forked from OSchip/llvm-project
679 lines
23 KiB
C++
679 lines
23 KiB
C++
//===- MVETailPredication.cpp - MVE Tail Predication ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
|
|
/// branches to help accelerate DSP applications. These two extensions can be
|
|
/// combined to provide implicit vector predication within a low-overhead loop.
|
|
/// The HardwareLoops pass inserts intrinsics identifying loops that the
|
|
/// backend will attempt to convert into a low-overhead loop. The vectorizer is
|
|
/// responsible for generating a vectorized loop in which the lanes are
|
|
/// predicated upon the iteration counter. This pass looks at these predicated
|
|
/// vector loops, that are targets for low-overhead loops, and prepares it for
|
|
/// code generation. Once the vectorizer has produced a masked loop, there's a
|
|
/// couple of final forms:
|
|
/// - A tail-predicated loop, with implicit predication.
|
|
/// - A loop containing multiple VCPT instructions, predicating multiple VPT
|
|
/// blocks of instructions operating on different vector types.
|
|
///
|
|
/// This pass inserts the inserts the VCTP intrinsic to represent the effect of
|
|
/// tail predication. This will be picked up by the ARM Low-overhead loop pass,
|
|
/// which performs the final transformation to a DLSTP or WLSTP tail-predicated
|
|
/// loop.
|
|
|
|
#include "ARM.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicsARM.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "mve-tail-predication"
|
|
#define DESC "Transform predicated vector loops to use MVE tail predication"
|
|
|
|
cl::opt<bool>
|
|
DisableTailPredication("disable-mve-tail-predication", cl::Hidden,
|
|
cl::init(true),
|
|
cl::desc("Disable MVE Tail Predication"));
|
|
namespace {
|
|
|
|
// Bookkeeping for pattern matching the loop trip count and the number of
|
|
// elements processed by the loop.
|
|
struct TripCountPattern {
|
|
// The Predicate used by the masked loads/stores, i.e. an icmp instruction
|
|
// which calculates active/inactive lanes
|
|
Instruction *Predicate = nullptr;
|
|
|
|
// The add instruction that increments the IV
|
|
Value *TripCount = nullptr;
|
|
|
|
// The number of elements processed by the vector loop.
|
|
Value *NumElements = nullptr;
|
|
|
|
VectorType *VecTy = nullptr;
|
|
Instruction *Shuffle = nullptr;
|
|
Instruction *Induction = nullptr;
|
|
|
|
TripCountPattern(Instruction *P, Value *TC, VectorType *VT)
|
|
: Predicate(P), TripCount(TC), VecTy(VT){};
|
|
};
|
|
|
|
class MVETailPredication : public LoopPass {
|
|
SmallVector<IntrinsicInst*, 4> MaskedInsts;
|
|
Loop *L = nullptr;
|
|
LoopInfo *LI = nullptr;
|
|
const DataLayout *DL;
|
|
DominatorTree *DT = nullptr;
|
|
ScalarEvolution *SE = nullptr;
|
|
TargetTransformInfo *TTI = nullptr;
|
|
TargetLibraryInfo *TLI = nullptr;
|
|
bool ClonedVCTPInExitBlock = false;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
MVETailPredication() : LoopPass(ID) { }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager&) override;
|
|
|
|
private:
|
|
/// Perform the relevant checks on the loop and convert if possible.
|
|
bool TryConvert(Value *TripCount);
|
|
|
|
/// Return whether this is a vectorized loop, that contains masked
|
|
/// load/stores.
|
|
bool IsPredicatedVectorLoop();
|
|
|
|
/// Compute a value for the total number of elements that the predicated
|
|
/// loop will process if it is a runtime value.
|
|
bool ComputeRuntimeElements(TripCountPattern &TCP);
|
|
|
|
/// Is the icmp that generates an i1 vector, based upon a loop counter
|
|
/// and a limit that is defined outside the loop.
|
|
bool isTailPredicate(TripCountPattern &TCP);
|
|
|
|
/// Insert the intrinsic to represent the effect of tail predication.
|
|
void InsertVCTPIntrinsic(TripCountPattern &TCP,
|
|
DenseMap<Instruction *, Instruction *> &NewPredicates);
|
|
|
|
/// Rematerialize the iteration count in exit blocks, which enables
|
|
/// ARMLowOverheadLoops to better optimise away loop update statements inside
|
|
/// hardware-loops.
|
|
void RematerializeIterCount();
|
|
};
|
|
|
|
} // end namespace
|
|
|
|
static bool IsDecrement(Instruction &I) {
|
|
auto *Call = dyn_cast<IntrinsicInst>(&I);
|
|
if (!Call)
|
|
return false;
|
|
|
|
Intrinsic::ID ID = Call->getIntrinsicID();
|
|
return ID == Intrinsic::loop_decrement_reg;
|
|
}
|
|
|
|
static bool IsMasked(Instruction *I) {
|
|
auto *Call = dyn_cast<IntrinsicInst>(I);
|
|
if (!Call)
|
|
return false;
|
|
|
|
Intrinsic::ID ID = Call->getIntrinsicID();
|
|
// TODO: Support gather/scatter expand/compress operations.
|
|
return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load;
|
|
}
|
|
|
|
void MVETailPredication::RematerializeIterCount() {
|
|
SmallVector<WeakTrackingVH, 16> DeadInsts;
|
|
SCEVExpander Rewriter(*SE, *DL, "mvetp");
|
|
ReplaceExitVal ReplaceExitValue = AlwaysRepl;
|
|
|
|
formLCSSARecursively(*L, *DT, LI, SE);
|
|
rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, ReplaceExitValue,
|
|
DeadInsts);
|
|
}
|
|
|
|
bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
|
|
if (skipLoop(L) || DisableTailPredication)
|
|
return false;
|
|
|
|
MaskedInsts.clear();
|
|
Function &F = *L->getHeader()->getParent();
|
|
auto &TPC = getAnalysis<TargetPassConfig>();
|
|
auto &TM = TPC.getTM<TargetMachine>();
|
|
auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
|
|
TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
|
|
DL = &L->getHeader()->getModule()->getDataLayout();
|
|
this->L = L;
|
|
|
|
// The MVE and LOB extensions are combined to enable tail-predication, but
|
|
// there's nothing preventing us from generating VCTP instructions for v8.1m.
|
|
if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
|
|
return false;
|
|
}
|
|
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader)
|
|
return false;
|
|
|
|
auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
|
|
for (auto &I : *BB) {
|
|
auto *Call = dyn_cast<IntrinsicInst>(&I);
|
|
if (!Call)
|
|
continue;
|
|
|
|
Intrinsic::ID ID = Call->getIntrinsicID();
|
|
if (ID == Intrinsic::set_loop_iterations ||
|
|
ID == Intrinsic::test_set_loop_iterations)
|
|
return cast<IntrinsicInst>(&I);
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
// Look for the hardware loop intrinsic that sets the iteration count.
|
|
IntrinsicInst *Setup = FindLoopIterations(Preheader);
|
|
|
|
// The test.set iteration could live in the pre-preheader.
|
|
if (!Setup) {
|
|
if (!Preheader->getSinglePredecessor())
|
|
return false;
|
|
Setup = FindLoopIterations(Preheader->getSinglePredecessor());
|
|
if (!Setup)
|
|
return false;
|
|
}
|
|
|
|
// Search for the hardware loop intrinic that decrements the loop counter.
|
|
IntrinsicInst *Decrement = nullptr;
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
if (IsDecrement(I)) {
|
|
Decrement = cast<IntrinsicInst>(&I);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Decrement)
|
|
return false;
|
|
|
|
ClonedVCTPInExitBlock = false;
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"
|
|
<< *Decrement << "\n");
|
|
|
|
if (TryConvert(Setup->getArgOperand(0))) {
|
|
if (ClonedVCTPInExitBlock)
|
|
RematerializeIterCount();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Pattern match predicates/masks and determine if they use the loop induction
|
|
// variable to control the number of elements processed by the loop. If so,
|
|
// the loop is a candidate for tail-predication.
|
|
bool MVETailPredication::isTailPredicate(TripCountPattern &TCP) {
|
|
using namespace PatternMatch;
|
|
|
|
// Pattern match the loop body and find the add with takes the index iv
|
|
// and adds a constant vector to it:
|
|
//
|
|
// vector.body:
|
|
// ..
|
|
// %index = phi i32
|
|
// %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0
|
|
// %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert,
|
|
// <4 x i32> undef,
|
|
// <4 x i32> zeroinitializer
|
|
// %induction = [add|or] <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
|
|
// %pred = icmp ule <4 x i32> %induction, %broadcast.splat11
|
|
//
|
|
// Please note that the 'or' is equivalent to the 'and' here, this relies on
|
|
// BroadcastSplat being the IV which we know is a phi with 0 start and Lanes
|
|
// increment, which is all being checked below.
|
|
Instruction *BroadcastSplat = nullptr;
|
|
Constant *Const = nullptr;
|
|
if (!match(TCP.Induction,
|
|
m_Add(m_Instruction(BroadcastSplat), m_Constant(Const))) &&
|
|
!match(TCP.Induction,
|
|
m_Or(m_Instruction(BroadcastSplat), m_Constant(Const))))
|
|
return false;
|
|
|
|
// Check that we're adding <0, 1, 2, 3...
|
|
if (auto *CDS = dyn_cast<ConstantDataSequential>(Const)) {
|
|
for (unsigned i = 0; i < CDS->getNumElements(); ++i) {
|
|
if (CDS->getElementAsInteger(i) != i)
|
|
return false;
|
|
}
|
|
} else
|
|
return false;
|
|
|
|
Instruction *Insert = nullptr;
|
|
// The shuffle which broadcasts the index iv into a vector.
|
|
if (!match(BroadcastSplat,
|
|
m_ShuffleVector(m_Instruction(Insert), m_Undef(), m_Zero())))
|
|
return false;
|
|
|
|
// The insert element which initialises a vector with the index iv.
|
|
Instruction *IV = nullptr;
|
|
if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(IV), m_Zero())))
|
|
return false;
|
|
|
|
// The index iv.
|
|
auto *Phi = dyn_cast<PHINode>(IV);
|
|
if (!Phi)
|
|
return false;
|
|
|
|
// TODO: Don't think we need to check the entry value.
|
|
Value *OnEntry = Phi->getIncomingValueForBlock(L->getLoopPreheader());
|
|
if (!match(OnEntry, m_Zero()))
|
|
return false;
|
|
|
|
Value *InLoop = Phi->getIncomingValueForBlock(L->getLoopLatch());
|
|
unsigned Lanes = cast<VectorType>(Insert->getType())->getNumElements();
|
|
|
|
Instruction *LHS = nullptr;
|
|
if (!match(InLoop, m_Add(m_Instruction(LHS), m_SpecificInt(Lanes))))
|
|
return false;
|
|
|
|
return LHS == Phi;
|
|
}
|
|
|
|
static VectorType *getVectorType(IntrinsicInst *I) {
|
|
unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1;
|
|
auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType());
|
|
return cast<VectorType>(PtrTy->getElementType());
|
|
}
|
|
|
|
bool MVETailPredication::IsPredicatedVectorLoop() {
|
|
// Check that the loop contains at least one masked load/store intrinsic.
|
|
// We only support 'normal' vector instructions - other than masked
|
|
// load/stores.
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
if (IsMasked(&I)) {
|
|
VectorType *VecTy = getVectorType(cast<IntrinsicInst>(&I));
|
|
unsigned Lanes = VecTy->getNumElements();
|
|
unsigned ElementWidth = VecTy->getScalarSizeInBits();
|
|
// MVE vectors are 128-bit, but don't support 128 x i1.
|
|
// TODO: Can we support vectors larger than 128-bits?
|
|
unsigned MaxWidth = TTI->getRegisterBitWidth(true);
|
|
if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth)
|
|
return false;
|
|
MaskedInsts.push_back(cast<IntrinsicInst>(&I));
|
|
} else if (auto *Int = dyn_cast<IntrinsicInst>(&I)) {
|
|
for (auto &U : Int->args()) {
|
|
if (isa<VectorType>(U->getType()))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return !MaskedInsts.empty();
|
|
}
|
|
|
|
// Pattern match the predicate, which is an icmp with a constant vector of this
|
|
// form:
|
|
//
|
|
// icmp ult <4 x i32> %induction, <i32 32002, i32 32002, i32 32002, i32 32002>
|
|
//
|
|
// and return the constant, i.e. 32002 in this example. This is assumed to be
|
|
// the scalar loop iteration count: the number of loop elements by the
|
|
// the vector loop. Further checks are performed in function isTailPredicate(),
|
|
// to verify 'induction' behaves as an induction variable.
|
|
//
|
|
static bool ComputeConstElements(TripCountPattern &TCP) {
|
|
if (!dyn_cast<ConstantInt>(TCP.TripCount))
|
|
return false;
|
|
|
|
ConstantInt *VF = ConstantInt::get(
|
|
cast<IntegerType>(TCP.TripCount->getType()), TCP.VecTy->getNumElements());
|
|
using namespace PatternMatch;
|
|
CmpInst::Predicate CC;
|
|
|
|
if (!match(TCP.Predicate, m_ICmp(CC, m_Instruction(TCP.Induction),
|
|
m_AnyIntegralConstant())) ||
|
|
CC != ICmpInst::ICMP_ULT)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM TP: icmp with constants: "; TCP.Predicate->dump(););
|
|
Value *ConstVec = TCP.Predicate->getOperand(1);
|
|
|
|
auto *CDS = dyn_cast<ConstantDataSequential>(ConstVec);
|
|
if (!CDS || CDS->getNumElements() != VF->getSExtValue())
|
|
return false;
|
|
|
|
if ((TCP.NumElements = CDS->getSplatValue())) {
|
|
assert(dyn_cast<ConstantInt>(TCP.NumElements)->getSExtValue() %
|
|
VF->getSExtValue() !=
|
|
0 &&
|
|
"tail-predication: trip count should not be a multiple of the VF");
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Found const elem count: " << *TCP.NumElements
|
|
<< "\n");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Pattern match the loop iteration count setup:
|
|
//
|
|
// %trip.count.minus.1 = add i32 %N, -1
|
|
// %broadcast.splatinsert10 = insertelement <4 x i32> undef,
|
|
// i32 %trip.count.minus.1, i32 0
|
|
// %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10,
|
|
// <4 x i32> undef,
|
|
// <4 x i32> zeroinitializer
|
|
// ..
|
|
// vector.body:
|
|
// ..
|
|
//
|
|
static bool MatchElemCountLoopSetup(Loop *L, Instruction *Shuffle,
|
|
Value *NumElements) {
|
|
using namespace PatternMatch;
|
|
Instruction *Insert = nullptr;
|
|
|
|
if (!match(Shuffle,
|
|
m_ShuffleVector(m_Instruction(Insert), m_Undef(), m_Zero())))
|
|
return false;
|
|
|
|
// Insert the limit into a vector.
|
|
Instruction *BECount = nullptr;
|
|
if (!match(Insert,
|
|
m_InsertElement(m_Undef(), m_Instruction(BECount), m_Zero())))
|
|
return false;
|
|
|
|
// The limit calculation, backedge count.
|
|
Value *TripCount = nullptr;
|
|
if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes())))
|
|
return false;
|
|
|
|
if (TripCount != NumElements || !L->isLoopInvariant(BECount))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MVETailPredication::ComputeRuntimeElements(TripCountPattern &TCP) {
|
|
using namespace PatternMatch;
|
|
const SCEV *TripCountSE = SE->getSCEV(TCP.TripCount);
|
|
ConstantInt *VF = ConstantInt::get(
|
|
cast<IntegerType>(TCP.TripCount->getType()), TCP.VecTy->getNumElements());
|
|
|
|
if (VF->equalsInt(1))
|
|
return false;
|
|
|
|
CmpInst::Predicate Pred;
|
|
if (!match(TCP.Predicate, m_ICmp(Pred, m_Instruction(TCP.Induction),
|
|
m_Instruction(TCP.Shuffle))) ||
|
|
Pred != ICmpInst::ICMP_ULE)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Computing number of elements for vector trip count: ";
|
|
TCP.TripCount->dump());
|
|
|
|
// Otherwise, continue and try to pattern match the vector iteration
|
|
// count expression
|
|
auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr * {
|
|
if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
|
|
if (Const->getAPInt() != -VF->getValue())
|
|
return nullptr;
|
|
} else
|
|
return nullptr;
|
|
return dyn_cast<SCEVMulExpr>(S->getOperand(1));
|
|
};
|
|
|
|
auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr * {
|
|
if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
|
|
if (Const->getValue() != VF)
|
|
return nullptr;
|
|
} else
|
|
return nullptr;
|
|
return dyn_cast<SCEVUDivExpr>(S->getOperand(1));
|
|
};
|
|
|
|
auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV * {
|
|
if (auto *Const = dyn_cast<SCEVConstant>(S->getRHS())) {
|
|
if (Const->getValue() != VF)
|
|
return nullptr;
|
|
} else
|
|
return nullptr;
|
|
|
|
if (auto *RoundUp = dyn_cast<SCEVAddExpr>(S->getLHS())) {
|
|
if (auto *Const = dyn_cast<SCEVConstant>(RoundUp->getOperand(0))) {
|
|
if (Const->getAPInt() != (VF->getValue() - 1))
|
|
return nullptr;
|
|
} else
|
|
return nullptr;
|
|
|
|
return RoundUp->getOperand(1);
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
// TODO: Can we use SCEV helpers, such as findArrayDimensions, and friends to
|
|
// determine the numbers of elements instead? Looks like this is what is used
|
|
// for delinearization, but I'm not sure if it can be applied to the
|
|
// vectorized form - at least not without a bit more work than I feel
|
|
// comfortable with.
|
|
|
|
// Search for Elems in the following SCEV:
|
|
// (1 + ((-VF + (VF * (((VF - 1) + %Elems) /u VF))<nuw>) /u VF))<nuw><nsw>
|
|
const SCEV *Elems = nullptr;
|
|
if (auto *TC = dyn_cast<SCEVAddExpr>(TripCountSE))
|
|
if (auto *Div = dyn_cast<SCEVUDivExpr>(TC->getOperand(1)))
|
|
if (auto *Add = dyn_cast<SCEVAddExpr>(Div->getLHS()))
|
|
if (auto *Mul = VisitAdd(Add))
|
|
if (auto *Div = VisitMul(Mul))
|
|
if (auto *Res = VisitDiv(Div))
|
|
Elems = Res;
|
|
|
|
if (!Elems)
|
|
return false;
|
|
|
|
Instruction *InsertPt = L->getLoopPreheader()->getTerminator();
|
|
if (!isSafeToExpandAt(Elems, InsertPt, *SE))
|
|
return false;
|
|
|
|
auto DL = L->getHeader()->getModule()->getDataLayout();
|
|
SCEVExpander Expander(*SE, DL, "elements");
|
|
TCP.NumElements = Expander.expandCodeFor(Elems, Elems->getType(), InsertPt);
|
|
|
|
if (!MatchElemCountLoopSetup(L, TCP.Shuffle, TCP.NumElements))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Look through the exit block to see whether there's a duplicate predicate
|
|
// instruction. This can happen when we need to perform a select on values
|
|
// from the last and previous iteration. Instead of doing a straight
|
|
// replacement of that predicate with the vctp, clone the vctp and place it
|
|
// in the block. This means that the VPR doesn't have to be live into the
|
|
// exit block which should make it easier to convert this loop into a proper
|
|
// tail predicated loop.
|
|
static bool Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates,
|
|
SetVector<Instruction*> &MaybeDead, Loop *L) {
|
|
BasicBlock *Exit = L->getUniqueExitBlock();
|
|
if (!Exit) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n");
|
|
return false;
|
|
}
|
|
|
|
bool ClonedVCTPInExitBlock = false;
|
|
|
|
for (auto &Pair : NewPredicates) {
|
|
Instruction *OldPred = Pair.first;
|
|
Instruction *NewPred = Pair.second;
|
|
|
|
for (auto &I : *Exit) {
|
|
if (I.isSameOperationAs(OldPred)) {
|
|
Instruction *PredClone = NewPred->clone();
|
|
PredClone->insertBefore(&I);
|
|
I.replaceAllUsesWith(PredClone);
|
|
MaybeDead.insert(&I);
|
|
ClonedVCTPInExitBlock = true;
|
|
LLVM_DEBUG(dbgs() << "ARM TP: replacing: "; I.dump();
|
|
dbgs() << "ARM TP: with: "; PredClone->dump());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Drop references and add operands to check for dead.
|
|
SmallPtrSet<Instruction*, 4> Dead;
|
|
while (!MaybeDead.empty()) {
|
|
auto *I = MaybeDead.front();
|
|
MaybeDead.remove(I);
|
|
if (I->hasNUsesOrMore(1))
|
|
continue;
|
|
|
|
for (auto &U : I->operands()) {
|
|
if (auto *OpI = dyn_cast<Instruction>(U))
|
|
MaybeDead.insert(OpI);
|
|
}
|
|
I->dropAllReferences();
|
|
Dead.insert(I);
|
|
}
|
|
|
|
for (auto *I : Dead) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump());
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
for (auto I : L->blocks())
|
|
DeleteDeadPHIs(I);
|
|
|
|
return ClonedVCTPInExitBlock;
|
|
}
|
|
|
|
void MVETailPredication::InsertVCTPIntrinsic(TripCountPattern &TCP,
|
|
DenseMap<Instruction*, Instruction*> &NewPredicates) {
|
|
IRBuilder<> Builder(L->getHeader()->getFirstNonPHI());
|
|
Module *M = L->getHeader()->getModule();
|
|
Type *Ty = IntegerType::get(M->getContext(), 32);
|
|
|
|
// Insert a phi to count the number of elements processed by the loop.
|
|
PHINode *Processed = Builder.CreatePHI(Ty, 2);
|
|
Processed->addIncoming(TCP.NumElements, L->getLoopPreheader());
|
|
|
|
// Insert the intrinsic to represent the effect of tail predication.
|
|
Builder.SetInsertPoint(cast<Instruction>(TCP.Predicate));
|
|
ConstantInt *Factor =
|
|
ConstantInt::get(cast<IntegerType>(Ty), TCP.VecTy->getNumElements());
|
|
|
|
Intrinsic::ID VCTPID;
|
|
switch (TCP.VecTy->getNumElements()) {
|
|
default:
|
|
llvm_unreachable("unexpected number of lanes");
|
|
case 4: VCTPID = Intrinsic::arm_mve_vctp32; break;
|
|
case 8: VCTPID = Intrinsic::arm_mve_vctp16; break;
|
|
case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
|
|
|
|
// FIXME: vctp64 currently not supported because the predicate
|
|
// vector wants to be <2 x i1>, but v2i1 is not a legal MVE
|
|
// type, so problems happen at isel time.
|
|
// Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
|
|
// purposes, but takes a v4i1 instead of a v2i1.
|
|
}
|
|
Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
|
|
Value *TailPredicate = Builder.CreateCall(VCTP, Processed);
|
|
TCP.Predicate->replaceAllUsesWith(TailPredicate);
|
|
NewPredicates[TCP.Predicate] = cast<Instruction>(TailPredicate);
|
|
|
|
// Add the incoming value to the new phi.
|
|
// TODO: This add likely already exists in the loop.
|
|
Value *Remaining = Builder.CreateSub(Processed, Factor);
|
|
Processed->addIncoming(Remaining, L->getLoopLatch());
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
|
|
<< *Processed << "\n"
|
|
<< "ARM TP: Inserted VCTP: " << *TailPredicate << "\n");
|
|
}
|
|
|
|
bool MVETailPredication::TryConvert(Value *TripCount) {
|
|
if (!IsPredicatedVectorLoop()) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
|
|
|
|
// Walk through the masked intrinsics and try to find whether the predicate
|
|
// operand is generated from an induction variable.
|
|
SetVector<Instruction*> Predicates;
|
|
DenseMap<Instruction*, Instruction*> NewPredicates;
|
|
|
|
for (auto *I : MaskedInsts) {
|
|
Intrinsic::ID ID = I->getIntrinsicID();
|
|
unsigned PredOp = ID == Intrinsic::masked_load ? 2 : 3;
|
|
auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp));
|
|
if (!Predicate || Predicates.count(Predicate))
|
|
continue;
|
|
|
|
TripCountPattern TCP(Predicate, TripCount, getVectorType(I));
|
|
|
|
if (!(ComputeConstElements(TCP) || ComputeRuntimeElements(TCP)))
|
|
continue;
|
|
|
|
if (!isTailPredicate(TCP)) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Not tail predicate: " << *Predicate << "\n");
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Found tail predicate: " << *Predicate << "\n");
|
|
Predicates.insert(Predicate);
|
|
InsertVCTPIntrinsic(TCP, NewPredicates);
|
|
}
|
|
|
|
if (!NewPredicates.size())
|
|
return false;
|
|
|
|
// Now clean up.
|
|
ClonedVCTPInExitBlock = Cleanup(NewPredicates, Predicates, L);
|
|
return true;
|
|
}
|
|
|
|
Pass *llvm::createMVETailPredicationPass() {
|
|
return new MVETailPredication();
|
|
}
|
|
|
|
char MVETailPredication::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
|
|
INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
|