forked from OSchip/llvm-project
2228 lines
82 KiB
C++
2228 lines
82 KiB
C++
//===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code dealing with C++ code generation of classes
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGBlocks.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "CGRecordLayout.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CGCXXABI.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/Basic/TargetBuiltins.h"
|
|
#include "clang/CodeGen/CGFunctionInfo.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
static CharUnits
|
|
ComputeNonVirtualBaseClassOffset(ASTContext &Context,
|
|
const CXXRecordDecl *DerivedClass,
|
|
CastExpr::path_const_iterator Start,
|
|
CastExpr::path_const_iterator End) {
|
|
CharUnits Offset = CharUnits::Zero();
|
|
|
|
const CXXRecordDecl *RD = DerivedClass;
|
|
|
|
for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
|
|
const CXXBaseSpecifier *Base = *I;
|
|
assert(!Base->isVirtual() && "Should not see virtual bases here!");
|
|
|
|
// Get the layout.
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
const CXXRecordDecl *BaseDecl =
|
|
cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// Add the offset.
|
|
Offset += Layout.getBaseClassOffset(BaseDecl);
|
|
|
|
RD = BaseDecl;
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
llvm::Constant *
|
|
CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
|
|
CastExpr::path_const_iterator PathBegin,
|
|
CastExpr::path_const_iterator PathEnd) {
|
|
assert(PathBegin != PathEnd && "Base path should not be empty!");
|
|
|
|
CharUnits Offset =
|
|
ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
|
|
PathBegin, PathEnd);
|
|
if (Offset.isZero())
|
|
return 0;
|
|
|
|
llvm::Type *PtrDiffTy =
|
|
Types.ConvertType(getContext().getPointerDiffType());
|
|
|
|
return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
|
|
}
|
|
|
|
/// Gets the address of a direct base class within a complete object.
|
|
/// This should only be used for (1) non-virtual bases or (2) virtual bases
|
|
/// when the type is known to be complete (e.g. in complete destructors).
|
|
///
|
|
/// The object pointed to by 'This' is assumed to be non-null.
|
|
llvm::Value *
|
|
CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
|
|
const CXXRecordDecl *Derived,
|
|
const CXXRecordDecl *Base,
|
|
bool BaseIsVirtual) {
|
|
// 'this' must be a pointer (in some address space) to Derived.
|
|
assert(This->getType()->isPointerTy() &&
|
|
cast<llvm::PointerType>(This->getType())->getElementType()
|
|
== ConvertType(Derived));
|
|
|
|
// Compute the offset of the virtual base.
|
|
CharUnits Offset;
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
|
|
if (BaseIsVirtual)
|
|
Offset = Layout.getVBaseClassOffset(Base);
|
|
else
|
|
Offset = Layout.getBaseClassOffset(Base);
|
|
|
|
// Shift and cast down to the base type.
|
|
// TODO: for complete types, this should be possible with a GEP.
|
|
llvm::Value *V = This;
|
|
if (Offset.isPositive()) {
|
|
V = Builder.CreateBitCast(V, Int8PtrTy);
|
|
V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
|
|
}
|
|
V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
|
|
|
|
return V;
|
|
}
|
|
|
|
static llvm::Value *
|
|
ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
|
|
CharUnits nonVirtualOffset,
|
|
llvm::Value *virtualOffset) {
|
|
// Assert that we have something to do.
|
|
assert(!nonVirtualOffset.isZero() || virtualOffset != 0);
|
|
|
|
// Compute the offset from the static and dynamic components.
|
|
llvm::Value *baseOffset;
|
|
if (!nonVirtualOffset.isZero()) {
|
|
baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
|
|
nonVirtualOffset.getQuantity());
|
|
if (virtualOffset) {
|
|
baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
|
|
}
|
|
} else {
|
|
baseOffset = virtualOffset;
|
|
}
|
|
|
|
// Apply the base offset.
|
|
ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
|
|
ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
|
|
return ptr;
|
|
}
|
|
|
|
llvm::Value *
|
|
CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
|
|
const CXXRecordDecl *Derived,
|
|
CastExpr::path_const_iterator PathBegin,
|
|
CastExpr::path_const_iterator PathEnd,
|
|
bool NullCheckValue) {
|
|
assert(PathBegin != PathEnd && "Base path should not be empty!");
|
|
|
|
CastExpr::path_const_iterator Start = PathBegin;
|
|
const CXXRecordDecl *VBase = 0;
|
|
|
|
// Sema has done some convenient canonicalization here: if the
|
|
// access path involved any virtual steps, the conversion path will
|
|
// *start* with a step down to the correct virtual base subobject,
|
|
// and hence will not require any further steps.
|
|
if ((*Start)->isVirtual()) {
|
|
VBase =
|
|
cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
|
|
++Start;
|
|
}
|
|
|
|
// Compute the static offset of the ultimate destination within its
|
|
// allocating subobject (the virtual base, if there is one, or else
|
|
// the "complete" object that we see).
|
|
CharUnits NonVirtualOffset =
|
|
ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
|
|
Start, PathEnd);
|
|
|
|
// If there's a virtual step, we can sometimes "devirtualize" it.
|
|
// For now, that's limited to when the derived type is final.
|
|
// TODO: "devirtualize" this for accesses to known-complete objects.
|
|
if (VBase && Derived->hasAttr<FinalAttr>()) {
|
|
const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
|
|
CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
|
|
NonVirtualOffset += vBaseOffset;
|
|
VBase = 0; // we no longer have a virtual step
|
|
}
|
|
|
|
// Get the base pointer type.
|
|
llvm::Type *BasePtrTy =
|
|
ConvertType((PathEnd[-1])->getType())->getPointerTo();
|
|
|
|
// If the static offset is zero and we don't have a virtual step,
|
|
// just do a bitcast; null checks are unnecessary.
|
|
if (NonVirtualOffset.isZero() && !VBase) {
|
|
return Builder.CreateBitCast(Value, BasePtrTy);
|
|
}
|
|
|
|
llvm::BasicBlock *origBB = 0;
|
|
llvm::BasicBlock *endBB = 0;
|
|
|
|
// Skip over the offset (and the vtable load) if we're supposed to
|
|
// null-check the pointer.
|
|
if (NullCheckValue) {
|
|
origBB = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
|
|
endBB = createBasicBlock("cast.end");
|
|
|
|
llvm::Value *isNull = Builder.CreateIsNull(Value);
|
|
Builder.CreateCondBr(isNull, endBB, notNullBB);
|
|
EmitBlock(notNullBB);
|
|
}
|
|
|
|
// Compute the virtual offset.
|
|
llvm::Value *VirtualOffset = 0;
|
|
if (VBase) {
|
|
VirtualOffset =
|
|
CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
|
|
}
|
|
|
|
// Apply both offsets.
|
|
Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
|
|
NonVirtualOffset,
|
|
VirtualOffset);
|
|
|
|
// Cast to the destination type.
|
|
Value = Builder.CreateBitCast(Value, BasePtrTy);
|
|
|
|
// Build a phi if we needed a null check.
|
|
if (NullCheckValue) {
|
|
llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
|
|
Builder.CreateBr(endBB);
|
|
EmitBlock(endBB);
|
|
|
|
llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
|
|
PHI->addIncoming(Value, notNullBB);
|
|
PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
|
|
Value = PHI;
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
llvm::Value *
|
|
CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
|
|
const CXXRecordDecl *Derived,
|
|
CastExpr::path_const_iterator PathBegin,
|
|
CastExpr::path_const_iterator PathEnd,
|
|
bool NullCheckValue) {
|
|
assert(PathBegin != PathEnd && "Base path should not be empty!");
|
|
|
|
QualType DerivedTy =
|
|
getContext().getCanonicalType(getContext().getTagDeclType(Derived));
|
|
llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
|
|
|
|
llvm::Value *NonVirtualOffset =
|
|
CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
|
|
|
|
if (!NonVirtualOffset) {
|
|
// No offset, we can just cast back.
|
|
return Builder.CreateBitCast(Value, DerivedPtrTy);
|
|
}
|
|
|
|
llvm::BasicBlock *CastNull = 0;
|
|
llvm::BasicBlock *CastNotNull = 0;
|
|
llvm::BasicBlock *CastEnd = 0;
|
|
|
|
if (NullCheckValue) {
|
|
CastNull = createBasicBlock("cast.null");
|
|
CastNotNull = createBasicBlock("cast.notnull");
|
|
CastEnd = createBasicBlock("cast.end");
|
|
|
|
llvm::Value *IsNull = Builder.CreateIsNull(Value);
|
|
Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
|
|
EmitBlock(CastNotNull);
|
|
}
|
|
|
|
// Apply the offset.
|
|
Value = Builder.CreateBitCast(Value, Int8PtrTy);
|
|
Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
|
|
"sub.ptr");
|
|
|
|
// Just cast.
|
|
Value = Builder.CreateBitCast(Value, DerivedPtrTy);
|
|
|
|
if (NullCheckValue) {
|
|
Builder.CreateBr(CastEnd);
|
|
EmitBlock(CastNull);
|
|
Builder.CreateBr(CastEnd);
|
|
EmitBlock(CastEnd);
|
|
|
|
llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
|
|
PHI->addIncoming(Value, CastNotNull);
|
|
PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
|
|
CastNull);
|
|
Value = PHI;
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
|
|
bool ForVirtualBase,
|
|
bool Delegating) {
|
|
if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
|
|
// This constructor/destructor does not need a VTT parameter.
|
|
return 0;
|
|
}
|
|
|
|
const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
|
|
const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
|
|
|
|
llvm::Value *VTT;
|
|
|
|
uint64_t SubVTTIndex;
|
|
|
|
if (Delegating) {
|
|
// If this is a delegating constructor call, just load the VTT.
|
|
return LoadCXXVTT();
|
|
} else if (RD == Base) {
|
|
// If the record matches the base, this is the complete ctor/dtor
|
|
// variant calling the base variant in a class with virtual bases.
|
|
assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
|
|
"doing no-op VTT offset in base dtor/ctor?");
|
|
assert(!ForVirtualBase && "Can't have same class as virtual base!");
|
|
SubVTTIndex = 0;
|
|
} else {
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
CharUnits BaseOffset = ForVirtualBase ?
|
|
Layout.getVBaseClassOffset(Base) :
|
|
Layout.getBaseClassOffset(Base);
|
|
|
|
SubVTTIndex =
|
|
CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
|
|
assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
|
|
}
|
|
|
|
if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
|
|
// A VTT parameter was passed to the constructor, use it.
|
|
VTT = LoadCXXVTT();
|
|
VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
|
|
} else {
|
|
// We're the complete constructor, so get the VTT by name.
|
|
VTT = CGM.getVTables().GetAddrOfVTT(RD);
|
|
VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
|
|
}
|
|
|
|
return VTT;
|
|
}
|
|
|
|
namespace {
|
|
/// Call the destructor for a direct base class.
|
|
struct CallBaseDtor : EHScopeStack::Cleanup {
|
|
const CXXRecordDecl *BaseClass;
|
|
bool BaseIsVirtual;
|
|
CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
|
|
: BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
const CXXRecordDecl *DerivedClass =
|
|
cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
|
|
|
|
const CXXDestructorDecl *D = BaseClass->getDestructor();
|
|
llvm::Value *Addr =
|
|
CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
|
|
DerivedClass, BaseClass,
|
|
BaseIsVirtual);
|
|
CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
|
|
/*Delegating=*/false, Addr);
|
|
}
|
|
};
|
|
|
|
/// A visitor which checks whether an initializer uses 'this' in a
|
|
/// way which requires the vtable to be properly set.
|
|
struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
|
|
typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
|
|
|
|
bool UsesThis;
|
|
|
|
DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
|
|
|
|
// Black-list all explicit and implicit references to 'this'.
|
|
//
|
|
// Do we need to worry about external references to 'this' derived
|
|
// from arbitrary code? If so, then anything which runs arbitrary
|
|
// external code might potentially access the vtable.
|
|
void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
|
|
};
|
|
}
|
|
|
|
static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
|
|
DynamicThisUseChecker Checker(C);
|
|
Checker.Visit(const_cast<Expr*>(Init));
|
|
return Checker.UsesThis;
|
|
}
|
|
|
|
static void EmitBaseInitializer(CodeGenFunction &CGF,
|
|
const CXXRecordDecl *ClassDecl,
|
|
CXXCtorInitializer *BaseInit,
|
|
CXXCtorType CtorType) {
|
|
assert(BaseInit->isBaseInitializer() &&
|
|
"Must have base initializer!");
|
|
|
|
llvm::Value *ThisPtr = CGF.LoadCXXThis();
|
|
|
|
const Type *BaseType = BaseInit->getBaseClass();
|
|
CXXRecordDecl *BaseClassDecl =
|
|
cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
|
|
|
|
bool isBaseVirtual = BaseInit->isBaseVirtual();
|
|
|
|
// The base constructor doesn't construct virtual bases.
|
|
if (CtorType == Ctor_Base && isBaseVirtual)
|
|
return;
|
|
|
|
// If the initializer for the base (other than the constructor
|
|
// itself) accesses 'this' in any way, we need to initialize the
|
|
// vtables.
|
|
if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
|
|
CGF.InitializeVTablePointers(ClassDecl);
|
|
|
|
// We can pretend to be a complete class because it only matters for
|
|
// virtual bases, and we only do virtual bases for complete ctors.
|
|
llvm::Value *V =
|
|
CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
|
|
BaseClassDecl,
|
|
isBaseVirtual);
|
|
CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
|
|
AggValueSlot AggSlot =
|
|
AggValueSlot::forAddr(V, Alignment, Qualifiers(),
|
|
AggValueSlot::IsDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsNotAliased);
|
|
|
|
CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
|
|
|
|
if (CGF.CGM.getLangOpts().Exceptions &&
|
|
!BaseClassDecl->hasTrivialDestructor())
|
|
CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
|
|
isBaseVirtual);
|
|
}
|
|
|
|
static void EmitAggMemberInitializer(CodeGenFunction &CGF,
|
|
LValue LHS,
|
|
Expr *Init,
|
|
llvm::Value *ArrayIndexVar,
|
|
QualType T,
|
|
ArrayRef<VarDecl *> ArrayIndexes,
|
|
unsigned Index) {
|
|
if (Index == ArrayIndexes.size()) {
|
|
LValue LV = LHS;
|
|
|
|
if (ArrayIndexVar) {
|
|
// If we have an array index variable, load it and use it as an offset.
|
|
// Then, increment the value.
|
|
llvm::Value *Dest = LHS.getAddress();
|
|
llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
|
|
Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
|
|
llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
|
|
Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
|
|
CGF.Builder.CreateStore(Next, ArrayIndexVar);
|
|
|
|
// Update the LValue.
|
|
LV.setAddress(Dest);
|
|
CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
|
|
LV.setAlignment(std::min(Align, LV.getAlignment()));
|
|
}
|
|
|
|
switch (CGF.getEvaluationKind(T)) {
|
|
case TEK_Scalar:
|
|
CGF.EmitScalarInit(Init, /*decl*/ 0, LV, false);
|
|
break;
|
|
case TEK_Complex:
|
|
CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
|
|
break;
|
|
case TEK_Aggregate: {
|
|
AggValueSlot Slot =
|
|
AggValueSlot::forLValue(LV,
|
|
AggValueSlot::IsDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsNotAliased);
|
|
|
|
CGF.EmitAggExpr(Init, Slot);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
|
|
assert(Array && "Array initialization without the array type?");
|
|
llvm::Value *IndexVar
|
|
= CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
|
|
assert(IndexVar && "Array index variable not loaded");
|
|
|
|
// Initialize this index variable to zero.
|
|
llvm::Value* Zero
|
|
= llvm::Constant::getNullValue(
|
|
CGF.ConvertType(CGF.getContext().getSizeType()));
|
|
CGF.Builder.CreateStore(Zero, IndexVar);
|
|
|
|
// Start the loop with a block that tests the condition.
|
|
llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
|
|
llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
|
|
|
|
CGF.EmitBlock(CondBlock);
|
|
|
|
llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
|
|
// Generate: if (loop-index < number-of-elements) fall to the loop body,
|
|
// otherwise, go to the block after the for-loop.
|
|
uint64_t NumElements = Array->getSize().getZExtValue();
|
|
llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
|
|
llvm::Value *NumElementsPtr =
|
|
llvm::ConstantInt::get(Counter->getType(), NumElements);
|
|
llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
|
|
"isless");
|
|
|
|
// If the condition is true, execute the body.
|
|
CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
|
|
|
|
CGF.EmitBlock(ForBody);
|
|
llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
|
|
|
|
// Inside the loop body recurse to emit the inner loop or, eventually, the
|
|
// constructor call.
|
|
EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
|
|
Array->getElementType(), ArrayIndexes, Index + 1);
|
|
|
|
CGF.EmitBlock(ContinueBlock);
|
|
|
|
// Emit the increment of the loop counter.
|
|
llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
|
|
Counter = CGF.Builder.CreateLoad(IndexVar);
|
|
NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
|
|
CGF.Builder.CreateStore(NextVal, IndexVar);
|
|
|
|
// Finally, branch back up to the condition for the next iteration.
|
|
CGF.EmitBranch(CondBlock);
|
|
|
|
// Emit the fall-through block.
|
|
CGF.EmitBlock(AfterFor, true);
|
|
}
|
|
|
|
static void EmitMemberInitializer(CodeGenFunction &CGF,
|
|
const CXXRecordDecl *ClassDecl,
|
|
CXXCtorInitializer *MemberInit,
|
|
const CXXConstructorDecl *Constructor,
|
|
FunctionArgList &Args) {
|
|
assert(MemberInit->isAnyMemberInitializer() &&
|
|
"Must have member initializer!");
|
|
assert(MemberInit->getInit() && "Must have initializer!");
|
|
|
|
// non-static data member initializers.
|
|
FieldDecl *Field = MemberInit->getAnyMember();
|
|
QualType FieldType = Field->getType();
|
|
|
|
llvm::Value *ThisPtr = CGF.LoadCXXThis();
|
|
QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
|
|
LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
|
|
|
|
if (MemberInit->isIndirectMemberInitializer()) {
|
|
// If we are initializing an anonymous union field, drill down to
|
|
// the field.
|
|
IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
|
|
IndirectFieldDecl::chain_iterator I = IndirectField->chain_begin(),
|
|
IEnd = IndirectField->chain_end();
|
|
for ( ; I != IEnd; ++I)
|
|
LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(*I));
|
|
FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
|
|
} else {
|
|
LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
|
|
}
|
|
|
|
// Special case: if we are in a copy or move constructor, and we are copying
|
|
// an array of PODs or classes with trivial copy constructors, ignore the
|
|
// AST and perform the copy we know is equivalent.
|
|
// FIXME: This is hacky at best... if we had a bit more explicit information
|
|
// in the AST, we could generalize it more easily.
|
|
const ConstantArrayType *Array
|
|
= CGF.getContext().getAsConstantArrayType(FieldType);
|
|
if (Array && Constructor->isDefaulted() &&
|
|
Constructor->isCopyOrMoveConstructor()) {
|
|
QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
|
|
CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
|
|
if (BaseElementTy.isPODType(CGF.getContext()) ||
|
|
(CE && CE->getConstructor()->isTrivial())) {
|
|
// Find the source pointer. We know it's the last argument because
|
|
// we know we're in an implicit copy constructor.
|
|
unsigned SrcArgIndex = Args.size() - 1;
|
|
llvm::Value *SrcPtr
|
|
= CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
|
|
LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
|
|
LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
|
|
|
|
// Copy the aggregate.
|
|
CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
|
|
LHS.isVolatileQualified());
|
|
return;
|
|
}
|
|
}
|
|
|
|
ArrayRef<VarDecl *> ArrayIndexes;
|
|
if (MemberInit->getNumArrayIndices())
|
|
ArrayIndexes = MemberInit->getArrayIndexes();
|
|
CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
|
|
}
|
|
|
|
void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
|
|
LValue LHS, Expr *Init,
|
|
ArrayRef<VarDecl *> ArrayIndexes) {
|
|
QualType FieldType = Field->getType();
|
|
switch (getEvaluationKind(FieldType)) {
|
|
case TEK_Scalar:
|
|
if (LHS.isSimple()) {
|
|
EmitExprAsInit(Init, Field, LHS, false);
|
|
} else {
|
|
RValue RHS = RValue::get(EmitScalarExpr(Init));
|
|
EmitStoreThroughLValue(RHS, LHS);
|
|
}
|
|
break;
|
|
case TEK_Complex:
|
|
EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
|
|
break;
|
|
case TEK_Aggregate: {
|
|
llvm::Value *ArrayIndexVar = 0;
|
|
if (ArrayIndexes.size()) {
|
|
llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
|
|
|
|
// The LHS is a pointer to the first object we'll be constructing, as
|
|
// a flat array.
|
|
QualType BaseElementTy = getContext().getBaseElementType(FieldType);
|
|
llvm::Type *BasePtr = ConvertType(BaseElementTy);
|
|
BasePtr = llvm::PointerType::getUnqual(BasePtr);
|
|
llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
|
|
BasePtr);
|
|
LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
|
|
|
|
// Create an array index that will be used to walk over all of the
|
|
// objects we're constructing.
|
|
ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
|
|
Builder.CreateStore(Zero, ArrayIndexVar);
|
|
|
|
|
|
// Emit the block variables for the array indices, if any.
|
|
for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
|
|
EmitAutoVarDecl(*ArrayIndexes[I]);
|
|
}
|
|
|
|
EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
|
|
ArrayIndexes, 0);
|
|
}
|
|
}
|
|
|
|
// Ensure that we destroy this object if an exception is thrown
|
|
// later in the constructor.
|
|
QualType::DestructionKind dtorKind = FieldType.isDestructedType();
|
|
if (needsEHCleanup(dtorKind))
|
|
pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
|
|
}
|
|
|
|
/// Checks whether the given constructor is a valid subject for the
|
|
/// complete-to-base constructor delegation optimization, i.e.
|
|
/// emitting the complete constructor as a simple call to the base
|
|
/// constructor.
|
|
static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
|
|
|
|
// Currently we disable the optimization for classes with virtual
|
|
// bases because (1) the addresses of parameter variables need to be
|
|
// consistent across all initializers but (2) the delegate function
|
|
// call necessarily creates a second copy of the parameter variable.
|
|
//
|
|
// The limiting example (purely theoretical AFAIK):
|
|
// struct A { A(int &c) { c++; } };
|
|
// struct B : virtual A {
|
|
// B(int count) : A(count) { printf("%d\n", count); }
|
|
// };
|
|
// ...although even this example could in principle be emitted as a
|
|
// delegation since the address of the parameter doesn't escape.
|
|
if (Ctor->getParent()->getNumVBases()) {
|
|
// TODO: white-list trivial vbase initializers. This case wouldn't
|
|
// be subject to the restrictions below.
|
|
|
|
// TODO: white-list cases where:
|
|
// - there are no non-reference parameters to the constructor
|
|
// - the initializers don't access any non-reference parameters
|
|
// - the initializers don't take the address of non-reference
|
|
// parameters
|
|
// - etc.
|
|
// If we ever add any of the above cases, remember that:
|
|
// - function-try-blocks will always blacklist this optimization
|
|
// - we need to perform the constructor prologue and cleanup in
|
|
// EmitConstructorBody.
|
|
|
|
return false;
|
|
}
|
|
|
|
// We also disable the optimization for variadic functions because
|
|
// it's impossible to "re-pass" varargs.
|
|
if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
|
|
return false;
|
|
|
|
// FIXME: Decide if we can do a delegation of a delegating constructor.
|
|
if (Ctor->isDelegatingConstructor())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// EmitConstructorBody - Emits the body of the current constructor.
|
|
void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
|
|
const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
|
|
CXXCtorType CtorType = CurGD.getCtorType();
|
|
|
|
// Before we go any further, try the complete->base constructor
|
|
// delegation optimization.
|
|
if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
|
|
CGM.getTarget().getCXXABI().hasConstructorVariants()) {
|
|
if (CGDebugInfo *DI = getDebugInfo())
|
|
DI->EmitLocation(Builder, Ctor->getLocEnd());
|
|
EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
|
|
return;
|
|
}
|
|
|
|
Stmt *Body = Ctor->getBody();
|
|
|
|
// Enter the function-try-block before the constructor prologue if
|
|
// applicable.
|
|
bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
|
|
if (IsTryBody)
|
|
EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
|
|
|
|
RunCleanupsScope RunCleanups(*this);
|
|
|
|
// TODO: in restricted cases, we can emit the vbase initializers of
|
|
// a complete ctor and then delegate to the base ctor.
|
|
|
|
// Emit the constructor prologue, i.e. the base and member
|
|
// initializers.
|
|
EmitCtorPrologue(Ctor, CtorType, Args);
|
|
|
|
// Emit the body of the statement.
|
|
if (IsTryBody)
|
|
EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
|
|
else if (Body)
|
|
EmitStmt(Body);
|
|
|
|
// Emit any cleanup blocks associated with the member or base
|
|
// initializers, which includes (along the exceptional path) the
|
|
// destructors for those members and bases that were fully
|
|
// constructed.
|
|
RunCleanups.ForceCleanup();
|
|
|
|
if (IsTryBody)
|
|
ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
|
|
}
|
|
|
|
namespace {
|
|
/// RAII object to indicate that codegen is copying the value representation
|
|
/// instead of the object representation. Useful when copying a struct or
|
|
/// class which has uninitialized members and we're only performing
|
|
/// lvalue-to-rvalue conversion on the object but not its members.
|
|
class CopyingValueRepresentation {
|
|
public:
|
|
explicit CopyingValueRepresentation(CodeGenFunction &CGF)
|
|
: CGF(CGF), SO(*CGF.SanOpts), OldSanOpts(CGF.SanOpts) {
|
|
SO.Bool = false;
|
|
SO.Enum = false;
|
|
CGF.SanOpts = &SO;
|
|
}
|
|
~CopyingValueRepresentation() {
|
|
CGF.SanOpts = OldSanOpts;
|
|
}
|
|
private:
|
|
CodeGenFunction &CGF;
|
|
SanitizerOptions SO;
|
|
const SanitizerOptions *OldSanOpts;
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
class FieldMemcpyizer {
|
|
public:
|
|
FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
|
|
const VarDecl *SrcRec)
|
|
: CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
|
|
RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
|
|
FirstField(0), LastField(0), FirstFieldOffset(0), LastFieldOffset(0),
|
|
LastAddedFieldIndex(0) { }
|
|
|
|
static bool isMemcpyableField(FieldDecl *F) {
|
|
Qualifiers Qual = F->getType().getQualifiers();
|
|
if (Qual.hasVolatile() || Qual.hasObjCLifetime())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void addMemcpyableField(FieldDecl *F) {
|
|
if (FirstField == 0)
|
|
addInitialField(F);
|
|
else
|
|
addNextField(F);
|
|
}
|
|
|
|
CharUnits getMemcpySize() const {
|
|
unsigned LastFieldSize =
|
|
LastField->isBitField() ?
|
|
LastField->getBitWidthValue(CGF.getContext()) :
|
|
CGF.getContext().getTypeSize(LastField->getType());
|
|
uint64_t MemcpySizeBits =
|
|
LastFieldOffset + LastFieldSize - FirstFieldOffset +
|
|
CGF.getContext().getCharWidth() - 1;
|
|
CharUnits MemcpySize =
|
|
CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
|
|
return MemcpySize;
|
|
}
|
|
|
|
void emitMemcpy() {
|
|
// Give the subclass a chance to bail out if it feels the memcpy isn't
|
|
// worth it (e.g. Hasn't aggregated enough data).
|
|
if (FirstField == 0) {
|
|
return;
|
|
}
|
|
|
|
CharUnits Alignment;
|
|
|
|
if (FirstField->isBitField()) {
|
|
const CGRecordLayout &RL =
|
|
CGF.getTypes().getCGRecordLayout(FirstField->getParent());
|
|
const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
|
|
Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
|
|
} else {
|
|
Alignment = CGF.getContext().getDeclAlign(FirstField);
|
|
}
|
|
|
|
assert((CGF.getContext().toCharUnitsFromBits(FirstFieldOffset) %
|
|
Alignment) == 0 && "Bad field alignment.");
|
|
|
|
CharUnits MemcpySize = getMemcpySize();
|
|
QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
|
|
llvm::Value *ThisPtr = CGF.LoadCXXThis();
|
|
LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
|
|
LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
|
|
llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
|
|
LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
|
|
LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
|
|
|
|
emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
|
|
Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
|
|
MemcpySize, Alignment);
|
|
reset();
|
|
}
|
|
|
|
void reset() {
|
|
FirstField = 0;
|
|
}
|
|
|
|
protected:
|
|
CodeGenFunction &CGF;
|
|
const CXXRecordDecl *ClassDecl;
|
|
|
|
private:
|
|
|
|
void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
|
|
CharUnits Size, CharUnits Alignment) {
|
|
llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
|
|
llvm::Type *DBP =
|
|
llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
|
|
DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
|
|
|
|
llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
|
|
llvm::Type *SBP =
|
|
llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
|
|
SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
|
|
|
|
CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
|
|
Alignment.getQuantity());
|
|
}
|
|
|
|
void addInitialField(FieldDecl *F) {
|
|
FirstField = F;
|
|
LastField = F;
|
|
FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
|
|
LastFieldOffset = FirstFieldOffset;
|
|
LastAddedFieldIndex = F->getFieldIndex();
|
|
return;
|
|
}
|
|
|
|
void addNextField(FieldDecl *F) {
|
|
// For the most part, the following invariant will hold:
|
|
// F->getFieldIndex() == LastAddedFieldIndex + 1
|
|
// The one exception is that Sema won't add a copy-initializer for an
|
|
// unnamed bitfield, which will show up here as a gap in the sequence.
|
|
assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
|
|
"Cannot aggregate fields out of order.");
|
|
LastAddedFieldIndex = F->getFieldIndex();
|
|
|
|
// The 'first' and 'last' fields are chosen by offset, rather than field
|
|
// index. This allows the code to support bitfields, as well as regular
|
|
// fields.
|
|
uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
|
|
if (FOffset < FirstFieldOffset) {
|
|
FirstField = F;
|
|
FirstFieldOffset = FOffset;
|
|
} else if (FOffset > LastFieldOffset) {
|
|
LastField = F;
|
|
LastFieldOffset = FOffset;
|
|
}
|
|
}
|
|
|
|
const VarDecl *SrcRec;
|
|
const ASTRecordLayout &RecLayout;
|
|
FieldDecl *FirstField;
|
|
FieldDecl *LastField;
|
|
uint64_t FirstFieldOffset, LastFieldOffset;
|
|
unsigned LastAddedFieldIndex;
|
|
};
|
|
|
|
class ConstructorMemcpyizer : public FieldMemcpyizer {
|
|
private:
|
|
|
|
/// Get source argument for copy constructor. Returns null if not a copy
|
|
/// constructor.
|
|
static const VarDecl* getTrivialCopySource(const CXXConstructorDecl *CD,
|
|
FunctionArgList &Args) {
|
|
if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
|
|
return Args[Args.size() - 1];
|
|
return 0;
|
|
}
|
|
|
|
// Returns true if a CXXCtorInitializer represents a member initialization
|
|
// that can be rolled into a memcpy.
|
|
bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
|
|
if (!MemcpyableCtor)
|
|
return false;
|
|
FieldDecl *Field = MemberInit->getMember();
|
|
assert(Field != 0 && "No field for member init.");
|
|
QualType FieldType = Field->getType();
|
|
CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
|
|
|
|
// Bail out on non-POD, not-trivially-constructable members.
|
|
if (!(CE && CE->getConstructor()->isTrivial()) &&
|
|
!(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
|
|
FieldType->isReferenceType()))
|
|
return false;
|
|
|
|
// Bail out on volatile fields.
|
|
if (!isMemcpyableField(Field))
|
|
return false;
|
|
|
|
// Otherwise we're good.
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
|
|
FunctionArgList &Args)
|
|
: FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CD, Args)),
|
|
ConstructorDecl(CD),
|
|
MemcpyableCtor(CD->isDefaulted() &&
|
|
CD->isCopyOrMoveConstructor() &&
|
|
CGF.getLangOpts().getGC() == LangOptions::NonGC),
|
|
Args(Args) { }
|
|
|
|
void addMemberInitializer(CXXCtorInitializer *MemberInit) {
|
|
if (isMemberInitMemcpyable(MemberInit)) {
|
|
AggregatedInits.push_back(MemberInit);
|
|
addMemcpyableField(MemberInit->getMember());
|
|
} else {
|
|
emitAggregatedInits();
|
|
EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
|
|
ConstructorDecl, Args);
|
|
}
|
|
}
|
|
|
|
void emitAggregatedInits() {
|
|
if (AggregatedInits.size() <= 1) {
|
|
// This memcpy is too small to be worthwhile. Fall back on default
|
|
// codegen.
|
|
if (!AggregatedInits.empty()) {
|
|
CopyingValueRepresentation CVR(CGF);
|
|
EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
|
|
AggregatedInits[0], ConstructorDecl, Args);
|
|
}
|
|
reset();
|
|
return;
|
|
}
|
|
|
|
pushEHDestructors();
|
|
emitMemcpy();
|
|
AggregatedInits.clear();
|
|
}
|
|
|
|
void pushEHDestructors() {
|
|
llvm::Value *ThisPtr = CGF.LoadCXXThis();
|
|
QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
|
|
LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
|
|
|
|
for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
|
|
QualType FieldType = AggregatedInits[i]->getMember()->getType();
|
|
QualType::DestructionKind dtorKind = FieldType.isDestructedType();
|
|
if (CGF.needsEHCleanup(dtorKind))
|
|
CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
|
|
}
|
|
}
|
|
|
|
void finish() {
|
|
emitAggregatedInits();
|
|
}
|
|
|
|
private:
|
|
const CXXConstructorDecl *ConstructorDecl;
|
|
bool MemcpyableCtor;
|
|
FunctionArgList &Args;
|
|
SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
|
|
};
|
|
|
|
class AssignmentMemcpyizer : public FieldMemcpyizer {
|
|
private:
|
|
|
|
// Returns the memcpyable field copied by the given statement, if one
|
|
// exists. Otherwise returns null.
|
|
FieldDecl *getMemcpyableField(Stmt *S) {
|
|
if (!AssignmentsMemcpyable)
|
|
return 0;
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
|
|
// Recognise trivial assignments.
|
|
if (BO->getOpcode() != BO_Assign)
|
|
return 0;
|
|
MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
|
|
if (!ME)
|
|
return 0;
|
|
FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
|
|
if (!Field || !isMemcpyableField(Field))
|
|
return 0;
|
|
Stmt *RHS = BO->getRHS();
|
|
if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
|
|
RHS = EC->getSubExpr();
|
|
if (!RHS)
|
|
return 0;
|
|
MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
|
|
if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
|
|
return 0;
|
|
return Field;
|
|
} else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
|
|
if (!(MD && (MD->isCopyAssignmentOperator() ||
|
|
MD->isMoveAssignmentOperator()) &&
|
|
MD->isTrivial()))
|
|
return 0;
|
|
MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
|
|
if (!IOA)
|
|
return 0;
|
|
FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
|
|
if (!Field || !isMemcpyableField(Field))
|
|
return 0;
|
|
MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
|
|
if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
|
|
return 0;
|
|
return Field;
|
|
} else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
|
|
FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
|
|
if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
|
|
return 0;
|
|
Expr *DstPtr = CE->getArg(0);
|
|
if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
|
|
DstPtr = DC->getSubExpr();
|
|
UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
|
|
if (!DUO || DUO->getOpcode() != UO_AddrOf)
|
|
return 0;
|
|
MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
|
|
if (!ME)
|
|
return 0;
|
|
FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
|
|
if (!Field || !isMemcpyableField(Field))
|
|
return 0;
|
|
Expr *SrcPtr = CE->getArg(1);
|
|
if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
|
|
SrcPtr = SC->getSubExpr();
|
|
UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
|
|
if (!SUO || SUO->getOpcode() != UO_AddrOf)
|
|
return 0;
|
|
MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
|
|
if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
|
|
return 0;
|
|
return Field;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool AssignmentsMemcpyable;
|
|
SmallVector<Stmt*, 16> AggregatedStmts;
|
|
|
|
public:
|
|
|
|
AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
|
|
FunctionArgList &Args)
|
|
: FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
|
|
AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
|
|
assert(Args.size() == 2);
|
|
}
|
|
|
|
void emitAssignment(Stmt *S) {
|
|
FieldDecl *F = getMemcpyableField(S);
|
|
if (F) {
|
|
addMemcpyableField(F);
|
|
AggregatedStmts.push_back(S);
|
|
} else {
|
|
emitAggregatedStmts();
|
|
CGF.EmitStmt(S);
|
|
}
|
|
}
|
|
|
|
void emitAggregatedStmts() {
|
|
if (AggregatedStmts.size() <= 1) {
|
|
if (!AggregatedStmts.empty()) {
|
|
CopyingValueRepresentation CVR(CGF);
|
|
CGF.EmitStmt(AggregatedStmts[0]);
|
|
}
|
|
reset();
|
|
}
|
|
|
|
emitMemcpy();
|
|
AggregatedStmts.clear();
|
|
}
|
|
|
|
void finish() {
|
|
emitAggregatedStmts();
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
/// EmitCtorPrologue - This routine generates necessary code to initialize
|
|
/// base classes and non-static data members belonging to this constructor.
|
|
void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
|
|
CXXCtorType CtorType,
|
|
FunctionArgList &Args) {
|
|
if (CD->isDelegatingConstructor())
|
|
return EmitDelegatingCXXConstructorCall(CD, Args);
|
|
|
|
const CXXRecordDecl *ClassDecl = CD->getParent();
|
|
|
|
CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
|
|
E = CD->init_end();
|
|
|
|
llvm::BasicBlock *BaseCtorContinueBB = 0;
|
|
if (ClassDecl->getNumVBases() &&
|
|
!CGM.getTarget().getCXXABI().hasConstructorVariants()) {
|
|
// The ABIs that don't have constructor variants need to put a branch
|
|
// before the virtual base initialization code.
|
|
BaseCtorContinueBB =
|
|
CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
|
|
assert(BaseCtorContinueBB);
|
|
}
|
|
|
|
// Virtual base initializers first.
|
|
for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
|
|
EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
|
|
}
|
|
|
|
if (BaseCtorContinueBB) {
|
|
// Complete object handler should continue to the remaining initializers.
|
|
Builder.CreateBr(BaseCtorContinueBB);
|
|
EmitBlock(BaseCtorContinueBB);
|
|
}
|
|
|
|
// Then, non-virtual base initializers.
|
|
for (; B != E && (*B)->isBaseInitializer(); B++) {
|
|
assert(!(*B)->isBaseVirtual());
|
|
EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
|
|
}
|
|
|
|
InitializeVTablePointers(ClassDecl);
|
|
|
|
// And finally, initialize class members.
|
|
FieldConstructionScope FCS(*this, CXXThisValue);
|
|
ConstructorMemcpyizer CM(*this, CD, Args);
|
|
for (; B != E; B++) {
|
|
CXXCtorInitializer *Member = (*B);
|
|
assert(!Member->isBaseInitializer());
|
|
assert(Member->isAnyMemberInitializer() &&
|
|
"Delegating initializer on non-delegating constructor");
|
|
CM.addMemberInitializer(Member);
|
|
}
|
|
CM.finish();
|
|
}
|
|
|
|
static bool
|
|
FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
|
|
|
|
static bool
|
|
HasTrivialDestructorBody(ASTContext &Context,
|
|
const CXXRecordDecl *BaseClassDecl,
|
|
const CXXRecordDecl *MostDerivedClassDecl)
|
|
{
|
|
// If the destructor is trivial we don't have to check anything else.
|
|
if (BaseClassDecl->hasTrivialDestructor())
|
|
return true;
|
|
|
|
if (!BaseClassDecl->getDestructor()->hasTrivialBody())
|
|
return false;
|
|
|
|
// Check fields.
|
|
for (CXXRecordDecl::field_iterator I = BaseClassDecl->field_begin(),
|
|
E = BaseClassDecl->field_end(); I != E; ++I) {
|
|
const FieldDecl *Field = *I;
|
|
|
|
if (!FieldHasTrivialDestructorBody(Context, Field))
|
|
return false;
|
|
}
|
|
|
|
// Check non-virtual bases.
|
|
for (CXXRecordDecl::base_class_const_iterator I =
|
|
BaseClassDecl->bases_begin(), E = BaseClassDecl->bases_end();
|
|
I != E; ++I) {
|
|
if (I->isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *NonVirtualBase =
|
|
cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
|
|
if (!HasTrivialDestructorBody(Context, NonVirtualBase,
|
|
MostDerivedClassDecl))
|
|
return false;
|
|
}
|
|
|
|
if (BaseClassDecl == MostDerivedClassDecl) {
|
|
// Check virtual bases.
|
|
for (CXXRecordDecl::base_class_const_iterator I =
|
|
BaseClassDecl->vbases_begin(), E = BaseClassDecl->vbases_end();
|
|
I != E; ++I) {
|
|
const CXXRecordDecl *VirtualBase =
|
|
cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
|
|
if (!HasTrivialDestructorBody(Context, VirtualBase,
|
|
MostDerivedClassDecl))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
FieldHasTrivialDestructorBody(ASTContext &Context,
|
|
const FieldDecl *Field)
|
|
{
|
|
QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
|
|
|
|
const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
|
|
if (!RT)
|
|
return true;
|
|
|
|
CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
|
|
}
|
|
|
|
/// CanSkipVTablePointerInitialization - Check whether we need to initialize
|
|
/// any vtable pointers before calling this destructor.
|
|
static bool CanSkipVTablePointerInitialization(ASTContext &Context,
|
|
const CXXDestructorDecl *Dtor) {
|
|
if (!Dtor->hasTrivialBody())
|
|
return false;
|
|
|
|
// Check the fields.
|
|
const CXXRecordDecl *ClassDecl = Dtor->getParent();
|
|
for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
|
|
E = ClassDecl->field_end(); I != E; ++I) {
|
|
const FieldDecl *Field = *I;
|
|
|
|
if (!FieldHasTrivialDestructorBody(Context, Field))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// EmitDestructorBody - Emits the body of the current destructor.
|
|
void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
|
|
const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
|
|
CXXDtorType DtorType = CurGD.getDtorType();
|
|
|
|
// The call to operator delete in a deleting destructor happens
|
|
// outside of the function-try-block, which means it's always
|
|
// possible to delegate the destructor body to the complete
|
|
// destructor. Do so.
|
|
if (DtorType == Dtor_Deleting) {
|
|
EnterDtorCleanups(Dtor, Dtor_Deleting);
|
|
EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
|
|
/*Delegating=*/false, LoadCXXThis());
|
|
PopCleanupBlock();
|
|
return;
|
|
}
|
|
|
|
Stmt *Body = Dtor->getBody();
|
|
|
|
// If the body is a function-try-block, enter the try before
|
|
// anything else.
|
|
bool isTryBody = (Body && isa<CXXTryStmt>(Body));
|
|
if (isTryBody)
|
|
EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
|
|
|
|
// Enter the epilogue cleanups.
|
|
RunCleanupsScope DtorEpilogue(*this);
|
|
|
|
// If this is the complete variant, just invoke the base variant;
|
|
// the epilogue will destruct the virtual bases. But we can't do
|
|
// this optimization if the body is a function-try-block, because
|
|
// we'd introduce *two* handler blocks. In the Microsoft ABI, we
|
|
// always delegate because we might not have a definition in this TU.
|
|
switch (DtorType) {
|
|
case Dtor_Deleting: llvm_unreachable("already handled deleting case");
|
|
|
|
case Dtor_Complete:
|
|
assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
|
|
"can't emit a dtor without a body for non-Microsoft ABIs");
|
|
|
|
// Enter the cleanup scopes for virtual bases.
|
|
EnterDtorCleanups(Dtor, Dtor_Complete);
|
|
|
|
if (!isTryBody) {
|
|
EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
|
|
/*Delegating=*/false, LoadCXXThis());
|
|
break;
|
|
}
|
|
// Fallthrough: act like we're in the base variant.
|
|
|
|
case Dtor_Base:
|
|
assert(Body);
|
|
|
|
// Enter the cleanup scopes for fields and non-virtual bases.
|
|
EnterDtorCleanups(Dtor, Dtor_Base);
|
|
|
|
// Initialize the vtable pointers before entering the body.
|
|
if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
|
|
InitializeVTablePointers(Dtor->getParent());
|
|
|
|
if (isTryBody)
|
|
EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
|
|
else if (Body)
|
|
EmitStmt(Body);
|
|
else {
|
|
assert(Dtor->isImplicit() && "bodyless dtor not implicit");
|
|
// nothing to do besides what's in the epilogue
|
|
}
|
|
// -fapple-kext must inline any call to this dtor into
|
|
// the caller's body.
|
|
if (getLangOpts().AppleKext)
|
|
CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
|
|
break;
|
|
}
|
|
|
|
// Jump out through the epilogue cleanups.
|
|
DtorEpilogue.ForceCleanup();
|
|
|
|
// Exit the try if applicable.
|
|
if (isTryBody)
|
|
ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
|
|
}
|
|
|
|
void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
|
|
const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
|
|
const Stmt *RootS = AssignOp->getBody();
|
|
assert(isa<CompoundStmt>(RootS) &&
|
|
"Body of an implicit assignment operator should be compound stmt.");
|
|
const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
|
|
|
|
LexicalScope Scope(*this, RootCS->getSourceRange());
|
|
|
|
AssignmentMemcpyizer AM(*this, AssignOp, Args);
|
|
for (CompoundStmt::const_body_iterator I = RootCS->body_begin(),
|
|
E = RootCS->body_end();
|
|
I != E; ++I) {
|
|
AM.emitAssignment(*I);
|
|
}
|
|
AM.finish();
|
|
}
|
|
|
|
namespace {
|
|
/// Call the operator delete associated with the current destructor.
|
|
struct CallDtorDelete : EHScopeStack::Cleanup {
|
|
CallDtorDelete() {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
|
|
const CXXRecordDecl *ClassDecl = Dtor->getParent();
|
|
CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
|
|
CGF.getContext().getTagDeclType(ClassDecl));
|
|
}
|
|
};
|
|
|
|
struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
|
|
llvm::Value *ShouldDeleteCondition;
|
|
public:
|
|
CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
|
|
: ShouldDeleteCondition(ShouldDeleteCondition) {
|
|
assert(ShouldDeleteCondition != NULL);
|
|
}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
|
|
llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
|
|
llvm::Value *ShouldCallDelete
|
|
= CGF.Builder.CreateIsNull(ShouldDeleteCondition);
|
|
CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
|
|
|
|
CGF.EmitBlock(callDeleteBB);
|
|
const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
|
|
const CXXRecordDecl *ClassDecl = Dtor->getParent();
|
|
CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
|
|
CGF.getContext().getTagDeclType(ClassDecl));
|
|
CGF.Builder.CreateBr(continueBB);
|
|
|
|
CGF.EmitBlock(continueBB);
|
|
}
|
|
};
|
|
|
|
class DestroyField : public EHScopeStack::Cleanup {
|
|
const FieldDecl *field;
|
|
CodeGenFunction::Destroyer *destroyer;
|
|
bool useEHCleanupForArray;
|
|
|
|
public:
|
|
DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
|
|
bool useEHCleanupForArray)
|
|
: field(field), destroyer(destroyer),
|
|
useEHCleanupForArray(useEHCleanupForArray) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
// Find the address of the field.
|
|
llvm::Value *thisValue = CGF.LoadCXXThis();
|
|
QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
|
|
LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
|
|
LValue LV = CGF.EmitLValueForField(ThisLV, field);
|
|
assert(LV.isSimple());
|
|
|
|
CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
|
|
flags.isForNormalCleanup() && useEHCleanupForArray);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// EmitDtorEpilogue - Emit all code that comes at the end of class's
|
|
/// destructor. This is to call destructors on members and base classes
|
|
/// in reverse order of their construction.
|
|
void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
|
|
CXXDtorType DtorType) {
|
|
assert(!DD->isTrivial() &&
|
|
"Should not emit dtor epilogue for trivial dtor!");
|
|
|
|
// The deleting-destructor phase just needs to call the appropriate
|
|
// operator delete that Sema picked up.
|
|
if (DtorType == Dtor_Deleting) {
|
|
assert(DD->getOperatorDelete() &&
|
|
"operator delete missing - EmitDtorEpilogue");
|
|
if (CXXStructorImplicitParamValue) {
|
|
// If there is an implicit param to the deleting dtor, it's a boolean
|
|
// telling whether we should call delete at the end of the dtor.
|
|
EHStack.pushCleanup<CallDtorDeleteConditional>(
|
|
NormalAndEHCleanup, CXXStructorImplicitParamValue);
|
|
} else {
|
|
EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
|
|
}
|
|
return;
|
|
}
|
|
|
|
const CXXRecordDecl *ClassDecl = DD->getParent();
|
|
|
|
// Unions have no bases and do not call field destructors.
|
|
if (ClassDecl->isUnion())
|
|
return;
|
|
|
|
// The complete-destructor phase just destructs all the virtual bases.
|
|
if (DtorType == Dtor_Complete) {
|
|
|
|
// We push them in the forward order so that they'll be popped in
|
|
// the reverse order.
|
|
for (CXXRecordDecl::base_class_const_iterator I =
|
|
ClassDecl->vbases_begin(), E = ClassDecl->vbases_end();
|
|
I != E; ++I) {
|
|
const CXXBaseSpecifier &Base = *I;
|
|
CXXRecordDecl *BaseClassDecl
|
|
= cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// Ignore trivial destructors.
|
|
if (BaseClassDecl->hasTrivialDestructor())
|
|
continue;
|
|
|
|
EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
|
|
BaseClassDecl,
|
|
/*BaseIsVirtual*/ true);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
assert(DtorType == Dtor_Base);
|
|
|
|
// Destroy non-virtual bases.
|
|
for (CXXRecordDecl::base_class_const_iterator I =
|
|
ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) {
|
|
const CXXBaseSpecifier &Base = *I;
|
|
|
|
// Ignore virtual bases.
|
|
if (Base.isVirtual())
|
|
continue;
|
|
|
|
CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
|
|
|
|
// Ignore trivial destructors.
|
|
if (BaseClassDecl->hasTrivialDestructor())
|
|
continue;
|
|
|
|
EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
|
|
BaseClassDecl,
|
|
/*BaseIsVirtual*/ false);
|
|
}
|
|
|
|
// Destroy direct fields.
|
|
SmallVector<const FieldDecl *, 16> FieldDecls;
|
|
for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
|
|
E = ClassDecl->field_end(); I != E; ++I) {
|
|
const FieldDecl *field = *I;
|
|
QualType type = field->getType();
|
|
QualType::DestructionKind dtorKind = type.isDestructedType();
|
|
if (!dtorKind) continue;
|
|
|
|
// Anonymous union members do not have their destructors called.
|
|
const RecordType *RT = type->getAsUnionType();
|
|
if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
|
|
|
|
CleanupKind cleanupKind = getCleanupKind(dtorKind);
|
|
EHStack.pushCleanup<DestroyField>(cleanupKind, field,
|
|
getDestroyer(dtorKind),
|
|
cleanupKind & EHCleanup);
|
|
}
|
|
}
|
|
|
|
/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
|
|
/// constructor for each of several members of an array.
|
|
///
|
|
/// \param ctor the constructor to call for each element
|
|
/// \param arrayType the type of the array to initialize
|
|
/// \param arrayBegin an arrayType*
|
|
/// \param zeroInitialize true if each element should be
|
|
/// zero-initialized before it is constructed
|
|
void
|
|
CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
|
|
const ConstantArrayType *arrayType,
|
|
llvm::Value *arrayBegin,
|
|
CallExpr::const_arg_iterator argBegin,
|
|
CallExpr::const_arg_iterator argEnd,
|
|
bool zeroInitialize) {
|
|
QualType elementType;
|
|
llvm::Value *numElements =
|
|
emitArrayLength(arrayType, elementType, arrayBegin);
|
|
|
|
EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin,
|
|
argBegin, argEnd, zeroInitialize);
|
|
}
|
|
|
|
/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
|
|
/// constructor for each of several members of an array.
|
|
///
|
|
/// \param ctor the constructor to call for each element
|
|
/// \param numElements the number of elements in the array;
|
|
/// may be zero
|
|
/// \param arrayBegin a T*, where T is the type constructed by ctor
|
|
/// \param zeroInitialize true if each element should be
|
|
/// zero-initialized before it is constructed
|
|
void
|
|
CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
|
|
llvm::Value *numElements,
|
|
llvm::Value *arrayBegin,
|
|
CallExpr::const_arg_iterator argBegin,
|
|
CallExpr::const_arg_iterator argEnd,
|
|
bool zeroInitialize) {
|
|
|
|
// It's legal for numElements to be zero. This can happen both
|
|
// dynamically, because x can be zero in 'new A[x]', and statically,
|
|
// because of GCC extensions that permit zero-length arrays. There
|
|
// are probably legitimate places where we could assume that this
|
|
// doesn't happen, but it's not clear that it's worth it.
|
|
llvm::BranchInst *zeroCheckBranch = 0;
|
|
|
|
// Optimize for a constant count.
|
|
llvm::ConstantInt *constantCount
|
|
= dyn_cast<llvm::ConstantInt>(numElements);
|
|
if (constantCount) {
|
|
// Just skip out if the constant count is zero.
|
|
if (constantCount->isZero()) return;
|
|
|
|
// Otherwise, emit the check.
|
|
} else {
|
|
llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
|
|
llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
|
|
zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
|
|
EmitBlock(loopBB);
|
|
}
|
|
|
|
// Find the end of the array.
|
|
llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
|
|
"arrayctor.end");
|
|
|
|
// Enter the loop, setting up a phi for the current location to initialize.
|
|
llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
|
|
EmitBlock(loopBB);
|
|
llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
|
|
"arrayctor.cur");
|
|
cur->addIncoming(arrayBegin, entryBB);
|
|
|
|
// Inside the loop body, emit the constructor call on the array element.
|
|
|
|
QualType type = getContext().getTypeDeclType(ctor->getParent());
|
|
|
|
// Zero initialize the storage, if requested.
|
|
if (zeroInitialize)
|
|
EmitNullInitialization(cur, type);
|
|
|
|
// C++ [class.temporary]p4:
|
|
// There are two contexts in which temporaries are destroyed at a different
|
|
// point than the end of the full-expression. The first context is when a
|
|
// default constructor is called to initialize an element of an array.
|
|
// If the constructor has one or more default arguments, the destruction of
|
|
// every temporary created in a default argument expression is sequenced
|
|
// before the construction of the next array element, if any.
|
|
|
|
{
|
|
RunCleanupsScope Scope(*this);
|
|
|
|
// Evaluate the constructor and its arguments in a regular
|
|
// partial-destroy cleanup.
|
|
if (getLangOpts().Exceptions &&
|
|
!ctor->getParent()->hasTrivialDestructor()) {
|
|
Destroyer *destroyer = destroyCXXObject;
|
|
pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
|
|
}
|
|
|
|
EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false,
|
|
/*Delegating=*/false, cur, argBegin, argEnd);
|
|
}
|
|
|
|
// Go to the next element.
|
|
llvm::Value *next =
|
|
Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
|
|
"arrayctor.next");
|
|
cur->addIncoming(next, Builder.GetInsertBlock());
|
|
|
|
// Check whether that's the end of the loop.
|
|
llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
|
|
llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
|
|
Builder.CreateCondBr(done, contBB, loopBB);
|
|
|
|
// Patch the earlier check to skip over the loop.
|
|
if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
|
|
|
|
EmitBlock(contBB);
|
|
}
|
|
|
|
void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
|
|
llvm::Value *addr,
|
|
QualType type) {
|
|
const RecordType *rtype = type->castAs<RecordType>();
|
|
const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
|
|
const CXXDestructorDecl *dtor = record->getDestructor();
|
|
assert(!dtor->isTrivial());
|
|
CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
|
|
/*Delegating=*/false, addr);
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
|
|
CXXCtorType Type, bool ForVirtualBase,
|
|
bool Delegating,
|
|
llvm::Value *This,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd) {
|
|
// If this is a trivial constructor, just emit what's needed.
|
|
if (D->isTrivial()) {
|
|
if (ArgBeg == ArgEnd) {
|
|
// Trivial default constructor, no codegen required.
|
|
assert(D->isDefaultConstructor() &&
|
|
"trivial 0-arg ctor not a default ctor");
|
|
return;
|
|
}
|
|
|
|
assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
|
|
assert(D->isCopyOrMoveConstructor() &&
|
|
"trivial 1-arg ctor not a copy/move ctor");
|
|
|
|
const Expr *E = (*ArgBeg);
|
|
QualType Ty = E->getType();
|
|
llvm::Value *Src = EmitLValue(E).getAddress();
|
|
EmitAggregateCopy(This, Src, Ty);
|
|
return;
|
|
}
|
|
|
|
// Non-trivial constructors are handled in an ABI-specific manner.
|
|
CGM.getCXXABI().EmitConstructorCall(*this, D, Type, ForVirtualBase,
|
|
Delegating, This, ArgBeg, ArgEnd);
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
|
|
llvm::Value *This, llvm::Value *Src,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd) {
|
|
if (D->isTrivial()) {
|
|
assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
|
|
assert(D->isCopyOrMoveConstructor() &&
|
|
"trivial 1-arg ctor not a copy/move ctor");
|
|
EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
|
|
return;
|
|
}
|
|
llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, clang::Ctor_Complete);
|
|
assert(D->isInstance() &&
|
|
"Trying to emit a member call expr on a static method!");
|
|
|
|
const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>();
|
|
|
|
CallArgList Args;
|
|
|
|
// Push the this ptr.
|
|
Args.add(RValue::get(This), D->getThisType(getContext()));
|
|
|
|
|
|
// Push the src ptr.
|
|
QualType QT = *(FPT->arg_type_begin());
|
|
llvm::Type *t = CGM.getTypes().ConvertType(QT);
|
|
Src = Builder.CreateBitCast(Src, t);
|
|
Args.add(RValue::get(Src), QT);
|
|
|
|
// Skip over first argument (Src).
|
|
++ArgBeg;
|
|
CallExpr::const_arg_iterator Arg = ArgBeg;
|
|
for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin()+1,
|
|
E = FPT->arg_type_end(); I != E; ++I, ++Arg) {
|
|
assert(Arg != ArgEnd && "Running over edge of argument list!");
|
|
EmitCallArg(Args, *Arg, *I);
|
|
}
|
|
// Either we've emitted all the call args, or we have a call to a
|
|
// variadic function.
|
|
assert((Arg == ArgEnd || FPT->isVariadic()) &&
|
|
"Extra arguments in non-variadic function!");
|
|
// If we still have any arguments, emit them using the type of the argument.
|
|
for (; Arg != ArgEnd; ++Arg) {
|
|
QualType ArgType = Arg->getType();
|
|
EmitCallArg(Args, *Arg, ArgType);
|
|
}
|
|
|
|
EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
|
|
Callee, ReturnValueSlot(), Args, D);
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
|
|
CXXCtorType CtorType,
|
|
const FunctionArgList &Args,
|
|
SourceLocation Loc) {
|
|
CallArgList DelegateArgs;
|
|
|
|
FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
|
|
assert(I != E && "no parameters to constructor");
|
|
|
|
// this
|
|
DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
|
|
++I;
|
|
|
|
// vtt
|
|
if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
|
|
/*ForVirtualBase=*/false,
|
|
/*Delegating=*/true)) {
|
|
QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
|
|
DelegateArgs.add(RValue::get(VTT), VoidPP);
|
|
|
|
if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
|
|
assert(I != E && "cannot skip vtt parameter, already done with args");
|
|
assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
|
|
++I;
|
|
}
|
|
}
|
|
|
|
// Explicit arguments.
|
|
for (; I != E; ++I) {
|
|
const VarDecl *param = *I;
|
|
// FIXME: per-argument source location
|
|
EmitDelegateCallArg(DelegateArgs, param, Loc);
|
|
}
|
|
|
|
llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(Ctor, CtorType);
|
|
EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
|
|
Callee, ReturnValueSlot(), DelegateArgs, Ctor);
|
|
}
|
|
|
|
namespace {
|
|
struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
|
|
const CXXDestructorDecl *Dtor;
|
|
llvm::Value *Addr;
|
|
CXXDtorType Type;
|
|
|
|
CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
|
|
CXXDtorType Type)
|
|
: Dtor(D), Addr(Addr), Type(Type) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
|
|
/*Delegating=*/true, Addr);
|
|
}
|
|
};
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
|
|
const FunctionArgList &Args) {
|
|
assert(Ctor->isDelegatingConstructor());
|
|
|
|
llvm::Value *ThisPtr = LoadCXXThis();
|
|
|
|
QualType Ty = getContext().getTagDeclType(Ctor->getParent());
|
|
CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
|
|
AggValueSlot AggSlot =
|
|
AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
|
|
AggValueSlot::IsDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsNotAliased);
|
|
|
|
EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
|
|
|
|
const CXXRecordDecl *ClassDecl = Ctor->getParent();
|
|
if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
|
|
CXXDtorType Type =
|
|
CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
|
|
|
|
EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
|
|
ClassDecl->getDestructor(),
|
|
ThisPtr, Type);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
|
|
CXXDtorType Type,
|
|
bool ForVirtualBase,
|
|
bool Delegating,
|
|
llvm::Value *This) {
|
|
GlobalDecl GD(DD, Type);
|
|
llvm::Value *VTT = GetVTTParameter(GD, ForVirtualBase, Delegating);
|
|
llvm::Value *Callee = 0;
|
|
if (getLangOpts().AppleKext)
|
|
Callee = BuildAppleKextVirtualDestructorCall(DD, Type,
|
|
DD->getParent());
|
|
|
|
if (!Callee)
|
|
Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
|
|
|
|
if (DD->isVirtual())
|
|
This = CGM.getCXXABI().adjustThisArgumentForVirtualCall(*this, GD, This);
|
|
|
|
// FIXME: Provide a source location here.
|
|
EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This,
|
|
VTT, getContext().getPointerType(getContext().VoidPtrTy),
|
|
0, 0);
|
|
}
|
|
|
|
namespace {
|
|
struct CallLocalDtor : EHScopeStack::Cleanup {
|
|
const CXXDestructorDecl *Dtor;
|
|
llvm::Value *Addr;
|
|
|
|
CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
|
|
: Dtor(D), Addr(Addr) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
|
|
/*ForVirtualBase=*/false,
|
|
/*Delegating=*/false, Addr);
|
|
}
|
|
};
|
|
}
|
|
|
|
void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
|
|
llvm::Value *Addr) {
|
|
EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
|
|
}
|
|
|
|
void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
|
|
CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
|
|
if (!ClassDecl) return;
|
|
if (ClassDecl->hasTrivialDestructor()) return;
|
|
|
|
const CXXDestructorDecl *D = ClassDecl->getDestructor();
|
|
assert(D && D->isUsed() && "destructor not marked as used!");
|
|
PushDestructorCleanup(D, Addr);
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
|
|
const CXXRecordDecl *NearestVBase,
|
|
CharUnits OffsetFromNearestVBase,
|
|
const CXXRecordDecl *VTableClass) {
|
|
// Compute the address point.
|
|
bool NeedsVirtualOffset;
|
|
llvm::Value *VTableAddressPoint =
|
|
CGM.getCXXABI().getVTableAddressPointInStructor(
|
|
*this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
|
|
if (!VTableAddressPoint)
|
|
return;
|
|
|
|
// Compute where to store the address point.
|
|
llvm::Value *VirtualOffset = 0;
|
|
CharUnits NonVirtualOffset = CharUnits::Zero();
|
|
|
|
if (NeedsVirtualOffset) {
|
|
// We need to use the virtual base offset offset because the virtual base
|
|
// might have a different offset in the most derived class.
|
|
VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
|
|
LoadCXXThis(),
|
|
VTableClass,
|
|
NearestVBase);
|
|
NonVirtualOffset = OffsetFromNearestVBase;
|
|
} else {
|
|
// We can just use the base offset in the complete class.
|
|
NonVirtualOffset = Base.getBaseOffset();
|
|
}
|
|
|
|
// Apply the offsets.
|
|
llvm::Value *VTableField = LoadCXXThis();
|
|
|
|
if (!NonVirtualOffset.isZero() || VirtualOffset)
|
|
VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
|
|
NonVirtualOffset,
|
|
VirtualOffset);
|
|
|
|
// Finally, store the address point.
|
|
llvm::Type *AddressPointPtrTy =
|
|
VTableAddressPoint->getType()->getPointerTo();
|
|
VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
|
|
llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
|
|
CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
|
|
const CXXRecordDecl *NearestVBase,
|
|
CharUnits OffsetFromNearestVBase,
|
|
bool BaseIsNonVirtualPrimaryBase,
|
|
const CXXRecordDecl *VTableClass,
|
|
VisitedVirtualBasesSetTy& VBases) {
|
|
// If this base is a non-virtual primary base the address point has already
|
|
// been set.
|
|
if (!BaseIsNonVirtualPrimaryBase) {
|
|
// Initialize the vtable pointer for this base.
|
|
InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
|
|
VTableClass);
|
|
}
|
|
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
|
|
// Traverse bases.
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
CXXRecordDecl *BaseDecl
|
|
= cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// Ignore classes without a vtable.
|
|
if (!BaseDecl->isDynamicClass())
|
|
continue;
|
|
|
|
CharUnits BaseOffset;
|
|
CharUnits BaseOffsetFromNearestVBase;
|
|
bool BaseDeclIsNonVirtualPrimaryBase;
|
|
|
|
if (I->isVirtual()) {
|
|
// Check if we've visited this virtual base before.
|
|
if (!VBases.insert(BaseDecl))
|
|
continue;
|
|
|
|
const ASTRecordLayout &Layout =
|
|
getContext().getASTRecordLayout(VTableClass);
|
|
|
|
BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
|
|
BaseOffsetFromNearestVBase = CharUnits::Zero();
|
|
BaseDeclIsNonVirtualPrimaryBase = false;
|
|
} else {
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
|
|
BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
|
|
BaseOffsetFromNearestVBase =
|
|
OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
|
|
BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
|
|
}
|
|
|
|
InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
|
|
I->isVirtual() ? BaseDecl : NearestVBase,
|
|
BaseOffsetFromNearestVBase,
|
|
BaseDeclIsNonVirtualPrimaryBase,
|
|
VTableClass, VBases);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
|
|
// Ignore classes without a vtable.
|
|
if (!RD->isDynamicClass())
|
|
return;
|
|
|
|
// Initialize the vtable pointers for this class and all of its bases.
|
|
VisitedVirtualBasesSetTy VBases;
|
|
InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
|
|
/*NearestVBase=*/0,
|
|
/*OffsetFromNearestVBase=*/CharUnits::Zero(),
|
|
/*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
|
|
|
|
if (RD->getNumVBases())
|
|
CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
|
|
llvm::Type *Ty) {
|
|
llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
|
|
llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
|
|
CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
|
|
return VTable;
|
|
}
|
|
|
|
|
|
// FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
|
|
// quite what we want.
|
|
static const Expr *skipNoOpCastsAndParens(const Expr *E) {
|
|
while (true) {
|
|
if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
|
|
E = PE->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
|
|
if (CE->getCastKind() == CK_NoOp) {
|
|
E = CE->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
if (UO->getOpcode() == UO_Extension) {
|
|
E = UO->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
return E;
|
|
}
|
|
}
|
|
|
|
bool
|
|
CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
|
|
const CXXMethodDecl *MD) {
|
|
// When building with -fapple-kext, all calls must go through the vtable since
|
|
// the kernel linker can do runtime patching of vtables.
|
|
if (getLangOpts().AppleKext)
|
|
return false;
|
|
|
|
// If the most derived class is marked final, we know that no subclass can
|
|
// override this member function and so we can devirtualize it. For example:
|
|
//
|
|
// struct A { virtual void f(); }
|
|
// struct B final : A { };
|
|
//
|
|
// void f(B *b) {
|
|
// b->f();
|
|
// }
|
|
//
|
|
const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
|
|
if (MostDerivedClassDecl->hasAttr<FinalAttr>())
|
|
return true;
|
|
|
|
// If the member function is marked 'final', we know that it can't be
|
|
// overridden and can therefore devirtualize it.
|
|
if (MD->hasAttr<FinalAttr>())
|
|
return true;
|
|
|
|
// Similarly, if the class itself is marked 'final' it can't be overridden
|
|
// and we can therefore devirtualize the member function call.
|
|
if (MD->getParent()->hasAttr<FinalAttr>())
|
|
return true;
|
|
|
|
Base = skipNoOpCastsAndParens(Base);
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
// This is a record decl. We know the type and can devirtualize it.
|
|
return VD->getType()->isRecordType();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// We can devirtualize calls on an object accessed by a class member access
|
|
// expression, since by C++11 [basic.life]p6 we know that it can't refer to
|
|
// a derived class object constructed in the same location.
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
|
|
if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
|
|
return VD->getType()->isRecordType();
|
|
|
|
// We can always devirtualize calls on temporary object expressions.
|
|
if (isa<CXXConstructExpr>(Base))
|
|
return true;
|
|
|
|
// And calls on bound temporaries.
|
|
if (isa<CXXBindTemporaryExpr>(Base))
|
|
return true;
|
|
|
|
// Check if this is a call expr that returns a record type.
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
|
|
return CE->getCallReturnType()->isRecordType();
|
|
|
|
// We can't devirtualize the call.
|
|
return false;
|
|
}
|
|
|
|
llvm::Value *
|
|
CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
|
|
const CXXMethodDecl *MD,
|
|
llvm::Value *This) {
|
|
llvm::FunctionType *fnType =
|
|
CGM.getTypes().GetFunctionType(
|
|
CGM.getTypes().arrangeCXXMethodDeclaration(MD));
|
|
|
|
if (MD->isVirtual() && !CanDevirtualizeMemberFunctionCall(E->getArg(0), MD))
|
|
return CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, fnType);
|
|
|
|
return CGM.GetAddrOfFunction(MD, fnType);
|
|
}
|
|
|
|
void CodeGenFunction::EmitForwardingCallToLambda(
|
|
const CXXMethodDecl *callOperator,
|
|
CallArgList &callArgs) {
|
|
// Get the address of the call operator.
|
|
const CGFunctionInfo &calleeFnInfo =
|
|
CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
|
|
llvm::Value *callee =
|
|
CGM.GetAddrOfFunction(GlobalDecl(callOperator),
|
|
CGM.getTypes().GetFunctionType(calleeFnInfo));
|
|
|
|
// Prepare the return slot.
|
|
const FunctionProtoType *FPT =
|
|
callOperator->getType()->castAs<FunctionProtoType>();
|
|
QualType resultType = FPT->getResultType();
|
|
ReturnValueSlot returnSlot;
|
|
if (!resultType->isVoidType() &&
|
|
calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
|
|
!hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
|
|
returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
|
|
|
|
// We don't need to separately arrange the call arguments because
|
|
// the call can't be variadic anyway --- it's impossible to forward
|
|
// variadic arguments.
|
|
|
|
// Now emit our call.
|
|
RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
|
|
callArgs, callOperator);
|
|
|
|
// If necessary, copy the returned value into the slot.
|
|
if (!resultType->isVoidType() && returnSlot.isNull())
|
|
EmitReturnOfRValue(RV, resultType);
|
|
else
|
|
EmitBranchThroughCleanup(ReturnBlock);
|
|
}
|
|
|
|
void CodeGenFunction::EmitLambdaBlockInvokeBody() {
|
|
const BlockDecl *BD = BlockInfo->getBlockDecl();
|
|
const VarDecl *variable = BD->capture_begin()->getVariable();
|
|
const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
|
|
|
|
// Start building arguments for forwarding call
|
|
CallArgList CallArgs;
|
|
|
|
QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
|
|
llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
|
|
CallArgs.add(RValue::get(ThisPtr), ThisType);
|
|
|
|
// Add the rest of the parameters.
|
|
for (BlockDecl::param_const_iterator I = BD->param_begin(),
|
|
E = BD->param_end(); I != E; ++I) {
|
|
ParmVarDecl *param = *I;
|
|
EmitDelegateCallArg(CallArgs, param, param->getLocStart());
|
|
}
|
|
assert(!Lambda->isGenericLambda() &&
|
|
"generic lambda interconversion to block not implemented");
|
|
EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
|
|
}
|
|
|
|
void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
|
|
if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
|
|
// FIXME: Making this work correctly is nasty because it requires either
|
|
// cloning the body of the call operator or making the call operator forward.
|
|
CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
|
|
return;
|
|
}
|
|
|
|
EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
|
|
}
|
|
|
|
void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
|
|
const CXXRecordDecl *Lambda = MD->getParent();
|
|
|
|
// Start building arguments for forwarding call
|
|
CallArgList CallArgs;
|
|
|
|
QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
|
|
llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
|
|
CallArgs.add(RValue::get(ThisPtr), ThisType);
|
|
|
|
// Add the rest of the parameters.
|
|
for (FunctionDecl::param_const_iterator I = MD->param_begin(),
|
|
E = MD->param_end(); I != E; ++I) {
|
|
ParmVarDecl *param = *I;
|
|
EmitDelegateCallArg(CallArgs, param, param->getLocStart());
|
|
}
|
|
const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
|
|
// For a generic lambda, find the corresponding call operator specialization
|
|
// to which the call to the static-invoker shall be forwarded.
|
|
if (Lambda->isGenericLambda()) {
|
|
assert(MD->isFunctionTemplateSpecialization());
|
|
const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
|
|
FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
|
|
void *InsertPos = 0;
|
|
FunctionDecl *CorrespondingCallOpSpecialization =
|
|
CallOpTemplate->findSpecialization(TAL->data(), TAL->size(), InsertPos);
|
|
assert(CorrespondingCallOpSpecialization);
|
|
CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
|
|
}
|
|
EmitForwardingCallToLambda(CallOp, CallArgs);
|
|
}
|
|
|
|
void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
|
|
if (MD->isVariadic()) {
|
|
// FIXME: Making this work correctly is nasty because it requires either
|
|
// cloning the body of the call operator or making the call operator forward.
|
|
CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
|
|
return;
|
|
}
|
|
|
|
EmitLambdaDelegatingInvokeBody(MD);
|
|
}
|