TheCall->getArg(0)->isValueDependent() &&
|
|
!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
|
|
return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
|
|
// This is declared to take (...), so we have to check everything.
|
|
Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
|
|
if (TheCall->getNumArgs() < 3)
|
|
return ExprError(Diag(TheCall->getLocEnd(),
|
|
diag::err_typecheck_call_too_few_args)
|
|
<< 0 /*function call*/ << TheCall->getSourceRange());
|
|
|
|
unsigned numElements = std::numeric_limits<unsigned>::max();
|
|
if (!TheCall->getArg(0)->isTypeDependent() &&
|
|
!TheCall->getArg(1)->isTypeDependent()) {
|
|
QualType FAType = TheCall->getArg(0)->getType();
|
|
QualType SAType = TheCall->getArg(1)->getType();
|
|
|
|
if (!FAType->isVectorType() || !SAType->isVectorType()) {
|
|
Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
|
|
<< SourceRange(TheCall->getArg(0)->getLocStart(),
|
|
TheCall->getArg(1)->getLocEnd());
|
|
return ExprError();
|
|
}
|
|
|
|
if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
|
|
Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
|
|
<< SourceRange(TheCall->getArg(0)->getLocStart(),
|
|
TheCall->getArg(1)->getLocEnd());
|
|
return ExprError();
|
|
}
|
|
|
|
numElements = FAType->getAs<VectorType>()->getNumElements();
|
|
if (TheCall->getNumArgs() != numElements+2) {
|
|
if (TheCall->getNumArgs() < numElements+2)
|
|
return ExprError(Diag(TheCall->getLocEnd(),
|
|
diag::err_typecheck_call_too_few_args)
|
|
<< 0 /*function call*/ << TheCall->getSourceRange());
|
|
return ExprError(Diag(TheCall->getLocEnd(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< 0 /*function call*/ << TheCall->getSourceRange());
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
|
|
if (TheCall->getArg(i)->isTypeDependent() ||
|
|
TheCall->getArg(i)->isValueDependent())
|
|
continue;
|
|
|
|
llvm::APSInt Result(32);
|
|
if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
|
|
return ExprError(Diag(TheCall->getLocStart(),
|
|
diag::err_shufflevector_nonconstant_argument)
|
|
<< TheCall->getArg(i)->getSourceRange());
|
|
|
|
if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
|
|
return ExprError(Diag(TheCall->getLocStart(),
|
|
diag::err_shufflevector_argument_too_large)
|
|
<< TheCall->getArg(i)->getSourceRange());
|
|
}
|
|
|
|
llvm::SmallVector<Expr*, 32> exprs;
|
|
|
|
for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
|
|
exprs.push_back(TheCall->getArg(i));
|
|
TheCall->setArg(i, 0);
|
|
}
|
|
|
|
return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
|
|
exprs.size(), exprs[0]->getType(),
|
|
TheCall->getCallee()->getLocStart(),
|
|
TheCall->getRParenLoc()));
|
|
}
|
|
|
|
/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
|
|
// This is declared to take (const void*, ...) and can take two
|
|
// optional constant int args.
|
|
bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
|
|
unsigned NumArgs = TheCall->getNumArgs();
|
|
|
|
if (NumArgs > 3)
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
|
|
<< 0 /*function call*/ << TheCall->getSourceRange();
|
|
|
|
// Argument 0 is checked for us and the remaining arguments must be
|
|
// constant integers.
|
|
for (unsigned i = 1; i != NumArgs; ++i) {
|
|
Expr *Arg = TheCall->getArg(i);
|
|
if (Arg->isTypeDependent())
|
|
continue;
|
|
|
|
if (!Arg->getType()->isIntegralType())
|
|
return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_type)
|
|
<< Arg->getSourceRange();
|
|
|
|
ImpCastExprToType(Arg, Context.IntTy, CastExpr::CK_IntegralCast);
|
|
TheCall->setArg(i, Arg);
|
|
|
|
if (Arg->isValueDependent())
|
|
continue;
|
|
|
|
llvm::APSInt Result;
|
|
if (!Arg->isIntegerConstantExpr(Result, Context))
|
|
return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_ice)
|
|
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
|
|
// FIXME: gcc issues a warning and rewrites these to 0. These
|
|
// seems especially odd for the third argument since the default
|
|
// is 3.
|
|
if (i == 1) {
|
|
if (Result.getLimitedValue() > 1)
|
|
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
|
|
<< "0" << "1" << Arg->getSourceRange();
|
|
} else {
|
|
if (Result.getLimitedValue() > 3)
|
|
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
|
|
<< "0" << "3" << Arg->getSourceRange();
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
|
|
/// operand must be an integer constant.
|
|
bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
|
|
llvm::APSInt Result;
|
|
if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
|
|
return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
|
|
<< TheCall->getArg(0)->getSourceRange();
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
|
|
/// int type). This simply type checks that type is one of the defined
|
|
/// constants (0-3).
|
|
// For compatability check 0-3, llvm only handles 0 and 2.
|
|
bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
|
|
Expr *Arg = TheCall->getArg(1);
|
|
if (Arg->isTypeDependent())
|
|
return false;
|
|
|
|
QualType ArgType = Arg->getType();
|
|
const BuiltinType *BT = ArgType->getAs<BuiltinType>();
|
|
llvm::APSInt Result(32);
|
|
if (!BT || BT->getKind() != BuiltinType::Int)
|
|
return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
|
|
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
|
|
if (Arg->isValueDependent())
|
|
return false;
|
|
|
|
if (!Arg->isIntegerConstantExpr(Result, Context)) {
|
|
return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
|
|
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
}
|
|
|
|
if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
|
|
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
|
|
<< "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
|
|
/// This checks that val is a constant 1.
|
|
bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
|
|
Expr *Arg = TheCall->getArg(1);
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent())
|
|
return false;
|
|
|
|
llvm::APSInt Result(32);
|
|
if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
|
|
return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
|
|
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
|
|
return false;
|
|
}
|
|
|
|
// Handle i > 1 ? "x" : "y", recursivelly
|
|
bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
|
|
bool HasVAListArg,
|
|
unsigned format_idx, unsigned firstDataArg) {
|
|
if (E->isTypeDependent() || E->isValueDependent())
|
|
return false;
|
|
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::ConditionalOperatorClass: {
|
|
const ConditionalOperator *C = cast<ConditionalOperator>(E);
|
|
return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
|
|
HasVAListArg, format_idx, firstDataArg)
|
|
&& SemaCheckStringLiteral(C->getRHS(), TheCall,
|
|
HasVAListArg, format_idx, firstDataArg);
|
|
}
|
|
|
|
case Stmt::ImplicitCastExprClass: {
|
|
const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
|
|
return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
|
|
format_idx, firstDataArg);
|
|
}
|
|
|
|
case Stmt::ParenExprClass: {
|
|
const ParenExpr *Expr = cast<ParenExpr>(E);
|
|
return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
|
|
format_idx, firstDataArg);
|
|
}
|
|
|
|
case Stmt::DeclRefExprClass: {
|
|
const DeclRefExpr *DR = cast<DeclRefExpr>(E);
|
|
|
|
// As an exception, do not flag errors for variables binding to
|
|
// const string literals.
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
|
|
bool isConstant = false;
|
|
QualType T = DR->getType();
|
|
|
|
if (const ArrayType *AT = Context.getAsArrayType(T)) {
|
|
isConstant = AT->getElementType().isConstant(Context);
|
|
} else if (const PointerType *PT = T->getAs<PointerType>()) {
|
|
isConstant = T.isConstant(Context) &&
|
|
PT->getPointeeType().isConstant(Context);
|
|
}
|
|
|
|
if (isConstant) {
|
|
const VarDecl *Def = 0;
|
|
if (const Expr *Init = VD->getDefinition(Def))
|
|
return SemaCheckStringLiteral(Init, TheCall,
|
|
HasVAListArg, format_idx, firstDataArg);
|
|
}
|
|
|
|
// For vprintf* functions (i.e., HasVAListArg==true), we add a
|
|
// special check to see if the format string is a function parameter
|
|
// of the function calling the printf function. If the function
|
|
// has an attribute indicating it is a printf-like function, then we
|
|
// should suppress warnings concerning non-literals being used in a call
|
|
// to a vprintf function. For example:
|
|
//
|
|
// void
|
|
// logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
|
|
// va_list ap;
|
|
// va_start(ap, fmt);
|
|
// vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
|
|
// ...
|
|
//
|
|
//
|
|
// FIXME: We don't have full attribute support yet, so just check to see
|
|
// if the argument is a DeclRefExpr that references a parameter. We'll
|
|
// add proper support for checking the attribute later.
|
|
if (HasVAListArg)
|
|
if (isa<ParmVarDecl>(VD))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
case Stmt::CallExprClass: {
|
|
const CallExpr *CE = cast<CallExpr>(E);
|
|
if (const ImplicitCastExpr *ICE
|
|
= dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
|
|
if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
|
|
unsigned ArgIndex = FA->getFormatIdx();
|
|
const Expr *Arg = CE->getArg(ArgIndex - 1);
|
|
|
|
return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
|
|
format_idx, firstDataArg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
case Stmt::ObjCStringLiteralClass:
|
|
case Stmt::StringLiteralClass: {
|
|
const StringLiteral *StrE = NULL;
|
|
|
|
if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
|
|
StrE = ObjCFExpr->getString();
|
|
else
|
|
StrE = cast<StringLiteral>(E);
|
|
|
|
if (StrE) {
|
|
CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
|
|
firstDataArg);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void
|
|
Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
|
|
const CallExpr *TheCall) {
|
|
for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
|
|
i != e; ++i) {
|
|
const Expr *ArgExpr = TheCall->getArg(*i);
|
|
if (ArgExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNotNull))
|
|
Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
|
|
<< ArgExpr->getSourceRange();
|
|
}
|
|
}
|
|
|
|
/// CheckPrintfArguments - Check calls to printf (and similar functions) for
|
|
/// correct use of format strings.
|
|
///
|
|
/// HasVAListArg - A predicate indicating whether the printf-like
|
|
/// function is passed an explicit va_arg argument (e.g., vprintf)
|
|
///
|
|
/// format_idx - The index into Args for the format string.
|
|
///
|
|
/// Improper format strings to functions in the printf family can be
|
|
/// the source of bizarre bugs and very serious security holes. A
|
|
/// good source of information is available in the following paper
|
|
/// (which includes additional references):
|
|
///
|
|
/// FormatGuard: Automatic Protection From printf Format String
|
|
/// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
|
|
///
|
|
/// Functionality implemented:
|
|
///
|
|
/// We can statically check the following properties for string
|
|
/// literal format strings for non v.*printf functions (where the
|
|
/// arguments are passed directly):
|
|
//
|
|
/// (1) Are the number of format conversions equal to the number of
|
|
/// data arguments?
|
|
///
|
|
/// (2) Does each format conversion correctly match the type of the
|
|
/// corresponding data argument? (TODO)
|
|
///
|
|
/// Moreover, for all printf functions we can:
|
|
///
|
|
/// (3) Check for a missing format string (when not caught by type checking).
|
|
///
|
|
/// (4) Check for no-operation flags; e.g. using "#" with format
|
|
/// conversion 'c' (TODO)
|
|
///
|
|
/// (5) Check the use of '%n', a major source of security holes.
|
|
///
|
|
/// (6) Check for malformed format conversions that don't specify anything.
|
|
///
|
|
/// (7) Check for empty format strings. e.g: printf("");
|
|
///
|
|
/// (8) Check that the format string is a wide literal.
|
|
///
|
|
/// All of these checks can be done by parsing the format string.
|
|
///
|
|
/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
|
|
void
|
|
Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
|
|
unsigned format_idx, unsigned firstDataArg) {
|
|
const Expr *Fn = TheCall->getCallee();
|
|
|
|
// The way the format attribute works in GCC, the implicit this argument
|
|
// of member functions is counted. However, it doesn't appear in our own
|
|
// lists, so decrement format_idx in that case.
|
|
if (isa<CXXMemberCallExpr>(TheCall)) {
|
|
// Catch a format attribute mistakenly referring to the object argument.
|
|
if (format_idx == 0)
|
|
return;
|
|
--format_idx;
|
|
if(firstDataArg != 0)
|
|
--firstDataArg;
|
|
}
|
|
|
|
// CHECK: printf-like function is called with no format string.
|
|
if (format_idx >= TheCall->getNumArgs()) {
|
|
Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
|
|
<< Fn->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
|
|
|
|
// CHECK: format string is not a string literal.
|
|
//
|
|
// Dynamically generated format strings are difficult to
|
|
// automatically vet at compile time. Requiring that format strings
|
|
// are string literals: (1) permits the checking of format strings by
|
|
// the compiler and thereby (2) can practically remove the source of
|
|
// many format string exploits.
|
|
|
|
// Format string can be either ObjC string (e.g. @"%d") or
|
|
// C string (e.g. "%d")
|
|
// ObjC string uses the same format specifiers as C string, so we can use
|
|
// the same format string checking logic for both ObjC and C strings.
|
|
if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
|
|
firstDataArg))
|
|
return; // Literal format string found, check done!
|
|
|
|
// If there are no arguments specified, warn with -Wformat-security, otherwise
|
|
// warn only with -Wformat-nonliteral.
|
|
if (TheCall->getNumArgs() == format_idx+1)
|
|
Diag(TheCall->getArg(format_idx)->getLocStart(),
|
|
diag::warn_printf_nonliteral_noargs)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
else
|
|
Diag(TheCall->getArg(format_idx)->getLocStart(),
|
|
diag::warn_printf_nonliteral)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
}
|
|
|
|
void Sema::CheckPrintfString(const StringLiteral *FExpr,
|
|
const Expr *OrigFormatExpr,
|
|
const CallExpr *TheCall, bool HasVAListArg,
|
|
unsigned format_idx, unsigned firstDataArg) {
|
|
|
|
const ObjCStringLiteral *ObjCFExpr =
|
|
dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
|
|
|
|
// CHECK: is the format string a wide literal?
|
|
if (FExpr->isWide()) {
|
|
Diag(FExpr->getLocStart(),
|
|
diag::warn_printf_format_string_is_wide_literal)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// Str - The format string. NOTE: this is NOT null-terminated!
|
|
const char *Str = FExpr->getStrData();
|
|
|
|
// CHECK: empty format string?
|
|
unsigned StrLen = FExpr->getByteLength();
|
|
|
|
if (StrLen == 0) {
|
|
Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// We process the format string using a binary state machine. The
|
|
// current state is stored in CurrentState.
|
|
enum {
|
|
state_OrdChr,
|
|
state_Conversion
|
|
} CurrentState = state_OrdChr;
|
|
|
|
// numConversions - The number of conversions seen so far. This is
|
|
// incremented as we traverse the format string.
|
|
unsigned numConversions = 0;
|
|
|
|
// numDataArgs - The number of data arguments after the format
|
|
// string. This can only be determined for non vprintf-like
|
|
// functions. For those functions, this value is 1 (the sole
|
|
// va_arg argument).
|
|
unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
|
|
|
|
// Inspect the format string.
|
|
unsigned StrIdx = 0;
|
|
|
|
// LastConversionIdx - Index within the format string where we last saw
|
|
// a '%' character that starts a new format conversion.
|
|
unsigned LastConversionIdx = 0;
|
|
|
|
for (; StrIdx < StrLen; ++StrIdx) {
|
|
|
|
// Is the number of detected conversion conversions greater than
|
|
// the number of matching data arguments? If so, stop.
|
|
if (!HasVAListArg && numConversions > numDataArgs) break;
|
|
|
|
// Handle "\0"
|
|
if (Str[StrIdx] == '\0') {
|
|
// The string returned by getStrData() is not null-terminated,
|
|
// so the presence of a null character is likely an error.
|
|
Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
|
|
diag::warn_printf_format_string_contains_null_char)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// Ordinary characters (not processing a format conversion).
|
|
if (CurrentState == state_OrdChr) {
|
|
if (Str[StrIdx] == '%') {
|
|
CurrentState = state_Conversion;
|
|
LastConversionIdx = StrIdx;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Seen '%'. Now processing a format conversion.
|
|
switch (Str[StrIdx]) {
|
|
// Handle dynamic precision or width specifier.
|
|
case '*': {
|
|
++numConversions;
|
|
|
|
if (!HasVAListArg) {
|
|
if (numConversions > numDataArgs) {
|
|
SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
|
|
|
|
if (Str[StrIdx-1] == '.')
|
|
Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
else
|
|
Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
|
|
// Don't do any more checking. We'll just emit spurious errors.
|
|
return;
|
|
}
|
|
|
|
// Perform type checking on width/precision specifier.
|
|
const Expr *E = TheCall->getArg(format_idx+numConversions);
|
|
if (const BuiltinType *BT = E->getType()->getAs<BuiltinType>())
|
|
if (BT->getKind() == BuiltinType::Int)
|
|
break;
|
|
|
|
SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
|
|
|
|
if (Str[StrIdx-1] == '.')
|
|
Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
|
|
<< E->getType() << E->getSourceRange();
|
|
else
|
|
Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
|
|
<< E->getType() << E->getSourceRange();
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Characters which can terminate a format conversion
|
|
// (e.g. "%d"). Characters that specify length modifiers or
|
|
// other flags are handled by the default case below.
|
|
//
|
|
// FIXME: additional checks will go into the following cases.
|
|
case 'i':
|
|
case 'd':
|
|
case 'o':
|
|
case 'u':
|
|
case 'x':
|
|
case 'X':
|
|
case 'D':
|
|
case 'O':
|
|
case 'U':
|
|
case 'e':
|
|
case 'E':
|
|
case 'f':
|
|
case 'F':
|
|
case 'g':
|
|
case 'G':
|
|
case 'a':
|
|
case 'A':
|
|
case 'c':
|
|
case 'C':
|
|
case 'S':
|
|
case 's':
|
|
case 'p':
|
|
++numConversions;
|
|
CurrentState = state_OrdChr;
|
|
break;
|
|
|
|
case 'm':
|
|
// FIXME: Warn in situations where this isn't supported!
|
|
CurrentState = state_OrdChr;
|
|
break;
|
|
|
|
// CHECK: Are we using "%n"? Issue a warning.
|
|
case 'n': {
|
|
++numConversions;
|
|
CurrentState = state_OrdChr;
|
|
SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
|
|
LastConversionIdx);
|
|
|
|
Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
|
|
break;
|
|
}
|
|
|
|
// Handle "%@"
|
|
case '@':
|
|
// %@ is allowed in ObjC format strings only.
|
|
if (ObjCFExpr != NULL)
|
|
CurrentState = state_OrdChr;
|
|
else {
|
|
// Issue a warning: invalid format conversion.
|
|
SourceLocation Loc =
|
|
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
|
|
|
|
Diag(Loc, diag::warn_printf_invalid_conversion)
|
|
<< std::string(Str+LastConversionIdx,
|
|
Str+std::min(LastConversionIdx+2, StrLen))
|
|
<< OrigFormatExpr->getSourceRange();
|
|
}
|
|
++numConversions;
|
|
break;
|
|
|
|
// Handle "%%"
|
|
case '%':
|
|
// Sanity check: Was the first "%" character the previous one?
|
|
// If not, we will assume that we have a malformed format
|
|
// conversion, and that the current "%" character is the start
|
|
// of a new conversion.
|
|
if (StrIdx - LastConversionIdx == 1)
|
|
CurrentState = state_OrdChr;
|
|
else {
|
|
// Issue a warning: invalid format conversion.
|
|
SourceLocation Loc =
|
|
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
|
|
|
|
Diag(Loc, diag::warn_printf_invalid_conversion)
|
|
<< std::string(Str+LastConversionIdx, Str+StrIdx)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
|
|
// This conversion is broken. Advance to the next format
|
|
// conversion.
|
|
LastConversionIdx = StrIdx;
|
|
++numConversions;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// This case catches all other characters: flags, widths, etc.
|
|
// We should eventually process those as well.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (CurrentState == state_Conversion) {
|
|
// Issue a warning: invalid format conversion.
|
|
SourceLocation Loc =
|
|
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
|
|
|
|
Diag(Loc, diag::warn_printf_invalid_conversion)
|
|
<< std::string(Str+LastConversionIdx,
|
|
Str+std::min(LastConversionIdx+2, StrLen))
|
|
<< OrigFormatExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
if (!HasVAListArg) {
|
|
// CHECK: Does the number of format conversions exceed the number
|
|
// of data arguments?
|
|
if (numConversions > numDataArgs) {
|
|
SourceLocation Loc =
|
|
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
|
|
|
|
Diag(Loc, diag::warn_printf_insufficient_data_args)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
}
|
|
// CHECK: Does the number of data arguments exceed the number of
|
|
// format conversions in the format string?
|
|
else if (numConversions < numDataArgs)
|
|
Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
|
|
diag::warn_printf_too_many_data_args)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: Return Address of Stack Variable --------------------------===//
|
|
|
|
static DeclRefExpr* EvalVal(Expr *E);
|
|
static DeclRefExpr* EvalAddr(Expr* E);
|
|
|
|
/// CheckReturnStackAddr - Check if a return statement returns the address
|
|
/// of a stack variable.
|
|
void
|
|
Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
|
|
SourceLocation ReturnLoc) {
|
|
|
|
// Perform checking for returned stack addresses.
|
|
if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
|
|
if (DeclRefExpr *DR = EvalAddr(RetValExp))
|
|
Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
|
|
<< DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
|
|
|
|
// Skip over implicit cast expressions when checking for block expressions.
|
|
RetValExp = RetValExp->IgnoreParenCasts();
|
|
|
|
if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
|
|
if (C->hasBlockDeclRefExprs())
|
|
Diag(C->getLocStart(), diag::err_ret_local_block)
|
|
<< C->getSourceRange();
|
|
|
|
if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
|
|
Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
|
|
<< ALE->getSourceRange();
|
|
|
|
} else if (lhsType->isReferenceType()) {
|
|
// Perform checking for stack values returned by reference.
|
|
// Check for a reference to the stack
|
|
if (DeclRefExpr *DR = EvalVal(RetValExp))
|
|
Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
|
|
<< DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
|
|
}
|
|
}
|
|
|
|
/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
|
|
/// check if the expression in a return statement evaluates to an address
|
|
/// to a location on the stack. The recursion is used to traverse the
|
|
/// AST of the return expression, with recursion backtracking when we
|
|
/// encounter a subexpression that (1) clearly does not lead to the address
|
|
/// of a stack variable or (2) is something we cannot determine leads to
|
|
/// the address of a stack variable based on such local checking.
|
|
///
|
|
/// EvalAddr processes expressions that are pointers that are used as
|
|
/// references (and not L-values). EvalVal handles all other values.
|
|
/// At the base case of the recursion is a check for a DeclRefExpr* in
|
|
/// the refers to a stack variable.
|
|
///
|
|
/// This implementation handles:
|
|
///
|
|
/// * pointer-to-pointer casts
|
|
/// * implicit conversions from array references to pointers
|
|
/// * taking the address of fields
|
|
/// * arbitrary interplay between "&" and "*" operators
|
|
/// * pointer arithmetic from an address of a stack variable
|
|
/// * taking the address of an array element where the array is on the stack
|
|
static DeclRefExpr* EvalAddr(Expr *E) {
|
|
// We should only be called for evaluating pointer expressions.
|
|
assert((E->getType()->isAnyPointerType() ||
|
|
E->getType()->isBlockPointerType() ||
|
|
E->getType()->isObjCQualifiedIdType()) &&
|
|
"EvalAddr only works on pointers");
|
|
|
|
// Our "symbolic interpreter" is just a dispatch off the currently
|
|
// viewed AST node. We then recursively traverse the AST by calling
|
|
// EvalAddr and EvalVal appropriately.
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::ParenExprClass:
|
|
// Ignore parentheses.
|
|
return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
// The only unary operator that make sense to handle here
|
|
// is AddrOf. All others don't make sense as pointers.
|
|
UnaryOperator *U = cast<UnaryOperator>(E);
|
|
|
|
if (U->getOpcode() == UnaryOperator::AddrOf)
|
|
return EvalVal(U->getSubExpr());
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
// Handle pointer arithmetic. All other binary operators are not valid
|
|
// in this context.
|
|
BinaryOperator *B = cast<BinaryOperator>(E);
|
|
BinaryOperator::Opcode op = B->getOpcode();
|
|
|
|
if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
|
|
return NULL;
|
|
|
|
Expr *Base = B->getLHS();
|
|
|
|
// Determine which argument is the real pointer base. It could be
|
|
// the RHS argument instead of the LHS.
|
|
if (!Base->getType()->isPointerType()) Base = B->getRHS();
|
|
|
|
assert (Base->getType()->isPointerType());
|
|
return EvalAddr(Base);
|
|
}
|
|
|
|
// For conditional operators we need to see if either the LHS or RHS are
|
|
// valid DeclRefExpr*s. If one of them is valid, we return it.
|
|
case Stmt::ConditionalOperatorClass: {
|
|
ConditionalOperator *C = cast<ConditionalOperator>(E);
|
|
|
|
// Handle the GNU extension for missing LHS.
|
|
if (Expr *lhsExpr = C->getLHS())
|
|
if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
|
|
return LHS;
|
|
|
|
return EvalAddr(C->getRHS());
|
|
}
|
|
|
|
// For casts, we need to handle conversions from arrays to
|
|
// pointer values, and pointer-to-pointer conversions.
|
|
case Stmt::ImplicitCastExprClass:
|
|
case Stmt::CStyleCastExprClass:
|
|
case Stmt::CXXFunctionalCastExprClass: {
|
|
Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
|
|
QualType T = SubExpr->getType();
|
|
|
|
if (SubExpr->getType()->isPointerType() ||
|
|
SubExpr->getType()->isBlockPointerType() ||
|
|
SubExpr->getType()->isObjCQualifiedIdType())
|
|
return EvalAddr(SubExpr);
|
|
else if (T->isArrayType())
|
|
return EvalVal(SubExpr);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
// C++ casts. For dynamic casts, static casts, and const casts, we
|
|
// are always converting from a pointer-to-pointer, so we just blow
|
|
// through the cast. In the case the dynamic cast doesn't fail (and
|
|
// return NULL), we take the conservative route and report cases
|
|
// where we return the address of a stack variable. For Reinterpre
|
|
// FIXME: The comment about is wrong; we're not always converting
|
|
// from pointer to pointer. I'm guessing that this code should also
|
|
// handle references to objects.
|
|
case Stmt::CXXStaticCastExprClass:
|
|
case Stmt::CXXDynamicCastExprClass:
|
|
case Stmt::CXXConstCastExprClass:
|
|
case Stmt::CXXReinterpretCastExprClass: {
|
|
Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
|
|
if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
|
|
return EvalAddr(S);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// Everything else: we simply don't reason about them.
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/// EvalVal - This function is complements EvalAddr in the mutual recursion.
|
|
/// See the comments for EvalAddr for more details.
|
|
static DeclRefExpr* EvalVal(Expr *E) {
|
|
|
|
// We should only be called for evaluating non-pointer expressions, or
|
|
// expressions with a pointer type that are not used as references but instead
|
|
// are l-values (e.g., DeclRefExpr with a pointer type).
|
|
|
|
// Our "symbolic interpreter" is just a dispatch off the currently
|
|
// viewed AST node. We then recursively traverse the AST by calling
|
|
// EvalAddr and EvalVal appropriately.
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::DeclRefExprClass: {
|
|
// DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking
|
|
// at code that refers to a variable's name. We check if it has local
|
|
// storage within the function, and if so, return the expression.
|
|
DeclRefExpr *DR = cast<DeclRefExpr>(E);
|
|
|
|
if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
|
|
if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::ParenExprClass:
|
|
// Ignore parentheses.
|
|
return EvalVal(cast<ParenExpr>(E)->getSubExpr());
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
// The only unary operator that make sense to handle here
|
|
// is Deref. All others don't resolve to a "name." This includes
|
|
// handling all sorts of rvalues passed to a unary operator.
|
|
UnaryOperator *U = cast<UnaryOperator>(E);
|
|
|
|
if (U->getOpcode() == UnaryOperator::Deref)
|
|
return EvalAddr(U->getSubExpr());
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
// Array subscripts are potential references to data on the stack. We
|
|
// retrieve the DeclRefExpr* for the array variable if it indeed
|
|
// has local storage.
|
|
return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
|
|
}
|
|
|
|
case Stmt::ConditionalOperatorClass: {
|
|
// For conditional operators we need to see if either the LHS or RHS are
|
|
// non-NULL DeclRefExpr's. If one is non-NULL, we return it.
|
|
ConditionalOperator *C = cast<ConditionalOperator>(E);
|
|
|
|
// Handle the GNU extension for missing LHS.
|
|
if (Expr *lhsExpr = C->getLHS())
|
|
if (DeclRefExpr *LHS = EvalVal(lhsExpr))
|
|
return LHS;
|
|
|
|
return EvalVal(C->getRHS());
|
|
}
|
|
|
|
// Accesses to members are potential references to data on the stack.
|
|
case Stmt::MemberExprClass: {
|
|
MemberExpr *M = cast<MemberExpr>(E);
|
|
|
|
// Check for indirect access. We only want direct field accesses.
|
|
if (!M->isArrow())
|
|
return EvalVal(M->getBase());
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// Everything else: we simply don't reason about them.
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
|
|
|
|
/// Check for comparisons of floating point operands using != and ==.
|
|
/// Issue a warning if these are no self-comparisons, as they are not likely
|
|
/// to do what the programmer intended.
|
|
void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
|
|
bool EmitWarning = true;
|
|
|
|
Expr* LeftExprSansParen = lex->IgnoreParens();
|
|
Expr* RightExprSansParen = rex->IgnoreParens();
|
|
|
|
// Special case: check for x == x (which is OK).
|
|
// Do not emit warnings for such cases.
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
|
|
if (DRL->getDecl() == DRR->getDecl())
|
|
EmitWarning = false;
|
|
|
|
|
|
// Special case: check for comparisons against literals that can be exactly
|
|
// represented by APFloat. In such cases, do not emit a warning. This
|
|
// is a heuristic: often comparison against such literals are used to
|
|
// detect if a value in a variable has not changed. This clearly can
|
|
// lead to false negatives.
|
|
if (EmitWarning) {
|
|
if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
|
|
if (FLL->isExact())
|
|
EmitWarning = false;
|
|
} else
|
|
if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
|
|
if (FLR->isExact())
|
|
EmitWarning = false;
|
|
}
|
|
}
|
|
|
|
// Check for comparisons with builtin types.
|
|
if (EmitWarning)
|
|
if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
|
|
if (CL->isBuiltinCall(Context))
|
|
EmitWarning = false;
|
|
|
|
if (EmitWarning)
|
|
if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
|
|
if (CR->isBuiltinCall(Context))
|
|
EmitWarning = false;
|
|
|
|
// Emit the diagnostic.
|
|
if (EmitWarning)
|
|
Diag(loc, diag::warn_floatingpoint_eq)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
|
|
//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
|
|
//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
|
|
|
|
namespace {
|
|
|
|
/// Structure recording the 'active' range of an integer-valued
|
|
/// expression.
|
|
struct IntRange {
|
|
/// The number of bits active in the int.
|
|
unsigned Width;
|
|
|
|
/// True if the int is known not to have negative values.
|
|
bool NonNegative;
|
|
|
|
IntRange() {}
|
|
IntRange(unsigned Width, bool NonNegative)
|
|
: Width(Width), NonNegative(NonNegative)
|
|
{}
|
|
|
|
// Returns the range of the bool type.
|
|
static IntRange forBoolType() {
|
|
return IntRange(1, true);
|
|
}
|
|
|
|
// Returns the range of an integral type.
|
|
static IntRange forType(ASTContext &C, QualType T) {
|
|
return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
|
|
}
|
|
|
|
// Returns the range of an integeral type based on its canonical
|
|
// representation.
|
|
static IntRange forCanonicalType(ASTContext &C, const Type *T) {
|
|
assert(T->isCanonicalUnqualified());
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(T))
|
|
T = VT->getElementType().getTypePtr();
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(T))
|
|
T = CT->getElementType().getTypePtr();
|
|
if (const EnumType *ET = dyn_cast<EnumType>(T))
|
|
T = ET->getDecl()->getIntegerType().getTypePtr();
|
|
|
|
const BuiltinType *BT = cast<BuiltinType>(T);
|
|
assert(BT->isInteger());
|
|
|
|
return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
|
|
}
|
|
|
|
// Returns the supremum of two ranges: i.e. their conservative merge.
|
|
static IntRange join(const IntRange &L, const IntRange &R) {
|
|
return IntRange(std::max(L.Width, R.Width),
|
|
L.NonNegative && R.NonNegative);
|
|
}
|
|
|
|
// Returns the infinum of two ranges: i.e. their aggressive merge.
|
|
static IntRange meet(const IntRange &L, const IntRange &R) {
|
|
return IntRange(std::min(L.Width, R.Width),
|
|
L.NonNegative || R.NonNegative);
|
|
}
|
|
};
|
|
|
|
IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
|
|
if (value.isSigned() && value.isNegative())
|
|
return IntRange(value.getMinSignedBits(), false);
|
|
|
|
if (value.getBitWidth() > MaxWidth)
|
|
value.trunc(MaxWidth);
|
|
|
|
// isNonNegative() just checks the sign bit without considering
|
|
// signedness.
|
|
return IntRange(value.getActiveBits(), true);
|
|
}
|
|
|
|
IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
|
|
unsigned MaxWidth) {
|
|
if (result.isInt())
|
|
return GetValueRange(C, result.getInt(), MaxWidth);
|
|
|
|
if (result.isVector()) {
|
|
IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
|
|
for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
|
|
IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
|
|
R = IntRange::join(R, El);
|
|
}
|
|
return R;
|
|
}
|
|
|
|
if (result.isComplexInt()) {
|
|
IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
|
|
IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
|
|
return IntRange::join(R, I);
|
|
}
|
|
|
|
// This can happen with lossless casts to intptr_t of "based" lvalues.
|
|
// Assume it might use arbitrary bits.
|
|
// FIXME: The only reason we need to pass the type in here is to get
|
|
// the sign right on this one case. It would be nice if APValue
|
|
// preserved this.
|
|
assert(result.isLValue());
|
|
return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
|
|
}
|
|
|
|
/// Pseudo-evaluate the given integer expression, estimating the
|
|
/// range of values it might take.
|
|
///
|
|
/// \param MaxWidth - the width to which the value will be truncated
|
|
IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
|
|
E = E->IgnoreParens();
|
|
|
|
// Try a full evaluation first.
|
|
Expr::EvalResult result;
|
|
if (E->Evaluate(result, C))
|
|
return GetValueRange(C, result.Val, E->getType(), MaxWidth);
|
|
|
|
// I think we only want to look through implicit casts here; if the
|
|
// user has an explicit widening cast, we should treat the value as
|
|
// being of the new, wider type.
|
|
if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (CE->getCastKind() == CastExpr::CK_NoOp)
|
|
return GetExprRange(C, CE->getSubExpr(), MaxWidth);
|
|
|
|
IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
|
|
|
|
bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
|
|
if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
|
|
isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
|
|
|
|
// Assume that non-integer casts can span the full range of the type.
|
|
if (!isIntegerCast)
|
|
return OutputTypeRange;
|
|
|
|
IntRange SubRange
|
|
= GetExprRange(C, CE->getSubExpr(),
|
|
std::min(MaxWidth, OutputTypeRange.Width));
|
|
|
|
// Bail out if the subexpr's range is as wide as the cast type.
|
|
if (SubRange.Width >= OutputTypeRange.Width)
|
|
return OutputTypeRange;
|
|
|
|
// Otherwise, we take the smaller width, and we're non-negative if
|
|
// either the output type or the subexpr is.
|
|
return IntRange(SubRange.Width,
|
|
SubRange.NonNegative || OutputTypeRange.NonNegative);
|
|
}
|
|
|
|
if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
|
|
// If we can fold the condition, just take that operand.
|
|
bool CondResult;
|
|
if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
|
|
return GetExprRange(C, CondResult ? CO->getTrueExpr()
|
|
: CO->getFalseExpr(),
|
|
MaxWidth);
|
|
|
|
// Otherwise, conservatively merge.
|
|
IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
|
|
IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
|
|
return IntRange::join(L, R);
|
|
}
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
switch (BO->getOpcode()) {
|
|
|
|
// Boolean-valued operations are single-bit and positive.
|
|
case BinaryOperator::LAnd:
|
|
case BinaryOperator::LOr:
|
|
case BinaryOperator::LT:
|
|
case BinaryOperator::GT:
|
|
case BinaryOperator::LE:
|
|
case BinaryOperator::GE:
|
|
case BinaryOperator::EQ:
|
|
case BinaryOperator::NE:
|
|
return IntRange::forBoolType();
|
|
|
|
// Operations with opaque sources are black-listed.
|
|
case BinaryOperator::PtrMemD:
|
|
case BinaryOperator::PtrMemI:
|
|
return IntRange::forType(C, E->getType());
|
|
|
|
// Bitwise-and uses the *infinum* of the two source ranges.
|
|
case BinaryOperator::And:
|
|
return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
|
|
GetExprRange(C, BO->getRHS(), MaxWidth));
|
|
|
|
// Left shift gets black-listed based on a judgement call.
|
|
case BinaryOperator::Shl:
|
|
return IntRange::forType(C, E->getType());
|
|
|
|
// Right shift by a constant can narrow its left argument.
|
|
case BinaryOperator::Shr: {
|
|
IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
|
|
|
|
// If the shift amount is a positive constant, drop the width by
|
|
// that much.
|
|
llvm::APSInt shift;
|
|
if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
|
|
shift.isNonNegative()) {
|
|
unsigned zext = shift.getZExtValue();
|
|
if (zext >= L.Width)
|
|
L.Width = (L.NonNegative ? 0 : 1);
|
|
else
|
|
L.Width -= zext;
|
|
}
|
|
|
|
return L;
|
|
}
|
|
|
|
// Comma acts as its right operand.
|
|
case BinaryOperator::Comma:
|
|
return GetExprRange(C, BO->getRHS(), MaxWidth);
|
|
|
|
// Black-list pointer subtractions.
|
|
case BinaryOperator::Sub:
|
|
if (BO->getLHS()->getType()->isPointerType())
|
|
return IntRange::forType(C, E->getType());
|
|
// fallthrough
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Treat every other operator as if it were closed on the
|
|
// narrowest type that encompasses both operands.
|
|
IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
|
|
IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
|
|
return IntRange::join(L, R);
|
|
}
|
|
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
switch (UO->getOpcode()) {
|
|
// Boolean-valued operations are white-listed.
|
|
case UnaryOperator::LNot:
|
|
return IntRange::forBoolType();
|
|
|
|
// Operations with opaque sources are black-listed.
|
|
case UnaryOperator::Deref:
|
|
case UnaryOperator::AddrOf: // should be impossible
|
|
case UnaryOperator::OffsetOf:
|
|
return IntRange::forType(C, E->getType());
|
|
|
|
default:
|
|
return GetExprRange(C, UO->getSubExpr(), MaxWidth);
|
|
}
|
|
}
|
|
|
|
FieldDecl *BitField = E->getBitField();
|
|
if (BitField) {
|
|
llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
|
|
unsigned BitWidth = BitWidthAP.getZExtValue();
|
|
|
|
return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
|
|
}
|
|
|
|
return IntRange::forType(C, E->getType());
|
|
}
|
|
|
|
/// Checks whether the given value, which currently has the given
|
|
/// source semantics, has the same value when coerced through the
|
|
/// target semantics.
|
|
bool IsSameFloatAfterCast(const llvm::APFloat &value,
|
|
const llvm::fltSemantics &Src,
|
|
const llvm::fltSemantics &Tgt) {
|
|
llvm::APFloat truncated = value;
|
|
|
|
bool ignored;
|
|
truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
|
|
truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
|
|
|
|
return truncated.bitwiseIsEqual(value);
|
|
}
|
|
|
|
/// Checks whether the given value, which currently has the given
|
|
/// source semantics, has the same value when coerced through the
|
|
/// target semantics.
|
|
///
|
|
/// The value might be a vector of floats (or a complex number).
|
|
bool IsSameFloatAfterCast(const APValue &value,
|
|
const llvm::fltSemantics &Src,
|
|
const llvm::fltSemantics &Tgt) {
|
|
if (value.isFloat())
|
|
return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
|
|
|
|
if (value.isVector()) {
|
|
for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
|
|
if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
assert(value.isComplexFloat());
|
|
return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
|
|
IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// \brief Implements -Wsign-compare.
|
|
///
|
|
/// \param lex the left-hand expression
|
|
/// \param rex the right-hand expression
|
|
/// \param OpLoc the location of the joining operator
|
|
/// \param Equality whether this is an "equality-like" join, which
|
|
/// suppresses the warning in some cases
|
|
void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
|
|
const PartialDiagnostic &PD, bool Equality) {
|
|
// Don't warn if we're in an unevaluated context.
|
|
if (ExprEvalContexts.back().Context == Unevaluated)
|
|
return;
|
|
|
|
// If either expression is value-dependent, don't warn. We'll get another
|
|
// chance at instantiation time.
|
|
if (lex->isValueDependent() || rex->isValueDependent())
|
|
return;
|
|
|
|
QualType lt = lex->getType(), rt = rex->getType();
|
|
|
|
// Only warn if both operands are integral.
|
|
if (!lt->isIntegerType() || !rt->isIntegerType())
|
|
return;
|
|
|
|
// In C, the width of a bitfield determines its type, and the
|
|
// declared type only contributes the signedness. This duplicates
|
|
// the work that will later be done by UsualUnaryConversions.
|
|
// Eventually, this check will be reorganized in a way that avoids
|
|
// this duplication.
|
|
if (!getLangOptions().CPlusPlus) {
|
|
QualType tmp;
|
|
tmp = Context.isPromotableBitField(lex);
|
|
if (!tmp.isNull()) lt = tmp;
|
|
tmp = Context.isPromotableBitField(rex);
|
|
if (!tmp.isNull()) rt = tmp;
|
|
}
|
|
|
|
// The rule is that the signed operand becomes unsigned, so isolate the
|
|
// signed operand.
|
|
Expr *signedOperand = lex, *unsignedOperand = rex;
|
|
QualType signedType = lt, unsignedType = rt;
|
|
if (lt->isSignedIntegerType()) {
|
|
if (rt->isSignedIntegerType()) return;
|
|
} else {
|
|
if (!rt->isSignedIntegerType()) return;
|
|
std::swap(signedOperand, unsignedOperand);
|
|
std::swap(signedType, unsignedType);
|
|
}
|
|
|
|
unsigned unsignedWidth = Context.getIntWidth(unsignedType);
|
|
unsigned signedWidth = Context.getIntWidth(signedType);
|
|
|
|
// If the unsigned type is strictly smaller than the signed type,
|
|
// then (1) the result type will be signed and (2) the unsigned
|
|
// value will fit fully within the signed type, and thus the result
|
|
// of the comparison will be exact.
|
|
if (signedWidth > unsignedWidth)
|
|
return;
|
|
|
|
// Otherwise, calculate the effective ranges.
|
|
IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth);
|
|
IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth);
|
|
|
|
// We should never be unable to prove that the unsigned operand is
|
|
// non-negative.
|
|
assert(unsignedRange.NonNegative && "unsigned range includes negative?");
|
|
|
|
// If the signed operand is non-negative, then the signed->unsigned
|
|
// conversion won't change it.
|
|
if (signedRange.NonNegative)
|
|
return;
|
|
|
|
// For (in)equality comparisons, if the unsigned operand is a
|
|
// constant which cannot collide with a overflowed signed operand,
|
|
// then reinterpreting the signed operand as unsigned will not
|
|
// change the result of the comparison.
|
|
if (Equality && unsignedRange.Width < unsignedWidth)
|
|
return;
|
|
|
|
Diag(OpLoc, PD)
|
|
<< lt << rt << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
|
|
/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
|
|
static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
|
|
S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
|
|
}
|
|
|
|
/// Implements -Wconversion.
|
|
void Sema::CheckImplicitConversion(Expr *E, QualType T) {
|
|
// Don't diagnose in unevaluated contexts.
|
|
if (ExprEvalContexts.back().Context == Sema::Unevaluated)
|
|
return;
|
|
|
|
// Don't diagnose for value-dependent expressions.
|
|
if (E->isValueDependent())
|
|
return;
|
|
|
|
const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
|
|
const Type *Target = Context.getCanonicalType(T).getTypePtr();
|
|
|
|
// Never diagnose implicit casts to bool.
|
|
if (Target->isSpecificBuiltinType(BuiltinType::Bool))
|
|
return;
|
|
|
|
// Strip vector types.
|
|
if (isa<VectorType>(Source)) {
|
|
if (!isa<VectorType>(Target))
|
|
return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar);
|
|
|
|
Source = cast<VectorType>(Source)->getElementType().getTypePtr();
|
|
Target = cast<VectorType>(Target)->getElementType().getTypePtr();
|
|
}
|
|
|
|
// Strip complex types.
|
|
if (isa<ComplexType>(Source)) {
|
|
if (!isa<ComplexType>(Target))
|
|
return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar);
|
|
|
|
Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
|
|
Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
|
|
}
|
|
|
|
const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
|
|
const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
|
|
|
|
// If the source is floating point...
|
|
if (SourceBT && SourceBT->isFloatingPoint()) {
|
|
// ...and the target is floating point...
|
|
if (TargetBT && TargetBT->isFloatingPoint()) {
|
|
// ...then warn if we're dropping FP rank.
|
|
|
|
// Builtin FP kinds are ordered by increasing FP rank.
|
|
if (SourceBT->getKind() > TargetBT->getKind()) {
|
|
// Don't warn about float constants that are precisely
|
|
// representable in the target type.
|
|
Expr::EvalResult result;
|
|
if (E->Evaluate(result, Context)) {
|
|
// Value might be a float, a float vector, or a float complex.
|
|
if (IsSameFloatAfterCast(result.Val,
|
|
Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
|
|
Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
|
|
return;
|
|
}
|
|
|
|
DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the target is integral, always warn.
|
|
if ((TargetBT && TargetBT->isInteger()))
|
|
// TODO: don't warn for integer values?
|
|
return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer);
|
|
|
|
return;
|
|
}
|
|
|
|
if (!Source->isIntegerType() || !Target->isIntegerType())
|
|
return;
|
|
|
|
IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType()));
|
|
IntRange TargetRange = IntRange::forCanonicalType(Context, Target);
|
|
|
|
// FIXME: also signed<->unsigned?
|
|
|
|
if (SourceRange.Width > TargetRange.Width) {
|
|
// People want to build with -Wshorten-64-to-32 and not -Wconversion
|
|
// and by god we'll let them.
|
|
if (SourceRange.Width == 64 && TargetRange.Width == 32)
|
|
return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32);
|
|
return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|