llvm-project/compiler-rt/lib/tsan/rtl/tsan_clock.cpp

626 lines
19 KiB
C++

//===-- tsan_clock.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_clock.h"
#include "tsan_rtl.h"
#include "sanitizer_common/sanitizer_placement_new.h"
// SyncClock and ThreadClock implement vector clocks for sync variables
// (mutexes, atomic variables, file descriptors, etc) and threads, respectively.
// ThreadClock contains fixed-size vector clock for maximum number of threads.
// SyncClock contains growable vector clock for currently necessary number of
// threads.
// Together they implement very simple model of operations, namely:
//
// void ThreadClock::acquire(const SyncClock *src) {
// for (int i = 0; i < kMaxThreads; i++)
// clock[i] = max(clock[i], src->clock[i]);
// }
//
// void ThreadClock::release(SyncClock *dst) const {
// for (int i = 0; i < kMaxThreads; i++)
// dst->clock[i] = max(dst->clock[i], clock[i]);
// }
//
// void ThreadClock::releaseStoreAcquire(SyncClock *sc) const {
// for (int i = 0; i < kMaxThreads; i++) {
// tmp = clock[i];
// clock[i] = max(clock[i], sc->clock[i]);
// sc->clock[i] = tmp;
// }
// }
//
// void ThreadClock::ReleaseStore(SyncClock *dst) const {
// for (int i = 0; i < kMaxThreads; i++)
// dst->clock[i] = clock[i];
// }
//
// void ThreadClock::acq_rel(SyncClock *dst) {
// acquire(dst);
// release(dst);
// }
//
// Conformance to this model is extensively verified in tsan_clock_test.cpp.
// However, the implementation is significantly more complex. The complexity
// allows to implement important classes of use cases in O(1) instead of O(N).
//
// The use cases are:
// 1. Singleton/once atomic that has a single release-store operation followed
// by zillions of acquire-loads (the acquire-load is O(1)).
// 2. Thread-local mutex (both lock and unlock can be O(1)).
// 3. Leaf mutex (unlock is O(1)).
// 4. A mutex shared by 2 threads (both lock and unlock can be O(1)).
// 5. An atomic with a single writer (writes can be O(1)).
// The implementation dynamically adopts to workload. So if an atomic is in
// read-only phase, these reads will be O(1); if it later switches to read/write
// phase, the implementation will correctly handle that by switching to O(N).
//
// Thread-safety note: all const operations on SyncClock's are conducted under
// a shared lock; all non-const operations on SyncClock's are conducted under
// an exclusive lock; ThreadClock's are private to respective threads and so
// do not need any protection.
//
// Description of SyncClock state:
// clk_ - variable size vector clock, low kClkBits hold timestamp,
// the remaining bits hold "acquired" flag (the actual value is thread's
// reused counter);
// if acquired == thr->reused_, then the respective thread has already
// acquired this clock (except possibly for dirty elements).
// dirty_ - holds up to two indices in the vector clock that other threads
// need to acquire regardless of "acquired" flag value;
// release_store_tid_ - denotes that the clock state is a result of
// release-store operation by the thread with release_store_tid_ index.
// release_store_reused_ - reuse count of release_store_tid_.
namespace __tsan {
static atomic_uint32_t *ref_ptr(ClockBlock *cb) {
return reinterpret_cast<atomic_uint32_t *>(&cb->table[ClockBlock::kRefIdx]);
}
// Drop reference to the first level block idx.
static void UnrefClockBlock(ClockCache *c, u32 idx, uptr blocks) {
ClockBlock *cb = ctx->clock_alloc.Map(idx);
atomic_uint32_t *ref = ref_ptr(cb);
u32 v = atomic_load(ref, memory_order_acquire);
for (;;) {
CHECK_GT(v, 0);
if (v == 1)
break;
if (atomic_compare_exchange_strong(ref, &v, v - 1, memory_order_acq_rel))
return;
}
// First level block owns second level blocks, so them as well.
for (uptr i = 0; i < blocks; i++)
ctx->clock_alloc.Free(c, cb->table[ClockBlock::kBlockIdx - i]);
ctx->clock_alloc.Free(c, idx);
}
ThreadClock::ThreadClock(unsigned tid, unsigned reused)
: tid_(tid)
, reused_(reused + 1) // 0 has special meaning
, last_acquire_()
, global_acquire_()
, cached_idx_()
, cached_size_()
, cached_blocks_() {
CHECK_LT(tid, kMaxTidInClock);
CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits);
nclk_ = tid_ + 1;
internal_memset(clk_, 0, sizeof(clk_));
}
void ThreadClock::ResetCached(ClockCache *c) {
if (cached_idx_) {
UnrefClockBlock(c, cached_idx_, cached_blocks_);
cached_idx_ = 0;
cached_size_ = 0;
cached_blocks_ = 0;
}
}
void ThreadClock::acquire(ClockCache *c, SyncClock *src) {
DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(src->size_, kMaxTid);
// Check if it's empty -> no need to do anything.
const uptr nclk = src->size_;
if (nclk == 0)
return;
bool acquired = false;
for (unsigned i = 0; i < kDirtyTids; i++) {
SyncClock::Dirty dirty = src->dirty_[i];
unsigned tid = dirty.tid();
if (tid != kInvalidTid) {
if (clk_[tid] < dirty.epoch) {
clk_[tid] = dirty.epoch;
acquired = true;
}
}
}
// Check if we've already acquired src after the last release operation on src
if (tid_ >= nclk || src->elem(tid_).reused != reused_) {
// O(N) acquire.
nclk_ = max(nclk_, nclk);
u64 *dst_pos = &clk_[0];
for (ClockElem &src_elem : *src) {
u64 epoch = src_elem.epoch;
if (*dst_pos < epoch) {
*dst_pos = epoch;
acquired = true;
}
dst_pos++;
}
// Remember that this thread has acquired this clock.
if (nclk > tid_)
src->elem(tid_).reused = reused_;
}
if (acquired) {
last_acquire_ = clk_[tid_];
ResetCached(c);
}
}
void ThreadClock::releaseStoreAcquire(ClockCache *c, SyncClock *sc) {
DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(sc->size_, kMaxTid);
if (sc->size_ == 0) {
// ReleaseStore will correctly set release_store_tid_,
// which can be important for future operations.
ReleaseStore(c, sc);
return;
}
nclk_ = max(nclk_, (uptr) sc->size_);
// Check if we need to resize sc.
if (sc->size_ < nclk_)
sc->Resize(c, nclk_);
bool acquired = false;
sc->Unshare(c);
// Update sc->clk_.
sc->FlushDirty();
uptr i = 0;
for (ClockElem &ce : *sc) {
u64 tmp = clk_[i];
if (clk_[i] < ce.epoch) {
clk_[i] = ce.epoch;
acquired = true;
}
ce.epoch = tmp;
ce.reused = 0;
i++;
}
sc->release_store_tid_ = kInvalidTid;
sc->release_store_reused_ = 0;
if (acquired) {
last_acquire_ = clk_[tid_];
ResetCached(c);
}
}
void ThreadClock::release(ClockCache *c, SyncClock *dst) {
DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(dst->size_, kMaxTid);
if (dst->size_ == 0) {
// ReleaseStore will correctly set release_store_tid_,
// which can be important for future operations.
ReleaseStore(c, dst);
return;
}
// Check if we need to resize dst.
if (dst->size_ < nclk_)
dst->Resize(c, nclk_);
// Check if we had not acquired anything from other threads
// since the last release on dst. If so, we need to update
// only dst->elem(tid_).
if (!HasAcquiredAfterRelease(dst)) {
UpdateCurrentThread(c, dst);
if (dst->release_store_tid_ != tid_ ||
dst->release_store_reused_ != reused_)
dst->release_store_tid_ = kInvalidTid;
return;
}
// O(N) release.
dst->Unshare(c);
// First, remember whether we've acquired dst.
bool acquired = IsAlreadyAcquired(dst);
// Update dst->clk_.
dst->FlushDirty();
uptr i = 0;
for (ClockElem &ce : *dst) {
ce.epoch = max(ce.epoch, clk_[i]);
ce.reused = 0;
i++;
}
// Clear 'acquired' flag in the remaining elements.
dst->release_store_tid_ = kInvalidTid;
dst->release_store_reused_ = 0;
// If we've acquired dst, remember this fact,
// so that we don't need to acquire it on next acquire.
if (acquired)
dst->elem(tid_).reused = reused_;
}
void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) {
DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(dst->size_, kMaxTid);
if (dst->size_ == 0 && cached_idx_ != 0) {
// Reuse the cached clock.
// Note: we could reuse/cache the cached clock in more cases:
// we could update the existing clock and cache it, or replace it with the
// currently cached clock and release the old one. And for a shared
// existing clock, we could replace it with the currently cached;
// or unshare, update and cache. But, for simplicity, we currently reuse
// cached clock only when the target clock is empty.
dst->tab_ = ctx->clock_alloc.Map(cached_idx_);
dst->tab_idx_ = cached_idx_;
dst->size_ = cached_size_;
dst->blocks_ = cached_blocks_;
CHECK_EQ(dst->dirty_[0].tid(), kInvalidTid);
// The cached clock is shared (immutable),
// so this is where we store the current clock.
dst->dirty_[0].set_tid(tid_);
dst->dirty_[0].epoch = clk_[tid_];
dst->release_store_tid_ = tid_;
dst->release_store_reused_ = reused_;
// Remember that we don't need to acquire it in future.
dst->elem(tid_).reused = reused_;
// Grab a reference.
atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
return;
}
// Check if we need to resize dst.
if (dst->size_ < nclk_)
dst->Resize(c, nclk_);
if (dst->release_store_tid_ == tid_ &&
dst->release_store_reused_ == reused_ &&
!HasAcquiredAfterRelease(dst)) {
UpdateCurrentThread(c, dst);
return;
}
// O(N) release-store.
dst->Unshare(c);
// Note: dst can be larger than this ThreadClock.
// This is fine since clk_ beyond size is all zeros.
uptr i = 0;
for (ClockElem &ce : *dst) {
ce.epoch = clk_[i];
ce.reused = 0;
i++;
}
for (uptr i = 0; i < kDirtyTids; i++) dst->dirty_[i].set_tid(kInvalidTid);
dst->release_store_tid_ = tid_;
dst->release_store_reused_ = reused_;
// Remember that we don't need to acquire it in future.
dst->elem(tid_).reused = reused_;
// If the resulting clock is cachable, cache it for future release operations.
// The clock is always cachable if we released to an empty sync object.
if (cached_idx_ == 0 && dst->Cachable()) {
// Grab a reference to the ClockBlock.
atomic_uint32_t *ref = ref_ptr(dst->tab_);
if (atomic_load(ref, memory_order_acquire) == 1)
atomic_store_relaxed(ref, 2);
else
atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
cached_idx_ = dst->tab_idx_;
cached_size_ = dst->size_;
cached_blocks_ = dst->blocks_;
}
}
void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
acquire(c, dst);
ReleaseStore(c, dst);
}
// Updates only single element related to the current thread in dst->clk_.
void ThreadClock::UpdateCurrentThread(ClockCache *c, SyncClock *dst) const {
// Update the threads time, but preserve 'acquired' flag.
for (unsigned i = 0; i < kDirtyTids; i++) {
SyncClock::Dirty *dirty = &dst->dirty_[i];
const unsigned tid = dirty->tid();
if (tid == tid_ || tid == kInvalidTid) {
dirty->set_tid(tid_);
dirty->epoch = clk_[tid_];
return;
}
}
// Reset all 'acquired' flags, O(N).
// We are going to touch dst elements, so we need to unshare it.
dst->Unshare(c);
dst->elem(tid_).epoch = clk_[tid_];
for (uptr i = 0; i < dst->size_; i++)
dst->elem(i).reused = 0;
dst->FlushDirty();
}
// Checks whether the current thread has already acquired src.
bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
if (src->elem(tid_).reused != reused_)
return false;
for (unsigned i = 0; i < kDirtyTids; i++) {
SyncClock::Dirty dirty = src->dirty_[i];
if (dirty.tid() != kInvalidTid) {
if (clk_[dirty.tid()] < dirty.epoch)
return false;
}
}
return true;
}
// Checks whether the current thread has acquired anything
// from other clocks after releasing to dst (directly or indirectly).
bool ThreadClock::HasAcquiredAfterRelease(const SyncClock *dst) const {
const u64 my_epoch = dst->elem(tid_).epoch;
return my_epoch <= last_acquire_ ||
my_epoch <= atomic_load_relaxed(&global_acquire_);
}
// Sets a single element in the vector clock.
// This function is called only from weird places like AcquireGlobal.
void ThreadClock::set(ClockCache *c, unsigned tid, u64 v) {
DCHECK_LT(tid, kMaxTid);
DCHECK_GE(v, clk_[tid]);
clk_[tid] = v;
if (nclk_ <= tid)
nclk_ = tid + 1;
last_acquire_ = clk_[tid_];
ResetCached(c);
}
void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) {
printf("clock=[");
for (uptr i = 0; i < nclk_; i++)
printf("%s%llu", i == 0 ? "" : ",", clk_[i]);
printf("] tid=%u/%u last_acq=%llu", tid_, reused_, last_acquire_);
}
SyncClock::SyncClock() {
ResetImpl();
}
SyncClock::~SyncClock() {
// Reset must be called before dtor.
CHECK_EQ(size_, 0);
CHECK_EQ(blocks_, 0);
CHECK_EQ(tab_, 0);
CHECK_EQ(tab_idx_, 0);
}
void SyncClock::Reset(ClockCache *c) {
if (size_)
UnrefClockBlock(c, tab_idx_, blocks_);
ResetImpl();
}
void SyncClock::ResetImpl() {
tab_ = 0;
tab_idx_ = 0;
size_ = 0;
blocks_ = 0;
release_store_tid_ = kInvalidTid;
release_store_reused_ = 0;
for (uptr i = 0; i < kDirtyTids; i++) dirty_[i].set_tid(kInvalidTid);
}
void SyncClock::Resize(ClockCache *c, uptr nclk) {
Unshare(c);
if (nclk <= capacity()) {
// Memory is already allocated, just increase the size.
size_ = nclk;
return;
}
if (size_ == 0) {
// Grow from 0 to one-level table.
CHECK_EQ(size_, 0);
CHECK_EQ(blocks_, 0);
CHECK_EQ(tab_, 0);
CHECK_EQ(tab_idx_, 0);
tab_idx_ = ctx->clock_alloc.Alloc(c);
tab_ = ctx->clock_alloc.Map(tab_idx_);
internal_memset(tab_, 0, sizeof(*tab_));
atomic_store_relaxed(ref_ptr(tab_), 1);
size_ = 1;
} else if (size_ > blocks_ * ClockBlock::kClockCount) {
u32 idx = ctx->clock_alloc.Alloc(c);
ClockBlock *new_cb = ctx->clock_alloc.Map(idx);
uptr top = size_ - blocks_ * ClockBlock::kClockCount;
CHECK_LT(top, ClockBlock::kClockCount);
const uptr move = top * sizeof(tab_->clock[0]);
internal_memcpy(&new_cb->clock[0], tab_->clock, move);
internal_memset(&new_cb->clock[top], 0, sizeof(*new_cb) - move);
internal_memset(tab_->clock, 0, move);
append_block(idx);
}
// At this point we have first level table allocated and all clock elements
// are evacuated from it to a second level block.
// Add second level tables as necessary.
while (nclk > capacity()) {
u32 idx = ctx->clock_alloc.Alloc(c);
ClockBlock *cb = ctx->clock_alloc.Map(idx);
internal_memset(cb, 0, sizeof(*cb));
append_block(idx);
}
size_ = nclk;
}
// Flushes all dirty elements into the main clock array.
void SyncClock::FlushDirty() {
for (unsigned i = 0; i < kDirtyTids; i++) {
Dirty *dirty = &dirty_[i];
if (dirty->tid() != kInvalidTid) {
CHECK_LT(dirty->tid(), size_);
elem(dirty->tid()).epoch = dirty->epoch;
dirty->set_tid(kInvalidTid);
}
}
}
bool SyncClock::IsShared() const {
if (size_ == 0)
return false;
atomic_uint32_t *ref = ref_ptr(tab_);
u32 v = atomic_load(ref, memory_order_acquire);
CHECK_GT(v, 0);
return v > 1;
}
// Unshares the current clock if it's shared.
// Shared clocks are immutable, so they need to be unshared before any updates.
// Note: this does not apply to dirty entries as they are not shared.
void SyncClock::Unshare(ClockCache *c) {
if (!IsShared())
return;
// First, copy current state into old.
SyncClock old;
old.tab_ = tab_;
old.tab_idx_ = tab_idx_;
old.size_ = size_;
old.blocks_ = blocks_;
old.release_store_tid_ = release_store_tid_;
old.release_store_reused_ = release_store_reused_;
for (unsigned i = 0; i < kDirtyTids; i++)
old.dirty_[i] = dirty_[i];
// Then, clear current object.
ResetImpl();
// Allocate brand new clock in the current object.
Resize(c, old.size_);
// Now copy state back into this object.
Iter old_iter(&old);
for (ClockElem &ce : *this) {
ce = *old_iter;
++old_iter;
}
release_store_tid_ = old.release_store_tid_;
release_store_reused_ = old.release_store_reused_;
for (unsigned i = 0; i < kDirtyTids; i++)
dirty_[i] = old.dirty_[i];
// Drop reference to old and delete if necessary.
old.Reset(c);
}
// Can we cache this clock for future release operations?
ALWAYS_INLINE bool SyncClock::Cachable() const {
if (size_ == 0)
return false;
for (unsigned i = 0; i < kDirtyTids; i++) {
if (dirty_[i].tid() != kInvalidTid)
return false;
}
return atomic_load_relaxed(ref_ptr(tab_)) == 1;
}
// elem linearizes the two-level structure into linear array.
// Note: this is used only for one time accesses, vector operations use
// the iterator as it is much faster.
ALWAYS_INLINE ClockElem &SyncClock::elem(unsigned tid) const {
DCHECK_LT(tid, size_);
const uptr block = tid / ClockBlock::kClockCount;
DCHECK_LE(block, blocks_);
tid %= ClockBlock::kClockCount;
if (block == blocks_)
return tab_->clock[tid];
u32 idx = get_block(block);
ClockBlock *cb = ctx->clock_alloc.Map(idx);
return cb->clock[tid];
}
ALWAYS_INLINE uptr SyncClock::capacity() const {
if (size_ == 0)
return 0;
uptr ratio = sizeof(ClockBlock::clock[0]) / sizeof(ClockBlock::table[0]);
// How many clock elements we can fit into the first level block.
// +1 for ref counter.
uptr top = ClockBlock::kClockCount - RoundUpTo(blocks_ + 1, ratio) / ratio;
return blocks_ * ClockBlock::kClockCount + top;
}
ALWAYS_INLINE u32 SyncClock::get_block(uptr bi) const {
DCHECK(size_);
DCHECK_LT(bi, blocks_);
return tab_->table[ClockBlock::kBlockIdx - bi];
}
ALWAYS_INLINE void SyncClock::append_block(u32 idx) {
uptr bi = blocks_++;
CHECK_EQ(get_block(bi), 0);
tab_->table[ClockBlock::kBlockIdx - bi] = idx;
}
// Used only by tests.
u64 SyncClock::get(unsigned tid) const {
for (unsigned i = 0; i < kDirtyTids; i++) {
Dirty dirty = dirty_[i];
if (dirty.tid() == tid)
return dirty.epoch;
}
return elem(tid).epoch;
}
// Used only by Iter test.
u64 SyncClock::get_clean(unsigned tid) const {
return elem(tid).epoch;
}
void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
printf("clock=[");
for (uptr i = 0; i < size_; i++)
printf("%s%llu", i == 0 ? "" : ",", elem(i).epoch);
printf("] reused=[");
for (uptr i = 0; i < size_; i++)
printf("%s%llu", i == 0 ? "" : ",", elem(i).reused);
printf("] release_store_tid=%d/%d dirty_tids=%d[%llu]/%d[%llu]",
release_store_tid_, release_store_reused_, dirty_[0].tid(),
dirty_[0].epoch, dirty_[1].tid(), dirty_[1].epoch);
}
void SyncClock::Iter::Next() {
// Finished with the current block, move on to the next one.
block_++;
if (block_ < parent_->blocks_) {
// Iterate over the next second level block.
u32 idx = parent_->get_block(block_);
ClockBlock *cb = ctx->clock_alloc.Map(idx);
pos_ = &cb->clock[0];
end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
ClockBlock::kClockCount);
return;
}
if (block_ == parent_->blocks_ &&
parent_->size_ > parent_->blocks_ * ClockBlock::kClockCount) {
// Iterate over elements in the first level block.
pos_ = &parent_->tab_->clock[0];
end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
ClockBlock::kClockCount);
return;
}
parent_ = nullptr; // denotes end
}
} // namespace __tsan