llvm-project/compiler-rt/lib/esan/esan_shadow.h

292 lines
9.5 KiB
C++

//===-- esan_shadow.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of EfficiencySanitizer, a family of performance tuners.
//
// Shadow memory mappings for the esan run-time.
//===----------------------------------------------------------------------===//
#ifndef ESAN_SHADOW_H
#define ESAN_SHADOW_H
#include "esan.h"
#include <sanitizer_common/sanitizer_platform.h>
#if SANITIZER_WORDSIZE != 64
#error Only 64-bit is supported
#endif
namespace __esan {
struct ApplicationRegion {
uptr Start;
uptr End;
bool ShadowMergedWithPrev;
};
#if (SANITIZER_LINUX || SANITIZER_FREEBSD) && defined(__x86_64__)
// Linux x86_64
//
// Application memory falls into these 5 regions (ignoring the corner case
// of PIE with a non-zero PT_LOAD base):
//
// [0x00000000'00000000, 0x00000100'00000000) non-PIE + heap
// [0x00005500'00000000, 0x00005700'00000000) PIE
// [0x00007e00'00000000, 0x00007fff'ff600000) libraries + stack, part 1
// [0x00007fff'ff601000, 0x00008000'00000000) libraries + stack, part 2
// [0xffffffff'ff600000, 0xffffffff'ff601000) vsyscall
//
// Although we can ignore the vsyscall for the most part as there are few data
// references there (other sanitizers ignore it), we enforce a gap inside the
// library region to distinguish the vsyscall's shadow, considering this gap to
// be an invalid app region.
// We disallow application memory outside of those 5 regions.
// Our regions assume that the stack rlimit is less than a terabyte (otherwise
// the Linux kernel's default mmap region drops below 0x7e00'), which we enforce
// at init time (we can support larger and unlimited sizes for shadow
// scaledowns, but it is difficult for 1:1 mappings).
//
// Our shadow memory is scaled from a 1:1 mapping and supports a scale
// specified at library initialization time that can be any power-of-2
// scaledown (1x, 2x, 4x, 8x, 16x, etc.).
//
// We model our shadow memory after Umbra, a library used by the Dr. Memory
// tool: https://github.com/DynamoRIO/drmemory/blob/master/umbra/umbra_x64.c.
// We use Umbra's scheme as it was designed to support different
// offsets, it supports two different shadow mappings (which we may want to
// use for future tools), and it ensures that the shadow of a shadow will
// not overlap either shadow memory or application memory.
//
// This formula translates from application memory to shadow memory:
//
// shadow(app) = ((app & 0x00000fff'ffffffff) + offset) >> scale
//
// Where the offset for 1:1 is 0x00001300'00000000. For other scales, the
// offset is shifted left by the scale, except for scales of 1 and 2 where
// it must be tweaked in order to pass the double-shadow test
// (see the "shadow(shadow)" comments below):
// scale == 0: 0x00001300'000000000
// scale == 1: 0x00002200'000000000
// scale == 2: 0x00004400'000000000
// scale >= 3: (0x00001300'000000000 << scale)
//
// Do not pass in the open-ended end value to the formula as it will fail.
//
// The resulting shadow memory regions for a 0 scaling are:
//
// [0x00001300'00000000, 0x00001400'00000000)
// [0x00001800'00000000, 0x00001a00'00000000)
// [0x00002100'00000000, 0x000022ff'ff600000)
// [0x000022ff'ff601000, 0x00002300'00000000)
// [0x000022ff'ff600000, 0x000022ff'ff601000]
//
// We also want to ensure that a wild access by the application into the shadow
// regions will not corrupt our own shadow memory. shadow(shadow) ends up
// disjoint from shadow(app):
//
// [0x00001600'00000000, 0x00001700'00000000)
// [0x00001b00'00000000, 0x00001d00'00000000)
// [0x00001400'00000000, 0x000015ff'ff600000]
// [0x000015ff'ff601000, 0x00001600'00000000]
// [0x000015ff'ff600000, 0x000015ff'ff601000]
static const struct ApplicationRegion AppRegions[] = {
{0x0000000000000000ull, 0x0000010000000000u, false},
{0x0000550000000000u, 0x0000570000000000u, false},
// We make one shadow mapping to hold the shadow regions for all 3 of these
// app regions, as the mappings interleave, and the gap between the 3rd and
// 4th scales down below a page.
{0x00007e0000000000u, 0x00007fffff600000u, false},
{0x00007fffff601000u, 0x0000800000000000u, true},
{0xffffffffff600000u, 0xffffffffff601000u, true},
};
#elif SANITIZER_LINUX && SANITIZER_MIPS64
// Application memory falls into these 3 regions
//
// [0x00000001'00000000, 0x00000002'00000000) non-PIE + heap
// [0x000000aa'00000000, 0x000000ab'00000000) PIE
// [0x000000ff'00000000, 0x000000ff'ffffffff) libraries + stack
//
// This formula translates from application memory to shadow memory:
//
// shadow(app) = ((app & 0x00000f'ffffffff) + offset) >> scale
//
// Where the offset for 1:1 is 0x000013'00000000. For other scales, the
// offset is shifted left by the scale, except for scales of 1 and 2 where
// it must be tweaked in order to pass the double-shadow test
// (see the "shadow(shadow)" comments below):
// scale == 0: 0x000013'00000000
// scale == 1: 0x000022'00000000
// scale == 2: 0x000044'00000000
// scale >= 3: (0x000013'00000000 << scale)
//
// The resulting shadow memory regions for a 0 scaling are:
//
// [0x00000014'00000000, 0x00000015'00000000)
// [0x0000001d'00000000, 0x0000001e'00000000)
// [0x00000022'00000000, 0x00000022'ffffffff)
//
// We also want to ensure that a wild access by the application into the shadow
// regions will not corrupt our own shadow memory. shadow(shadow) ends up
// disjoint from shadow(app):
//
// [0x00000017'00000000, 0x00000018'00000000)
// [0x00000020'00000000, 0x00000021'00000000)
// [0x00000015'00000000, 0x00000015'ffffffff]
static const struct ApplicationRegion AppRegions[] = {
{0x0100000000u, 0x0200000000u, false},
{0xaa00000000u, 0xab00000000u, false},
{0xff00000000u, 0xffffffffffu, false},
};
#else
#error Platform not supported
#endif
static const u32 NumAppRegions = sizeof(AppRegions)/sizeof(AppRegions[0]);
// See the comment above: we do not currently support a stack size rlimit
// equal to or larger than 1TB.
static const uptr MaxStackSize = (1ULL << 40) - 4096;
class ShadowMapping {
public:
// The scale and offset vary by tool.
uptr Scale;
uptr Offset;
// TODO(sagar.thakur): Try to hardcode the mask as done in the compiler
// instrumentation to reduce the runtime cost of appToShadow.
struct ShadowMemoryMask40 {
static const uptr Mask = 0x0000000fffffffffu;
};
struct ShadowMemoryMask47 {
static const uptr Mask = 0x00000fffffffffffu;
};
void initialize(uptr ShadowScale) {
const uptr OffsetArray40[3] = {
0x0000001300000000u,
0x0000002200000000u,
0x0000004400000000u,
};
const uptr OffsetArray47[3] = {
0x0000130000000000u,
0x0000220000000000u,
0x0000440000000000u,
};
Scale = ShadowScale;
switch (VmaSize) {
case 40: {
if (Scale <= 2)
Offset = OffsetArray40[Scale];
else
Offset = OffsetArray40[0] << Scale;
}
break;
case 47: {
if (Scale <= 2)
Offset = OffsetArray47[Scale];
else
Offset = OffsetArray47[0] << Scale;
}
break;
default: {
Printf("ERROR: %d-bit virtual memory address size not supported\n", VmaSize);
Die();
}
}
}
};
extern ShadowMapping Mapping;
static inline bool getAppRegion(u32 i, uptr *Start, uptr *End) {
if (i >= NumAppRegions)
return false;
*Start = AppRegions[i].Start;
*End = AppRegions[i].End;
return true;
}
ALWAYS_INLINE
bool isAppMem(uptr Mem) {
for (u32 i = 0; i < NumAppRegions; ++i) {
if (Mem >= AppRegions[i].Start && Mem < AppRegions[i].End)
return true;
}
return false;
}
template<typename Params>
uptr appToShadowImpl(uptr App) {
return (((App & Params::Mask) + Mapping.Offset) >> Mapping.Scale);
}
ALWAYS_INLINE
uptr appToShadow(uptr App) {
switch (VmaSize) {
case 40: return appToShadowImpl<ShadowMapping::ShadowMemoryMask40>(App);
case 47: return appToShadowImpl<ShadowMapping::ShadowMemoryMask47>(App);
default: {
Printf("ERROR: %d-bit virtual memory address size not supported\n", VmaSize);
Die();
}
}
}
static inline bool getShadowRegion(u32 i, uptr *Start, uptr *End) {
if (i >= NumAppRegions)
return false;
u32 UnmergedShadowCount = 0;
u32 AppIdx;
for (AppIdx = 0; AppIdx < NumAppRegions; ++AppIdx) {
if (!AppRegions[AppIdx].ShadowMergedWithPrev) {
if (UnmergedShadowCount == i)
break;
UnmergedShadowCount++;
}
}
if (AppIdx >= NumAppRegions || UnmergedShadowCount != i)
return false;
*Start = appToShadow(AppRegions[AppIdx].Start);
// The formula fails for the end itself.
*End = appToShadow(AppRegions[AppIdx].End - 1) + 1;
// Merge with adjacent shadow regions:
for (++AppIdx; AppIdx < NumAppRegions; ++AppIdx) {
if (!AppRegions[AppIdx].ShadowMergedWithPrev)
break;
*Start = Min(*Start, appToShadow(AppRegions[AppIdx].Start));
*End = Max(*End, appToShadow(AppRegions[AppIdx].End - 1) + 1);
}
return true;
}
ALWAYS_INLINE
bool isShadowMem(uptr Mem) {
// We assume this is not used on any critical performance path and so there's
// no need to hardcode the mapping results.
for (uptr i = 0; i < NumAppRegions; ++i) {
if (Mem >= appToShadow(AppRegions[i].Start) &&
Mem < appToShadow(AppRegions[i].End - 1) + 1)
return true;
}
return false;
}
} // namespace __esan
#endif /* ESAN_SHADOW_H */