forked from OSchip/llvm-project
537 lines
20 KiB
C++
537 lines
20 KiB
C++
//===-- xray_fdr_logging.cc ------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of XRay, a dynamic runtime instruementation system.
|
|
//
|
|
// Here we implement the Flight Data Recorder mode for XRay, where we use
|
|
// compact structures to store records in memory as well as when writing out the
|
|
// data to files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "xray_fdr_logging.h"
|
|
#include <algorithm>
|
|
#include <bitset>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <sys/syscall.h>
|
|
#include <sys/time.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <unordered_map>
|
|
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "xray/xray_interface.h"
|
|
#include "xray/xray_records.h"
|
|
#include "xray_buffer_queue.h"
|
|
#include "xray_defs.h"
|
|
#include "xray_flags.h"
|
|
#include "xray_tsc.h"
|
|
#include "xray_utils.h"
|
|
|
|
namespace __xray {
|
|
|
|
// Global BufferQueue.
|
|
std::shared_ptr<BufferQueue> BQ;
|
|
|
|
std::atomic<XRayLogInitStatus> LoggingStatus{
|
|
XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};
|
|
|
|
std::atomic<XRayLogFlushStatus> LogFlushStatus{
|
|
XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
|
|
|
|
std::unique_ptr<FDRLoggingOptions> FDROptions;
|
|
|
|
XRayLogInitStatus fdrLoggingInit(std::size_t BufferSize, std::size_t BufferMax,
|
|
void *Options,
|
|
size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
|
|
assert(OptionsSize == sizeof(FDRLoggingOptions));
|
|
XRayLogInitStatus CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
|
|
if (!LoggingStatus.compare_exchange_strong(
|
|
CurrentStatus, XRayLogInitStatus::XRAY_LOG_INITIALIZING,
|
|
std::memory_order_release, std::memory_order_relaxed))
|
|
return CurrentStatus;
|
|
|
|
FDROptions.reset(new FDRLoggingOptions());
|
|
*FDROptions = *reinterpret_cast<FDRLoggingOptions *>(Options);
|
|
if (FDROptions->ReportErrors)
|
|
SetPrintfAndReportCallback(printToStdErr);
|
|
|
|
bool Success = false;
|
|
BQ = std::make_shared<BufferQueue>(BufferSize, BufferMax, Success);
|
|
if (!Success) {
|
|
Report("BufferQueue init failed.\n");
|
|
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
|
|
}
|
|
|
|
// Install the actual handleArg0 handler after initialising the buffers.
|
|
__xray_set_handler(fdrLoggingHandleArg0);
|
|
|
|
LoggingStatus.store(XRayLogInitStatus::XRAY_LOG_INITIALIZED,
|
|
std::memory_order_release);
|
|
return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
|
|
}
|
|
|
|
// Must finalize before flushing.
|
|
XRayLogFlushStatus fdrLoggingFlush() XRAY_NEVER_INSTRUMENT {
|
|
if (LoggingStatus.load(std::memory_order_acquire) !=
|
|
XRayLogInitStatus::XRAY_LOG_FINALIZED)
|
|
return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
|
|
|
|
XRayLogFlushStatus Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
|
|
if (!LogFlushStatus.compare_exchange_strong(
|
|
Result, XRayLogFlushStatus::XRAY_LOG_FLUSHING,
|
|
std::memory_order_release, std::memory_order_relaxed))
|
|
return Result;
|
|
|
|
// Make a copy of the BufferQueue pointer to prevent other threads that may be
|
|
// resetting it from blowing away the queue prematurely while we're dealing
|
|
// with it.
|
|
auto LocalBQ = BQ;
|
|
|
|
// We write out the file in the following format:
|
|
//
|
|
// 1) We write down the XRay file header with version 1, type FDR_LOG.
|
|
// 2) Then we use the 'apply' member of the BufferQueue that's live, to
|
|
// ensure that at this point in time we write down the buffers that have
|
|
// been released (and marked "used") -- we dump the full buffer for now
|
|
// (fixed-sized) and let the tools reading the buffers deal with the data
|
|
// afterwards.
|
|
//
|
|
int Fd = FDROptions->Fd;
|
|
if (Fd == -1)
|
|
Fd = getLogFD();
|
|
if (Fd == -1) {
|
|
auto Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
|
|
LogFlushStatus.store(Result, std::memory_order_release);
|
|
return Result;
|
|
}
|
|
|
|
XRayFileHeader Header;
|
|
Header.Version = 1;
|
|
Header.Type = FileTypes::FDR_LOG;
|
|
Header.CycleFrequency = getTSCFrequency();
|
|
// FIXME: Actually check whether we have 'constant_tsc' and 'nonstop_tsc'
|
|
// before setting the values in the header.
|
|
Header.ConstantTSC = 1;
|
|
Header.NonstopTSC = 1;
|
|
clock_gettime(CLOCK_REALTIME, &Header.TS);
|
|
retryingWriteAll(Fd, reinterpret_cast<char *>(&Header),
|
|
reinterpret_cast<char *>(&Header) + sizeof(Header));
|
|
LocalBQ->apply([&](const BufferQueue::Buffer &B) {
|
|
retryingWriteAll(Fd, reinterpret_cast<char *>(B.Buffer),
|
|
reinterpret_cast<char *>(B.Buffer) + B.Size);
|
|
});
|
|
LogFlushStatus.store(XRayLogFlushStatus::XRAY_LOG_FLUSHED,
|
|
std::memory_order_release);
|
|
return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
|
|
}
|
|
|
|
XRayLogInitStatus fdrLoggingFinalize() XRAY_NEVER_INSTRUMENT {
|
|
XRayLogInitStatus CurrentStatus = XRayLogInitStatus::XRAY_LOG_INITIALIZED;
|
|
if (!LoggingStatus.compare_exchange_strong(
|
|
CurrentStatus, XRayLogInitStatus::XRAY_LOG_FINALIZING,
|
|
std::memory_order_release, std::memory_order_relaxed))
|
|
return CurrentStatus;
|
|
|
|
// Do special things to make the log finalize itself, and not allow any more
|
|
// operations to be performed until re-initialized.
|
|
BQ->finalize();
|
|
|
|
LoggingStatus.store(XRayLogInitStatus::XRAY_LOG_FINALIZED,
|
|
std::memory_order_release);
|
|
return XRayLogInitStatus::XRAY_LOG_FINALIZED;
|
|
}
|
|
|
|
XRayLogInitStatus fdrLoggingReset() XRAY_NEVER_INSTRUMENT {
|
|
XRayLogInitStatus CurrentStatus = XRayLogInitStatus::XRAY_LOG_FINALIZED;
|
|
if (!LoggingStatus.compare_exchange_strong(
|
|
CurrentStatus, XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
|
|
std::memory_order_release, std::memory_order_relaxed))
|
|
return CurrentStatus;
|
|
|
|
// Release the in-memory buffer queue.
|
|
BQ.reset();
|
|
|
|
// Spin until the flushing status is flushed.
|
|
XRayLogFlushStatus CurrentFlushingStatus =
|
|
XRayLogFlushStatus::XRAY_LOG_FLUSHED;
|
|
while (!LogFlushStatus.compare_exchange_weak(
|
|
CurrentFlushingStatus, XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING,
|
|
std::memory_order_release, std::memory_order_relaxed)) {
|
|
if (CurrentFlushingStatus == XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING)
|
|
break;
|
|
CurrentFlushingStatus = XRayLogFlushStatus::XRAY_LOG_FLUSHED;
|
|
}
|
|
|
|
// At this point, we know that the status is flushed, and that we can assume
|
|
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
|
|
}
|
|
|
|
namespace {
|
|
thread_local BufferQueue::Buffer Buffer;
|
|
thread_local char *RecordPtr = nullptr;
|
|
|
|
void setupNewBuffer(const BufferQueue::Buffer &Buffer) XRAY_NEVER_INSTRUMENT {
|
|
RecordPtr = static_cast<char *>(Buffer.Buffer);
|
|
|
|
static constexpr int InitRecordsCount = 2;
|
|
std::aligned_storage<sizeof(MetadataRecord)>::type Records[InitRecordsCount];
|
|
{
|
|
// Write out a MetadataRecord to signify that this is the start of a new
|
|
// buffer, associated with a particular thread, with a new CPU. For the
|
|
// data, we have 15 bytes to squeeze as much information as we can. At this
|
|
// point we only write down the following bytes:
|
|
// - Thread ID (pid_t, 4 bytes)
|
|
auto &NewBuffer = *reinterpret_cast<MetadataRecord *>(&Records[0]);
|
|
NewBuffer.Type = uint8_t(RecordType::Metadata);
|
|
NewBuffer.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewBuffer);
|
|
pid_t Tid = syscall(SYS_gettid);
|
|
std::memcpy(&NewBuffer.Data, &Tid, sizeof(pid_t));
|
|
}
|
|
|
|
// Also write the WalltimeMarker record.
|
|
{
|
|
static_assert(sizeof(time_t) <= 8, "time_t needs to be at most 8 bytes");
|
|
auto &WalltimeMarker = *reinterpret_cast<MetadataRecord *>(&Records[1]);
|
|
WalltimeMarker.Type = uint8_t(RecordType::Metadata);
|
|
WalltimeMarker.RecordKind =
|
|
uint8_t(MetadataRecord::RecordKinds::WalltimeMarker);
|
|
timespec TS{0, 0};
|
|
clock_gettime(CLOCK_MONOTONIC, &TS);
|
|
|
|
// We only really need microsecond precision here, and enforce across
|
|
// platforms that we need 64-bit seconds and 32-bit microseconds encoded in
|
|
// the Metadata record.
|
|
int32_t Micros = TS.tv_nsec / 1000;
|
|
int64_t Seconds = TS.tv_sec;
|
|
std::memcpy(WalltimeMarker.Data, &Seconds, sizeof(Seconds));
|
|
std::memcpy(WalltimeMarker.Data + sizeof(Seconds), &Micros, sizeof(Micros));
|
|
}
|
|
std::memcpy(RecordPtr, Records, sizeof(MetadataRecord) * InitRecordsCount);
|
|
RecordPtr += sizeof(MetadataRecord) * InitRecordsCount;
|
|
}
|
|
|
|
void writeNewCPUIdMetadata(uint16_t CPU, uint64_t TSC) XRAY_NEVER_INSTRUMENT {
|
|
MetadataRecord NewCPUId;
|
|
NewCPUId.Type = uint8_t(RecordType::Metadata);
|
|
NewCPUId.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewCPUId);
|
|
|
|
// The data for the New CPU will contain the following bytes:
|
|
// - CPU ID (uint16_t, 2 bytes)
|
|
// - Full TSC (uint64_t, 8 bytes)
|
|
// Total = 12 bytes.
|
|
std::memcpy(&NewCPUId.Data, &CPU, sizeof(CPU));
|
|
std::memcpy(&NewCPUId.Data[sizeof(CPU)], &TSC, sizeof(TSC));
|
|
std::memcpy(RecordPtr, &NewCPUId, sizeof(MetadataRecord));
|
|
RecordPtr += sizeof(MetadataRecord);
|
|
}
|
|
|
|
void writeEOBMetadata() XRAY_NEVER_INSTRUMENT {
|
|
MetadataRecord EOBMeta;
|
|
EOBMeta.Type = uint8_t(RecordType::Metadata);
|
|
EOBMeta.RecordKind = uint8_t(MetadataRecord::RecordKinds::EndOfBuffer);
|
|
// For now we don't write any bytes into the Data field.
|
|
std::memcpy(RecordPtr, &EOBMeta, sizeof(MetadataRecord));
|
|
RecordPtr += sizeof(MetadataRecord);
|
|
}
|
|
|
|
void writeTSCWrapMetadata(uint64_t TSC) XRAY_NEVER_INSTRUMENT {
|
|
MetadataRecord TSCWrap;
|
|
TSCWrap.Type = uint8_t(RecordType::Metadata);
|
|
TSCWrap.RecordKind = uint8_t(MetadataRecord::RecordKinds::TSCWrap);
|
|
|
|
// The data for the TSCWrap record contains the following bytes:
|
|
// - Full TSC (uint64_t, 8 bytes)
|
|
// Total = 8 bytes.
|
|
std::memcpy(&TSCWrap.Data, &TSC, sizeof(TSC));
|
|
std::memcpy(RecordPtr, &TSCWrap, sizeof(MetadataRecord));
|
|
RecordPtr += sizeof(MetadataRecord);
|
|
}
|
|
|
|
constexpr auto MetadataRecSize = sizeof(MetadataRecord);
|
|
constexpr auto FunctionRecSize = sizeof(FunctionRecord);
|
|
|
|
class ThreadExitBufferCleanup {
|
|
std::weak_ptr<BufferQueue> Buffers;
|
|
BufferQueue::Buffer &Buffer;
|
|
|
|
public:
|
|
explicit ThreadExitBufferCleanup(std::weak_ptr<BufferQueue> BQ,
|
|
BufferQueue::Buffer &Buffer)
|
|
XRAY_NEVER_INSTRUMENT : Buffers(BQ),
|
|
Buffer(Buffer) {}
|
|
|
|
~ThreadExitBufferCleanup() noexcept XRAY_NEVER_INSTRUMENT {
|
|
if (RecordPtr == nullptr)
|
|
return;
|
|
|
|
// We make sure that upon exit, a thread will write out the EOB
|
|
// MetadataRecord in the thread-local log, and also release the buffer to
|
|
// the queue.
|
|
assert((RecordPtr + MetadataRecSize) - static_cast<char *>(Buffer.Buffer) >=
|
|
static_cast<ptrdiff_t>(MetadataRecSize));
|
|
if (auto BQ = Buffers.lock()) {
|
|
writeEOBMetadata();
|
|
if (auto EC = BQ->releaseBuffer(Buffer))
|
|
Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
|
|
EC.message().c_str());
|
|
return;
|
|
}
|
|
}
|
|
};
|
|
|
|
class RecursionGuard {
|
|
bool &Running;
|
|
const bool Valid;
|
|
|
|
public:
|
|
explicit RecursionGuard(bool &R) : Running(R), Valid(!R) {
|
|
if (Valid)
|
|
Running = true;
|
|
}
|
|
|
|
RecursionGuard(const RecursionGuard &) = delete;
|
|
RecursionGuard(RecursionGuard &&) = delete;
|
|
RecursionGuard &operator=(const RecursionGuard &) = delete;
|
|
RecursionGuard &operator=(RecursionGuard &&) = delete;
|
|
|
|
explicit operator bool() const { return Valid; }
|
|
|
|
~RecursionGuard() noexcept {
|
|
if (Valid)
|
|
Running = false;
|
|
}
|
|
};
|
|
|
|
inline bool loggingInitialized() {
|
|
return LoggingStatus.load(std::memory_order_acquire) ==
|
|
XRayLogInitStatus::XRAY_LOG_INITIALIZED;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void fdrLoggingHandleArg0(int32_t FuncId,
|
|
XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
|
|
// We want to get the TSC as early as possible, so that we can check whether
|
|
// we've seen this CPU before. We also do it before we load anything else, to
|
|
// allow for forward progress with the scheduling.
|
|
unsigned char CPU;
|
|
uint64_t TSC = __xray::readTSC(CPU);
|
|
|
|
// Bail out right away if logging is not initialized yet.
|
|
if (LoggingStatus.load(std::memory_order_acquire) !=
|
|
XRayLogInitStatus::XRAY_LOG_INITIALIZED)
|
|
return;
|
|
|
|
// We use a thread_local variable to keep track of which CPUs we've already
|
|
// run, and the TSC times for these CPUs. This allows us to stop repeating the
|
|
// CPU field in the function records.
|
|
//
|
|
// We assume that we'll support only 65536 CPUs for x86_64.
|
|
thread_local uint16_t CurrentCPU = std::numeric_limits<uint16_t>::max();
|
|
thread_local uint64_t LastTSC = 0;
|
|
|
|
// Make sure a thread that's ever called handleArg0 has a thread-local
|
|
// live reference to the buffer queue for this particular instance of
|
|
// FDRLogging, and that we're going to clean it up when the thread exits.
|
|
thread_local auto LocalBQ = BQ;
|
|
thread_local ThreadExitBufferCleanup Cleanup(LocalBQ, Buffer);
|
|
|
|
// Prevent signal handler recursion, so in case we're already in a log writing
|
|
// mode and the signal handler comes in (and is also instrumented) then we
|
|
// don't want to be clobbering potentially partial writes already happening in
|
|
// the thread. We use a simple thread_local latch to only allow one on-going
|
|
// handleArg0 to happen at any given time.
|
|
thread_local bool Running = false;
|
|
RecursionGuard Guard{Running};
|
|
if (!Guard) {
|
|
assert(Running == true && "RecursionGuard is buggy!");
|
|
return;
|
|
}
|
|
|
|
if (!loggingInitialized() || LocalBQ->finalizing()) {
|
|
writeEOBMetadata();
|
|
if (auto EC = BQ->releaseBuffer(Buffer)) {
|
|
Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
|
|
EC.message().c_str());
|
|
return;
|
|
}
|
|
RecordPtr = nullptr;
|
|
}
|
|
|
|
if (Buffer.Buffer == nullptr) {
|
|
if (auto EC = LocalBQ->getBuffer(Buffer)) {
|
|
auto LS = LoggingStatus.load(std::memory_order_acquire);
|
|
if (LS != XRayLogInitStatus::XRAY_LOG_FINALIZING &&
|
|
LS != XRayLogInitStatus::XRAY_LOG_FINALIZED)
|
|
Report("Failed to acquire a buffer; error=%s\n", EC.message().c_str());
|
|
return;
|
|
}
|
|
|
|
setupNewBuffer(Buffer);
|
|
}
|
|
|
|
if (CurrentCPU == std::numeric_limits<uint16_t>::max()) {
|
|
// This means this is the first CPU this thread has ever run on. We set the
|
|
// current CPU and record this as the first TSC we've seen.
|
|
CurrentCPU = CPU;
|
|
writeNewCPUIdMetadata(CPU, TSC);
|
|
}
|
|
|
|
// Before we go setting up writing new function entries, we need to be really
|
|
// careful about the pointer math we're doing. This means we need to ensure
|
|
// that the record we are about to write is going to fit into the buffer,
|
|
// without overflowing the buffer.
|
|
//
|
|
// To do this properly, we use the following assumptions:
|
|
//
|
|
// - The least number of bytes we will ever write is 8
|
|
// (sizeof(FunctionRecord)) only if the delta between the previous entry
|
|
// and this entry is within 32 bits.
|
|
// - The most number of bytes we will ever write is 8 + 16 = 24. This is
|
|
// computed by:
|
|
//
|
|
// sizeof(FunctionRecord) + sizeof(MetadataRecord)
|
|
//
|
|
// These arise in the following cases:
|
|
//
|
|
// 1. When the delta between the TSC we get and the previous TSC for the
|
|
// same CPU is outside of the uint32_t range, we end up having to
|
|
// write a MetadataRecord to indicate a "tsc wrap" before the actual
|
|
// FunctionRecord.
|
|
// 2. When we learn that we've moved CPUs, we need to write a
|
|
// MetadataRecord to indicate a "cpu change", and thus write out the
|
|
// current TSC for that CPU before writing out the actual
|
|
// FunctionRecord.
|
|
// 3. When we learn about a new CPU ID, we need to write down a "new cpu
|
|
// id" MetadataRecord before writing out the actual FunctionRecord.
|
|
//
|
|
// - An End-of-Buffer (EOB) MetadataRecord is 16 bytes.
|
|
//
|
|
// So the math we need to do is to determine whether writing 24 bytes past the
|
|
// current pointer leaves us with enough bytes to write the EOB
|
|
// MetadataRecord. If we don't have enough space after writing as much as 24
|
|
// bytes in the end of the buffer, we need to write out the EOB, get a new
|
|
// Buffer, set it up properly before doing any further writing.
|
|
//
|
|
char *BufferStart = static_cast<char *>(Buffer.Buffer);
|
|
if ((RecordPtr + (MetadataRecSize + FunctionRecSize)) - BufferStart <
|
|
static_cast<ptrdiff_t>(MetadataRecSize)) {
|
|
writeEOBMetadata();
|
|
if (auto EC = LocalBQ->releaseBuffer(Buffer)) {
|
|
Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
|
|
EC.message().c_str());
|
|
return;
|
|
}
|
|
if (auto EC = LocalBQ->getBuffer(Buffer)) {
|
|
Report("Failed to acquire a buffer; error=%s\n", EC.message().c_str());
|
|
return;
|
|
}
|
|
setupNewBuffer(Buffer);
|
|
}
|
|
|
|
// By this point, we are now ready to write at most 24 bytes (one metadata
|
|
// record and one function record).
|
|
BufferStart = static_cast<char *>(Buffer.Buffer);
|
|
assert((RecordPtr + (MetadataRecSize + FunctionRecSize)) - BufferStart >=
|
|
static_cast<ptrdiff_t>(MetadataRecSize) &&
|
|
"Misconfigured BufferQueue provided; Buffer size not large enough.");
|
|
|
|
std::aligned_storage<sizeof(FunctionRecord), alignof(FunctionRecord)>::type
|
|
AlignedFuncRecordBuffer;
|
|
auto &FuncRecord =
|
|
*reinterpret_cast<FunctionRecord *>(&AlignedFuncRecordBuffer);
|
|
FuncRecord.Type = uint8_t(RecordType::Function);
|
|
|
|
// Only get the lower 28 bits of the function id.
|
|
FuncRecord.FuncId = FuncId & ~(0x0F << 28);
|
|
|
|
// Here we compute the TSC Delta. There are a few interesting situations we
|
|
// need to account for:
|
|
//
|
|
// - The thread has migrated to a different CPU. If this is the case, then
|
|
// we write down the following records:
|
|
//
|
|
// 1. A 'NewCPUId' Metadata record.
|
|
// 2. A FunctionRecord with a 0 for the TSCDelta field.
|
|
//
|
|
// - The TSC delta is greater than the 32 bits we can store in a
|
|
// FunctionRecord. In this case we write down the following records:
|
|
//
|
|
// 1. A 'TSCWrap' Metadata record.
|
|
// 2. A FunctionRecord with a 0 for the TSCDelta field.
|
|
//
|
|
// - The TSC delta is representable within the 32 bits we can store in a
|
|
// FunctionRecord. In this case we write down just a FunctionRecord with
|
|
// the correct TSC delta.
|
|
//
|
|
FuncRecord.TSCDelta = 0;
|
|
if (CPU != CurrentCPU) {
|
|
// We've moved to a new CPU.
|
|
writeNewCPUIdMetadata(CPU, TSC);
|
|
} else {
|
|
// If the delta is greater than the range for a uint32_t, then we write out
|
|
// the TSC wrap metadata entry with the full TSC, and the TSC for the
|
|
// function record be 0.
|
|
auto Delta = LastTSC - TSC;
|
|
if (Delta > (1ULL << 32) - 1)
|
|
writeTSCWrapMetadata(TSC);
|
|
else
|
|
FuncRecord.TSCDelta = Delta;
|
|
}
|
|
|
|
// We then update our "LastTSC" and "CurrentCPU" thread-local variables to aid
|
|
// us in future computations of this TSC delta value.
|
|
LastTSC = TSC;
|
|
CurrentCPU = CPU;
|
|
|
|
switch (Entry) {
|
|
case XRayEntryType::ENTRY:
|
|
FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionEnter);
|
|
break;
|
|
case XRayEntryType::EXIT:
|
|
FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionExit);
|
|
break;
|
|
case XRayEntryType::TAIL:
|
|
FuncRecord.RecordKind =
|
|
uint8_t(FunctionRecord::RecordKinds::FunctionTailExit);
|
|
break;
|
|
}
|
|
|
|
std::memcpy(RecordPtr, &AlignedFuncRecordBuffer, sizeof(FunctionRecord));
|
|
RecordPtr += sizeof(FunctionRecord);
|
|
|
|
// If we've exhausted the buffer by this time, we then release the buffer to
|
|
// make sure that other threads may start using this buffer.
|
|
if ((RecordPtr + MetadataRecSize) - BufferStart == MetadataRecSize) {
|
|
writeEOBMetadata();
|
|
if (auto EC = LocalBQ->releaseBuffer(Buffer)) {
|
|
Report("Failed releasing buffer at %p; error=%s\n", Buffer.Buffer,
|
|
EC.message().c_str());
|
|
return;
|
|
}
|
|
RecordPtr = nullptr;
|
|
}
|
|
}
|
|
|
|
} // namespace __xray
|
|
|
|
static auto UNUSED Unused = [] {
|
|
using namespace __xray;
|
|
if (flags()->xray_fdr_log) {
|
|
XRayLogImpl Impl{
|
|
fdrLoggingInit, fdrLoggingFinalize, fdrLoggingHandleArg0,
|
|
fdrLoggingFlush,
|
|
};
|
|
__xray_set_log_impl(Impl);
|
|
}
|
|
return true;
|
|
}();
|