forked from OSchip/llvm-project
7188 lines
300 KiB
C++
7188 lines
300 KiB
C++
//===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit OpenMP nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGCleanup.h"
|
|
#include "CGOpenMPRuntime.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/DeclOpenMP.h"
|
|
#include "clang/AST/OpenMPClause.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtOpenMP.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Basic/OpenMPKinds.h"
|
|
#include "clang/Basic/PrettyStackTrace.h"
|
|
#include "llvm/Frontend/OpenMP/OMPConstants.h"
|
|
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
using namespace llvm::omp;
|
|
|
|
static const VarDecl *getBaseDecl(const Expr *Ref);
|
|
|
|
namespace {
|
|
/// Lexical scope for OpenMP executable constructs, that handles correct codegen
|
|
/// for captured expressions.
|
|
class OMPLexicalScope : public CodeGenFunction::LexicalScope {
|
|
void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
|
|
for (const auto *C : S.clauses()) {
|
|
if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
|
|
if (const auto *PreInit =
|
|
cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
|
|
for (const auto *I : PreInit->decls()) {
|
|
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
|
|
CGF.EmitVarDecl(cast<VarDecl>(*I));
|
|
} else {
|
|
CodeGenFunction::AutoVarEmission Emission =
|
|
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
|
|
CGF.EmitAutoVarCleanups(Emission);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
CodeGenFunction::OMPPrivateScope InlinedShareds;
|
|
|
|
static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
|
|
return CGF.LambdaCaptureFields.lookup(VD) ||
|
|
(CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
|
|
(CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
|
|
cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
|
|
}
|
|
|
|
public:
|
|
OMPLexicalScope(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &S,
|
|
const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
|
|
const bool EmitPreInitStmt = true)
|
|
: CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
|
|
InlinedShareds(CGF) {
|
|
if (EmitPreInitStmt)
|
|
emitPreInitStmt(CGF, S);
|
|
if (!CapturedRegion.hasValue())
|
|
return;
|
|
assert(S.hasAssociatedStmt() &&
|
|
"Expected associated statement for inlined directive.");
|
|
const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
|
|
for (const auto &C : CS->captures()) {
|
|
if (C.capturesVariable() || C.capturesVariableByCopy()) {
|
|
auto *VD = C.getCapturedVar();
|
|
assert(VD == VD->getCanonicalDecl() &&
|
|
"Canonical decl must be captured.");
|
|
DeclRefExpr DRE(
|
|
CGF.getContext(), const_cast<VarDecl *>(VD),
|
|
isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
|
|
InlinedShareds.isGlobalVarCaptured(VD)),
|
|
VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
|
|
InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
|
|
return CGF.EmitLValue(&DRE).getAddress(CGF);
|
|
});
|
|
}
|
|
}
|
|
(void)InlinedShareds.Privatize();
|
|
}
|
|
};
|
|
|
|
/// Lexical scope for OpenMP parallel construct, that handles correct codegen
|
|
/// for captured expressions.
|
|
class OMPParallelScope final : public OMPLexicalScope {
|
|
bool EmitPreInitStmt(const OMPExecutableDirective &S) {
|
|
OpenMPDirectiveKind Kind = S.getDirectiveKind();
|
|
return !(isOpenMPTargetExecutionDirective(Kind) ||
|
|
isOpenMPLoopBoundSharingDirective(Kind)) &&
|
|
isOpenMPParallelDirective(Kind);
|
|
}
|
|
|
|
public:
|
|
OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
|
|
: OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
|
|
EmitPreInitStmt(S)) {}
|
|
};
|
|
|
|
/// Lexical scope for OpenMP teams construct, that handles correct codegen
|
|
/// for captured expressions.
|
|
class OMPTeamsScope final : public OMPLexicalScope {
|
|
bool EmitPreInitStmt(const OMPExecutableDirective &S) {
|
|
OpenMPDirectiveKind Kind = S.getDirectiveKind();
|
|
return !isOpenMPTargetExecutionDirective(Kind) &&
|
|
isOpenMPTeamsDirective(Kind);
|
|
}
|
|
|
|
public:
|
|
OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
|
|
: OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
|
|
EmitPreInitStmt(S)) {}
|
|
};
|
|
|
|
/// Private scope for OpenMP loop-based directives, that supports capturing
|
|
/// of used expression from loop statement.
|
|
class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
|
|
void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) {
|
|
const DeclStmt *PreInits;
|
|
CodeGenFunction::OMPMapVars PreCondVars;
|
|
if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
|
|
llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
|
|
for (const auto *E : LD->counters()) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
EmittedAsPrivate.insert(VD->getCanonicalDecl());
|
|
(void)PreCondVars.setVarAddr(
|
|
CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
|
|
}
|
|
// Mark private vars as undefs.
|
|
for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) {
|
|
for (const Expr *IRef : C->varlists()) {
|
|
const auto *OrigVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
|
|
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
|
|
(void)PreCondVars.setVarAddr(
|
|
CGF, OrigVD,
|
|
Address(llvm::UndefValue::get(CGF.ConvertTypeForMem(
|
|
CGF.getContext().getPointerType(
|
|
OrigVD->getType().getNonReferenceType()))),
|
|
CGF.getContext().getDeclAlign(OrigVD)));
|
|
}
|
|
}
|
|
}
|
|
(void)PreCondVars.apply(CGF);
|
|
// Emit init, __range and __end variables for C++ range loops.
|
|
(void)OMPLoopBasedDirective::doForAllLoops(
|
|
LD->getInnermostCapturedStmt()->getCapturedStmt(),
|
|
/*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(),
|
|
[&CGF](unsigned Cnt, const Stmt *CurStmt) {
|
|
if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) {
|
|
if (const Stmt *Init = CXXFor->getInit())
|
|
CGF.EmitStmt(Init);
|
|
CGF.EmitStmt(CXXFor->getRangeStmt());
|
|
CGF.EmitStmt(CXXFor->getEndStmt());
|
|
}
|
|
return false;
|
|
});
|
|
PreInits = cast_or_null<DeclStmt>(LD->getPreInits());
|
|
} else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) {
|
|
PreInits = cast_or_null<DeclStmt>(Tile->getPreInits());
|
|
} else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) {
|
|
PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits());
|
|
} else {
|
|
llvm_unreachable("Unknown loop-based directive kind.");
|
|
}
|
|
if (PreInits) {
|
|
for (const auto *I : PreInits->decls())
|
|
CGF.EmitVarDecl(cast<VarDecl>(*I));
|
|
}
|
|
PreCondVars.restore(CGF);
|
|
}
|
|
|
|
public:
|
|
OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S)
|
|
: CodeGenFunction::RunCleanupsScope(CGF) {
|
|
emitPreInitStmt(CGF, S);
|
|
}
|
|
};
|
|
|
|
class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
|
|
CodeGenFunction::OMPPrivateScope InlinedShareds;
|
|
|
|
static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
|
|
return CGF.LambdaCaptureFields.lookup(VD) ||
|
|
(CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
|
|
(CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
|
|
cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
|
|
}
|
|
|
|
public:
|
|
OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
|
|
: CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
|
|
InlinedShareds(CGF) {
|
|
for (const auto *C : S.clauses()) {
|
|
if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
|
|
if (const auto *PreInit =
|
|
cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
|
|
for (const auto *I : PreInit->decls()) {
|
|
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
|
|
CGF.EmitVarDecl(cast<VarDecl>(*I));
|
|
} else {
|
|
CodeGenFunction::AutoVarEmission Emission =
|
|
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
|
|
CGF.EmitAutoVarCleanups(Emission);
|
|
}
|
|
}
|
|
}
|
|
} else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
|
|
for (const Expr *E : UDP->varlists()) {
|
|
const Decl *D = cast<DeclRefExpr>(E)->getDecl();
|
|
if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
|
|
CGF.EmitVarDecl(*OED);
|
|
}
|
|
} else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) {
|
|
for (const Expr *E : UDP->varlists()) {
|
|
const Decl *D = getBaseDecl(E);
|
|
if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
|
|
CGF.EmitVarDecl(*OED);
|
|
}
|
|
}
|
|
}
|
|
if (!isOpenMPSimdDirective(S.getDirectiveKind()))
|
|
CGF.EmitOMPPrivateClause(S, InlinedShareds);
|
|
if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
|
|
if (const Expr *E = TG->getReductionRef())
|
|
CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
|
|
}
|
|
// Temp copy arrays for inscan reductions should not be emitted as they are
|
|
// not used in simd only mode.
|
|
llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps;
|
|
for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
|
|
if (C->getModifier() != OMPC_REDUCTION_inscan)
|
|
continue;
|
|
for (const Expr *E : C->copy_array_temps())
|
|
CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl());
|
|
}
|
|
const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
|
|
while (CS) {
|
|
for (auto &C : CS->captures()) {
|
|
if (C.capturesVariable() || C.capturesVariableByCopy()) {
|
|
auto *VD = C.getCapturedVar();
|
|
if (CopyArrayTemps.contains(VD))
|
|
continue;
|
|
assert(VD == VD->getCanonicalDecl() &&
|
|
"Canonical decl must be captured.");
|
|
DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
|
|
isCapturedVar(CGF, VD) ||
|
|
(CGF.CapturedStmtInfo &&
|
|
InlinedShareds.isGlobalVarCaptured(VD)),
|
|
VD->getType().getNonReferenceType(), VK_LValue,
|
|
C.getLocation());
|
|
InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
|
|
return CGF.EmitLValue(&DRE).getAddress(CGF);
|
|
});
|
|
}
|
|
}
|
|
CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
|
|
}
|
|
(void)InlinedShareds.Privatize();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &S,
|
|
const RegionCodeGenTy &CodeGen);
|
|
|
|
LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
|
|
if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
|
|
OrigVD = OrigVD->getCanonicalDecl();
|
|
bool IsCaptured =
|
|
LambdaCaptureFields.lookup(OrigVD) ||
|
|
(CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
|
|
(CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
|
|
DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured,
|
|
OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
|
|
return EmitLValue(&DRE);
|
|
}
|
|
}
|
|
return EmitLValue(E);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
|
|
ASTContext &C = getContext();
|
|
llvm::Value *Size = nullptr;
|
|
auto SizeInChars = C.getTypeSizeInChars(Ty);
|
|
if (SizeInChars.isZero()) {
|
|
// getTypeSizeInChars() returns 0 for a VLA.
|
|
while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
|
|
VlaSizePair VlaSize = getVLASize(VAT);
|
|
Ty = VlaSize.Type;
|
|
Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
|
|
: VlaSize.NumElts;
|
|
}
|
|
SizeInChars = C.getTypeSizeInChars(Ty);
|
|
if (SizeInChars.isZero())
|
|
return llvm::ConstantInt::get(SizeTy, /*V=*/0);
|
|
return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
|
|
}
|
|
return CGM.getSize(SizeInChars);
|
|
}
|
|
|
|
void CodeGenFunction::GenerateOpenMPCapturedVars(
|
|
const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
|
|
const RecordDecl *RD = S.getCapturedRecordDecl();
|
|
auto CurField = RD->field_begin();
|
|
auto CurCap = S.captures().begin();
|
|
for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
|
|
E = S.capture_init_end();
|
|
I != E; ++I, ++CurField, ++CurCap) {
|
|
if (CurField->hasCapturedVLAType()) {
|
|
const VariableArrayType *VAT = CurField->getCapturedVLAType();
|
|
llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
|
|
CapturedVars.push_back(Val);
|
|
} else if (CurCap->capturesThis()) {
|
|
CapturedVars.push_back(CXXThisValue);
|
|
} else if (CurCap->capturesVariableByCopy()) {
|
|
llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
|
|
|
|
// If the field is not a pointer, we need to save the actual value
|
|
// and load it as a void pointer.
|
|
if (!CurField->getType()->isAnyPointerType()) {
|
|
ASTContext &Ctx = getContext();
|
|
Address DstAddr = CreateMemTemp(
|
|
Ctx.getUIntPtrType(),
|
|
Twine(CurCap->getCapturedVar()->getName(), ".casted"));
|
|
LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
|
|
|
|
llvm::Value *SrcAddrVal = EmitScalarConversion(
|
|
DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
|
|
Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
|
|
LValue SrcLV =
|
|
MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
|
|
|
|
// Store the value using the source type pointer.
|
|
EmitStoreThroughLValue(RValue::get(CV), SrcLV);
|
|
|
|
// Load the value using the destination type pointer.
|
|
CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
|
|
}
|
|
CapturedVars.push_back(CV);
|
|
} else {
|
|
assert(CurCap->capturesVariable() && "Expected capture by reference.");
|
|
CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer());
|
|
}
|
|
}
|
|
}
|
|
|
|
static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
|
|
QualType DstType, StringRef Name,
|
|
LValue AddrLV) {
|
|
ASTContext &Ctx = CGF.getContext();
|
|
|
|
llvm::Value *CastedPtr = CGF.EmitScalarConversion(
|
|
AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(),
|
|
Ctx.getPointerType(DstType), Loc);
|
|
Address TmpAddr =
|
|
CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
|
|
.getAddress(CGF);
|
|
return TmpAddr;
|
|
}
|
|
|
|
static QualType getCanonicalParamType(ASTContext &C, QualType T) {
|
|
if (T->isLValueReferenceType())
|
|
return C.getLValueReferenceType(
|
|
getCanonicalParamType(C, T.getNonReferenceType()),
|
|
/*SpelledAsLValue=*/false);
|
|
if (T->isPointerType())
|
|
return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
|
|
if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
|
|
if (const auto *VLA = dyn_cast<VariableArrayType>(A))
|
|
return getCanonicalParamType(C, VLA->getElementType());
|
|
if (!A->isVariablyModifiedType())
|
|
return C.getCanonicalType(T);
|
|
}
|
|
return C.getCanonicalParamType(T);
|
|
}
|
|
|
|
namespace {
|
|
/// Contains required data for proper outlined function codegen.
|
|
struct FunctionOptions {
|
|
/// Captured statement for which the function is generated.
|
|
const CapturedStmt *S = nullptr;
|
|
/// true if cast to/from UIntPtr is required for variables captured by
|
|
/// value.
|
|
const bool UIntPtrCastRequired = true;
|
|
/// true if only casted arguments must be registered as local args or VLA
|
|
/// sizes.
|
|
const bool RegisterCastedArgsOnly = false;
|
|
/// Name of the generated function.
|
|
const StringRef FunctionName;
|
|
/// Location of the non-debug version of the outlined function.
|
|
SourceLocation Loc;
|
|
explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
|
|
bool RegisterCastedArgsOnly, StringRef FunctionName,
|
|
SourceLocation Loc)
|
|
: S(S), UIntPtrCastRequired(UIntPtrCastRequired),
|
|
RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
|
|
FunctionName(FunctionName), Loc(Loc) {}
|
|
};
|
|
} // namespace
|
|
|
|
static llvm::Function *emitOutlinedFunctionPrologue(
|
|
CodeGenFunction &CGF, FunctionArgList &Args,
|
|
llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
|
|
&LocalAddrs,
|
|
llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
|
|
&VLASizes,
|
|
llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
|
|
const CapturedDecl *CD = FO.S->getCapturedDecl();
|
|
const RecordDecl *RD = FO.S->getCapturedRecordDecl();
|
|
assert(CD->hasBody() && "missing CapturedDecl body");
|
|
|
|
CXXThisValue = nullptr;
|
|
// Build the argument list.
|
|
CodeGenModule &CGM = CGF.CGM;
|
|
ASTContext &Ctx = CGM.getContext();
|
|
FunctionArgList TargetArgs;
|
|
Args.append(CD->param_begin(),
|
|
std::next(CD->param_begin(), CD->getContextParamPosition()));
|
|
TargetArgs.append(
|
|
CD->param_begin(),
|
|
std::next(CD->param_begin(), CD->getContextParamPosition()));
|
|
auto I = FO.S->captures().begin();
|
|
FunctionDecl *DebugFunctionDecl = nullptr;
|
|
if (!FO.UIntPtrCastRequired) {
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI);
|
|
DebugFunctionDecl = FunctionDecl::Create(
|
|
Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(),
|
|
SourceLocation(), DeclarationName(), FunctionTy,
|
|
Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static,
|
|
/*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
|
|
}
|
|
for (const FieldDecl *FD : RD->fields()) {
|
|
QualType ArgType = FD->getType();
|
|
IdentifierInfo *II = nullptr;
|
|
VarDecl *CapVar = nullptr;
|
|
|
|
// If this is a capture by copy and the type is not a pointer, the outlined
|
|
// function argument type should be uintptr and the value properly casted to
|
|
// uintptr. This is necessary given that the runtime library is only able to
|
|
// deal with pointers. We can pass in the same way the VLA type sizes to the
|
|
// outlined function.
|
|
if (FO.UIntPtrCastRequired &&
|
|
((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
|
|
I->capturesVariableArrayType()))
|
|
ArgType = Ctx.getUIntPtrType();
|
|
|
|
if (I->capturesVariable() || I->capturesVariableByCopy()) {
|
|
CapVar = I->getCapturedVar();
|
|
II = CapVar->getIdentifier();
|
|
} else if (I->capturesThis()) {
|
|
II = &Ctx.Idents.get("this");
|
|
} else {
|
|
assert(I->capturesVariableArrayType());
|
|
II = &Ctx.Idents.get("vla");
|
|
}
|
|
if (ArgType->isVariablyModifiedType())
|
|
ArgType = getCanonicalParamType(Ctx, ArgType);
|
|
VarDecl *Arg;
|
|
if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
|
|
Arg = ParmVarDecl::Create(
|
|
Ctx, DebugFunctionDecl,
|
|
CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(),
|
|
CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
|
|
/*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
|
|
} else {
|
|
Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
|
|
II, ArgType, ImplicitParamDecl::Other);
|
|
}
|
|
Args.emplace_back(Arg);
|
|
// Do not cast arguments if we emit function with non-original types.
|
|
TargetArgs.emplace_back(
|
|
FO.UIntPtrCastRequired
|
|
? Arg
|
|
: CGM.getOpenMPRuntime().translateParameter(FD, Arg));
|
|
++I;
|
|
}
|
|
Args.append(
|
|
std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
|
|
CD->param_end());
|
|
TargetArgs.append(
|
|
std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
|
|
CD->param_end());
|
|
|
|
// Create the function declaration.
|
|
const CGFunctionInfo &FuncInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
|
|
llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
|
|
|
|
auto *F =
|
|
llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
|
|
FO.FunctionName, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
|
|
if (CD->isNothrow())
|
|
F->setDoesNotThrow();
|
|
F->setDoesNotRecurse();
|
|
|
|
// Generate the function.
|
|
CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
|
|
FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(),
|
|
FO.UIntPtrCastRequired ? FO.Loc
|
|
: CD->getBody()->getBeginLoc());
|
|
unsigned Cnt = CD->getContextParamPosition();
|
|
I = FO.S->captures().begin();
|
|
for (const FieldDecl *FD : RD->fields()) {
|
|
// Do not map arguments if we emit function with non-original types.
|
|
Address LocalAddr(Address::invalid());
|
|
if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
|
|
LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
|
|
TargetArgs[Cnt]);
|
|
} else {
|
|
LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
|
|
}
|
|
// If we are capturing a pointer by copy we don't need to do anything, just
|
|
// use the value that we get from the arguments.
|
|
if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
|
|
const VarDecl *CurVD = I->getCapturedVar();
|
|
if (!FO.RegisterCastedArgsOnly)
|
|
LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
|
|
++Cnt;
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
|
|
AlignmentSource::Decl);
|
|
if (FD->hasCapturedVLAType()) {
|
|
if (FO.UIntPtrCastRequired) {
|
|
ArgLVal = CGF.MakeAddrLValue(
|
|
castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
|
|
Args[Cnt]->getName(), ArgLVal),
|
|
FD->getType(), AlignmentSource::Decl);
|
|
}
|
|
llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
|
|
const VariableArrayType *VAT = FD->getCapturedVLAType();
|
|
VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
|
|
} else if (I->capturesVariable()) {
|
|
const VarDecl *Var = I->getCapturedVar();
|
|
QualType VarTy = Var->getType();
|
|
Address ArgAddr = ArgLVal.getAddress(CGF);
|
|
if (ArgLVal.getType()->isLValueReferenceType()) {
|
|
ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
|
|
} else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
|
|
assert(ArgLVal.getType()->isPointerType());
|
|
ArgAddr = CGF.EmitLoadOfPointer(
|
|
ArgAddr, ArgLVal.getType()->castAs<PointerType>());
|
|
}
|
|
if (!FO.RegisterCastedArgsOnly) {
|
|
LocalAddrs.insert(
|
|
{Args[Cnt],
|
|
{Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
|
|
}
|
|
} else if (I->capturesVariableByCopy()) {
|
|
assert(!FD->getType()->isAnyPointerType() &&
|
|
"Not expecting a captured pointer.");
|
|
const VarDecl *Var = I->getCapturedVar();
|
|
LocalAddrs.insert({Args[Cnt],
|
|
{Var, FO.UIntPtrCastRequired
|
|
? castValueFromUintptr(
|
|
CGF, I->getLocation(), FD->getType(),
|
|
Args[Cnt]->getName(), ArgLVal)
|
|
: ArgLVal.getAddress(CGF)}});
|
|
} else {
|
|
// If 'this' is captured, load it into CXXThisValue.
|
|
assert(I->capturesThis());
|
|
CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
|
|
LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}});
|
|
}
|
|
++Cnt;
|
|
++I;
|
|
}
|
|
|
|
return F;
|
|
}
|
|
|
|
llvm::Function *
|
|
CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
|
|
SourceLocation Loc) {
|
|
assert(
|
|
CapturedStmtInfo &&
|
|
"CapturedStmtInfo should be set when generating the captured function");
|
|
const CapturedDecl *CD = S.getCapturedDecl();
|
|
// Build the argument list.
|
|
bool NeedWrapperFunction =
|
|
getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo();
|
|
FunctionArgList Args;
|
|
llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
|
|
llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
Out << CapturedStmtInfo->getHelperName();
|
|
if (NeedWrapperFunction)
|
|
Out << "_debug__";
|
|
FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
|
|
Out.str(), Loc);
|
|
llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
|
|
VLASizes, CXXThisValue, FO);
|
|
CodeGenFunction::OMPPrivateScope LocalScope(*this);
|
|
for (const auto &LocalAddrPair : LocalAddrs) {
|
|
if (LocalAddrPair.second.first) {
|
|
LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() {
|
|
return LocalAddrPair.second.second;
|
|
});
|
|
}
|
|
}
|
|
(void)LocalScope.Privatize();
|
|
for (const auto &VLASizePair : VLASizes)
|
|
VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
|
|
PGO.assignRegionCounters(GlobalDecl(CD), F);
|
|
CapturedStmtInfo->EmitBody(*this, CD->getBody());
|
|
(void)LocalScope.ForceCleanup();
|
|
FinishFunction(CD->getBodyRBrace());
|
|
if (!NeedWrapperFunction)
|
|
return F;
|
|
|
|
FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
|
|
/*RegisterCastedArgsOnly=*/true,
|
|
CapturedStmtInfo->getHelperName(), Loc);
|
|
CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
|
|
WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
|
|
Args.clear();
|
|
LocalAddrs.clear();
|
|
VLASizes.clear();
|
|
llvm::Function *WrapperF =
|
|
emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
|
|
WrapperCGF.CXXThisValue, WrapperFO);
|
|
llvm::SmallVector<llvm::Value *, 4> CallArgs;
|
|
auto *PI = F->arg_begin();
|
|
for (const auto *Arg : Args) {
|
|
llvm::Value *CallArg;
|
|
auto I = LocalAddrs.find(Arg);
|
|
if (I != LocalAddrs.end()) {
|
|
LValue LV = WrapperCGF.MakeAddrLValue(
|
|
I->second.second,
|
|
I->second.first ? I->second.first->getType() : Arg->getType(),
|
|
AlignmentSource::Decl);
|
|
if (LV.getType()->isAnyComplexType())
|
|
LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
LV.getAddress(WrapperCGF),
|
|
PI->getType()->getPointerTo(
|
|
LV.getAddress(WrapperCGF).getAddressSpace())));
|
|
CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
|
|
} else {
|
|
auto EI = VLASizes.find(Arg);
|
|
if (EI != VLASizes.end()) {
|
|
CallArg = EI->second.second;
|
|
} else {
|
|
LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
|
|
Arg->getType(),
|
|
AlignmentSource::Decl);
|
|
CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
|
|
}
|
|
}
|
|
CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
|
|
++PI;
|
|
}
|
|
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs);
|
|
WrapperCGF.FinishFunction();
|
|
return WrapperF;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpenMP Directive Emission
|
|
//===----------------------------------------------------------------------===//
|
|
void CodeGenFunction::EmitOMPAggregateAssign(
|
|
Address DestAddr, Address SrcAddr, QualType OriginalType,
|
|
const llvm::function_ref<void(Address, Address)> CopyGen) {
|
|
// Perform element-by-element initialization.
|
|
QualType ElementTy;
|
|
|
|
// Drill down to the base element type on both arrays.
|
|
const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
|
|
llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
|
|
SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
|
|
|
|
llvm::Value *SrcBegin = SrcAddr.getPointer();
|
|
llvm::Value *DestBegin = DestAddr.getPointer();
|
|
// Cast from pointer to array type to pointer to single element.
|
|
llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
|
|
// The basic structure here is a while-do loop.
|
|
llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
|
|
llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
|
|
llvm::Value *IsEmpty =
|
|
Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
|
|
Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
|
|
|
|
// Enter the loop body, making that address the current address.
|
|
llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
|
|
EmitBlock(BodyBB);
|
|
|
|
CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
|
|
|
|
llvm::PHINode *SrcElementPHI =
|
|
Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
|
|
SrcElementPHI->addIncoming(SrcBegin, EntryBB);
|
|
Address SrcElementCurrent =
|
|
Address(SrcElementPHI,
|
|
SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
|
|
|
|
llvm::PHINode *DestElementPHI =
|
|
Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
|
|
DestElementPHI->addIncoming(DestBegin, EntryBB);
|
|
Address DestElementCurrent =
|
|
Address(DestElementPHI,
|
|
DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
|
|
|
|
// Emit copy.
|
|
CopyGen(DestElementCurrent, SrcElementCurrent);
|
|
|
|
// Shift the address forward by one element.
|
|
llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
|
|
DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
|
|
llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
|
|
SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
|
|
// Check whether we've reached the end.
|
|
llvm::Value *Done =
|
|
Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
|
|
Builder.CreateCondBr(Done, DoneBB, BodyBB);
|
|
DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
|
|
SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
|
|
|
|
// Done.
|
|
EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
|
|
Address SrcAddr, const VarDecl *DestVD,
|
|
const VarDecl *SrcVD, const Expr *Copy) {
|
|
if (OriginalType->isArrayType()) {
|
|
const auto *BO = dyn_cast<BinaryOperator>(Copy);
|
|
if (BO && BO->getOpcode() == BO_Assign) {
|
|
// Perform simple memcpy for simple copying.
|
|
LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
|
|
LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
|
|
EmitAggregateAssign(Dest, Src, OriginalType);
|
|
} else {
|
|
// For arrays with complex element types perform element by element
|
|
// copying.
|
|
EmitOMPAggregateAssign(
|
|
DestAddr, SrcAddr, OriginalType,
|
|
[this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
|
|
// Working with the single array element, so have to remap
|
|
// destination and source variables to corresponding array
|
|
// elements.
|
|
CodeGenFunction::OMPPrivateScope Remap(*this);
|
|
Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
|
|
Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
|
|
(void)Remap.Privatize();
|
|
EmitIgnoredExpr(Copy);
|
|
});
|
|
}
|
|
} else {
|
|
// Remap pseudo source variable to private copy.
|
|
CodeGenFunction::OMPPrivateScope Remap(*this);
|
|
Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
|
|
Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
|
|
(void)Remap.Privatize();
|
|
// Emit copying of the whole variable.
|
|
EmitIgnoredExpr(Copy);
|
|
}
|
|
}
|
|
|
|
bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
|
|
OMPPrivateScope &PrivateScope) {
|
|
if (!HaveInsertPoint())
|
|
return false;
|
|
bool DeviceConstTarget =
|
|
getLangOpts().OpenMPIsDevice &&
|
|
isOpenMPTargetExecutionDirective(D.getDirectiveKind());
|
|
bool FirstprivateIsLastprivate = false;
|
|
llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates;
|
|
for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
|
|
for (const auto *D : C->varlists())
|
|
Lastprivates.try_emplace(
|
|
cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(),
|
|
C->getKind());
|
|
}
|
|
llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
|
|
llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
|
|
getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
|
|
// Force emission of the firstprivate copy if the directive does not emit
|
|
// outlined function, like omp for, omp simd, omp distribute etc.
|
|
bool MustEmitFirstprivateCopy =
|
|
CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
|
|
for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
|
|
const auto *IRef = C->varlist_begin();
|
|
const auto *InitsRef = C->inits().begin();
|
|
for (const Expr *IInit : C->private_copies()) {
|
|
const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
bool ThisFirstprivateIsLastprivate =
|
|
Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
|
|
const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
|
|
if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
|
|
!FD->getType()->isReferenceType() &&
|
|
(!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
|
|
EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
|
|
++IRef;
|
|
++InitsRef;
|
|
continue;
|
|
}
|
|
// Do not emit copy for firstprivate constant variables in target regions,
|
|
// captured by reference.
|
|
if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) &&
|
|
FD && FD->getType()->isReferenceType() &&
|
|
(!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
|
|
(void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this,
|
|
OrigVD);
|
|
++IRef;
|
|
++InitsRef;
|
|
continue;
|
|
}
|
|
FirstprivateIsLastprivate =
|
|
FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
|
|
if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
|
|
const auto *VDInit =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
|
|
bool IsRegistered;
|
|
DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
|
|
/*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
|
|
(*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
|
|
LValue OriginalLVal;
|
|
if (!FD) {
|
|
// Check if the firstprivate variable is just a constant value.
|
|
ConstantEmission CE = tryEmitAsConstant(&DRE);
|
|
if (CE && !CE.isReference()) {
|
|
// Constant value, no need to create a copy.
|
|
++IRef;
|
|
++InitsRef;
|
|
continue;
|
|
}
|
|
if (CE && CE.isReference()) {
|
|
OriginalLVal = CE.getReferenceLValue(*this, &DRE);
|
|
} else {
|
|
assert(!CE && "Expected non-constant firstprivate.");
|
|
OriginalLVal = EmitLValue(&DRE);
|
|
}
|
|
} else {
|
|
OriginalLVal = EmitLValue(&DRE);
|
|
}
|
|
QualType Type = VD->getType();
|
|
if (Type->isArrayType()) {
|
|
// Emit VarDecl with copy init for arrays.
|
|
// Get the address of the original variable captured in current
|
|
// captured region.
|
|
IsRegistered = PrivateScope.addPrivate(
|
|
OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
|
|
AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
|
|
const Expr *Init = VD->getInit();
|
|
if (!isa<CXXConstructExpr>(Init) ||
|
|
isTrivialInitializer(Init)) {
|
|
// Perform simple memcpy.
|
|
LValue Dest =
|
|
MakeAddrLValue(Emission.getAllocatedAddress(), Type);
|
|
EmitAggregateAssign(Dest, OriginalLVal, Type);
|
|
} else {
|
|
EmitOMPAggregateAssign(
|
|
Emission.getAllocatedAddress(),
|
|
OriginalLVal.getAddress(*this), Type,
|
|
[this, VDInit, Init](Address DestElement,
|
|
Address SrcElement) {
|
|
// Clean up any temporaries needed by the
|
|
// initialization.
|
|
RunCleanupsScope InitScope(*this);
|
|
// Emit initialization for single element.
|
|
setAddrOfLocalVar(VDInit, SrcElement);
|
|
EmitAnyExprToMem(Init, DestElement,
|
|
Init->getType().getQualifiers(),
|
|
/*IsInitializer*/ false);
|
|
LocalDeclMap.erase(VDInit);
|
|
});
|
|
}
|
|
EmitAutoVarCleanups(Emission);
|
|
return Emission.getAllocatedAddress();
|
|
});
|
|
} else {
|
|
Address OriginalAddr = OriginalLVal.getAddress(*this);
|
|
IsRegistered =
|
|
PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD,
|
|
ThisFirstprivateIsLastprivate,
|
|
OrigVD, &Lastprivates, IRef]() {
|
|
// Emit private VarDecl with copy init.
|
|
// Remap temp VDInit variable to the address of the original
|
|
// variable (for proper handling of captured global variables).
|
|
setAddrOfLocalVar(VDInit, OriginalAddr);
|
|
EmitDecl(*VD);
|
|
LocalDeclMap.erase(VDInit);
|
|
if (ThisFirstprivateIsLastprivate &&
|
|
Lastprivates[OrigVD->getCanonicalDecl()] ==
|
|
OMPC_LASTPRIVATE_conditional) {
|
|
// Create/init special variable for lastprivate conditionals.
|
|
Address VDAddr =
|
|
CGM.getOpenMPRuntime().emitLastprivateConditionalInit(
|
|
*this, OrigVD);
|
|
llvm::Value *V = EmitLoadOfScalar(
|
|
MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(),
|
|
AlignmentSource::Decl),
|
|
(*IRef)->getExprLoc());
|
|
EmitStoreOfScalar(V,
|
|
MakeAddrLValue(VDAddr, (*IRef)->getType(),
|
|
AlignmentSource::Decl));
|
|
LocalDeclMap.erase(VD);
|
|
setAddrOfLocalVar(VD, VDAddr);
|
|
return VDAddr;
|
|
}
|
|
return GetAddrOfLocalVar(VD);
|
|
});
|
|
}
|
|
assert(IsRegistered &&
|
|
"firstprivate var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
}
|
|
++IRef;
|
|
++InitsRef;
|
|
}
|
|
}
|
|
return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPPrivateClause(
|
|
const OMPExecutableDirective &D,
|
|
CodeGenFunction::OMPPrivateScope &PrivateScope) {
|
|
if (!HaveInsertPoint())
|
|
return;
|
|
llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
|
|
for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
|
|
auto IRef = C->varlist_begin();
|
|
for (const Expr *IInit : C->private_copies()) {
|
|
const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
|
|
bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
|
|
// Emit private VarDecl with copy init.
|
|
EmitDecl(*VD);
|
|
return GetAddrOfLocalVar(VD);
|
|
});
|
|
assert(IsRegistered && "private var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
}
|
|
++IRef;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
|
|
if (!HaveInsertPoint())
|
|
return false;
|
|
// threadprivate_var1 = master_threadprivate_var1;
|
|
// operator=(threadprivate_var2, master_threadprivate_var2);
|
|
// ...
|
|
// __kmpc_barrier(&loc, global_tid);
|
|
llvm::DenseSet<const VarDecl *> CopiedVars;
|
|
llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
|
|
for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
|
|
auto IRef = C->varlist_begin();
|
|
auto ISrcRef = C->source_exprs().begin();
|
|
auto IDestRef = C->destination_exprs().begin();
|
|
for (const Expr *AssignOp : C->assignment_ops()) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
QualType Type = VD->getType();
|
|
if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
|
|
// Get the address of the master variable. If we are emitting code with
|
|
// TLS support, the address is passed from the master as field in the
|
|
// captured declaration.
|
|
Address MasterAddr = Address::invalid();
|
|
if (getLangOpts().OpenMPUseTLS &&
|
|
getContext().getTargetInfo().isTLSSupported()) {
|
|
assert(CapturedStmtInfo->lookup(VD) &&
|
|
"Copyin threadprivates should have been captured!");
|
|
DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true,
|
|
(*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
|
|
MasterAddr = EmitLValue(&DRE).getAddress(*this);
|
|
LocalDeclMap.erase(VD);
|
|
} else {
|
|
MasterAddr =
|
|
Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
|
|
: CGM.GetAddrOfGlobal(VD),
|
|
getContext().getDeclAlign(VD));
|
|
}
|
|
// Get the address of the threadprivate variable.
|
|
Address PrivateAddr = EmitLValue(*IRef).getAddress(*this);
|
|
if (CopiedVars.size() == 1) {
|
|
// At first check if current thread is a master thread. If it is, no
|
|
// need to copy data.
|
|
CopyBegin = createBasicBlock("copyin.not.master");
|
|
CopyEnd = createBasicBlock("copyin.not.master.end");
|
|
// TODO: Avoid ptrtoint conversion.
|
|
auto *MasterAddrInt =
|
|
Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy);
|
|
auto *PrivateAddrInt =
|
|
Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy);
|
|
Builder.CreateCondBr(
|
|
Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin,
|
|
CopyEnd);
|
|
EmitBlock(CopyBegin);
|
|
}
|
|
const auto *SrcVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
|
|
const auto *DestVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
|
|
EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
|
|
}
|
|
++IRef;
|
|
++ISrcRef;
|
|
++IDestRef;
|
|
}
|
|
}
|
|
if (CopyEnd) {
|
|
// Exit out of copying procedure for non-master thread.
|
|
EmitBlock(CopyEnd, /*IsFinished=*/true);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CodeGenFunction::EmitOMPLastprivateClauseInit(
|
|
const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
|
|
if (!HaveInsertPoint())
|
|
return false;
|
|
bool HasAtLeastOneLastprivate = false;
|
|
llvm::DenseSet<const VarDecl *> SIMDLCVs;
|
|
if (isOpenMPSimdDirective(D.getDirectiveKind())) {
|
|
const auto *LoopDirective = cast<OMPLoopDirective>(&D);
|
|
for (const Expr *C : LoopDirective->counters()) {
|
|
SIMDLCVs.insert(
|
|
cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
|
|
}
|
|
}
|
|
llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
|
|
for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
|
|
HasAtLeastOneLastprivate = true;
|
|
if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
|
|
!getLangOpts().OpenMPSimd)
|
|
break;
|
|
const auto *IRef = C->varlist_begin();
|
|
const auto *IDestRef = C->destination_exprs().begin();
|
|
for (const Expr *IInit : C->private_copies()) {
|
|
// Keep the address of the original variable for future update at the end
|
|
// of the loop.
|
|
const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
// Taskloops do not require additional initialization, it is done in
|
|
// runtime support library.
|
|
if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
|
|
const auto *DestVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
|
|
PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
|
|
DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
|
|
/*RefersToEnclosingVariableOrCapture=*/
|
|
CapturedStmtInfo->lookup(OrigVD) != nullptr,
|
|
(*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
|
|
return EmitLValue(&DRE).getAddress(*this);
|
|
});
|
|
// Check if the variable is also a firstprivate: in this case IInit is
|
|
// not generated. Initialization of this variable will happen in codegen
|
|
// for 'firstprivate' clause.
|
|
if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
|
|
bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C,
|
|
OrigVD]() {
|
|
if (C->getKind() == OMPC_LASTPRIVATE_conditional) {
|
|
Address VDAddr =
|
|
CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this,
|
|
OrigVD);
|
|
setAddrOfLocalVar(VD, VDAddr);
|
|
return VDAddr;
|
|
}
|
|
// Emit private VarDecl with copy init.
|
|
EmitDecl(*VD);
|
|
return GetAddrOfLocalVar(VD);
|
|
});
|
|
assert(IsRegistered &&
|
|
"lastprivate var already registered as private");
|
|
(void)IsRegistered;
|
|
}
|
|
}
|
|
++IRef;
|
|
++IDestRef;
|
|
}
|
|
}
|
|
return HasAtLeastOneLastprivate;
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPLastprivateClauseFinal(
|
|
const OMPExecutableDirective &D, bool NoFinals,
|
|
llvm::Value *IsLastIterCond) {
|
|
if (!HaveInsertPoint())
|
|
return;
|
|
// Emit following code:
|
|
// if (<IsLastIterCond>) {
|
|
// orig_var1 = private_orig_var1;
|
|
// ...
|
|
// orig_varn = private_orig_varn;
|
|
// }
|
|
llvm::BasicBlock *ThenBB = nullptr;
|
|
llvm::BasicBlock *DoneBB = nullptr;
|
|
if (IsLastIterCond) {
|
|
// Emit implicit barrier if at least one lastprivate conditional is found
|
|
// and this is not a simd mode.
|
|
if (!getLangOpts().OpenMPSimd &&
|
|
llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(),
|
|
[](const OMPLastprivateClause *C) {
|
|
return C->getKind() == OMPC_LASTPRIVATE_conditional;
|
|
})) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(),
|
|
OMPD_unknown,
|
|
/*EmitChecks=*/false,
|
|
/*ForceSimpleCall=*/true);
|
|
}
|
|
ThenBB = createBasicBlock(".omp.lastprivate.then");
|
|
DoneBB = createBasicBlock(".omp.lastprivate.done");
|
|
Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
|
|
EmitBlock(ThenBB);
|
|
}
|
|
llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
|
|
llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
|
|
if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
|
|
auto IC = LoopDirective->counters().begin();
|
|
for (const Expr *F : LoopDirective->finals()) {
|
|
const auto *D =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
|
|
if (NoFinals)
|
|
AlreadyEmittedVars.insert(D);
|
|
else
|
|
LoopCountersAndUpdates[D] = F;
|
|
++IC;
|
|
}
|
|
}
|
|
for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
|
|
auto IRef = C->varlist_begin();
|
|
auto ISrcRef = C->source_exprs().begin();
|
|
auto IDestRef = C->destination_exprs().begin();
|
|
for (const Expr *AssignOp : C->assignment_ops()) {
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
QualType Type = PrivateVD->getType();
|
|
const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
|
|
if (AlreadyEmittedVars.insert(CanonicalVD).second) {
|
|
// If lastprivate variable is a loop control variable for loop-based
|
|
// directive, update its value before copyin back to original
|
|
// variable.
|
|
if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
|
|
EmitIgnoredExpr(FinalExpr);
|
|
const auto *SrcVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
|
|
const auto *DestVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
|
|
// Get the address of the private variable.
|
|
Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
|
|
if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
|
|
PrivateAddr =
|
|
Address(Builder.CreateLoad(PrivateAddr),
|
|
CGM.getNaturalTypeAlignment(RefTy->getPointeeType()));
|
|
// Store the last value to the private copy in the last iteration.
|
|
if (C->getKind() == OMPC_LASTPRIVATE_conditional)
|
|
CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate(
|
|
*this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD,
|
|
(*IRef)->getExprLoc());
|
|
// Get the address of the original variable.
|
|
Address OriginalAddr = GetAddrOfLocalVar(DestVD);
|
|
EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
|
|
}
|
|
++IRef;
|
|
++ISrcRef;
|
|
++IDestRef;
|
|
}
|
|
if (const Expr *PostUpdate = C->getPostUpdateExpr())
|
|
EmitIgnoredExpr(PostUpdate);
|
|
}
|
|
if (IsLastIterCond)
|
|
EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPReductionClauseInit(
|
|
const OMPExecutableDirective &D,
|
|
CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) {
|
|
if (!HaveInsertPoint())
|
|
return;
|
|
SmallVector<const Expr *, 4> Shareds;
|
|
SmallVector<const Expr *, 4> Privates;
|
|
SmallVector<const Expr *, 4> ReductionOps;
|
|
SmallVector<const Expr *, 4> LHSs;
|
|
SmallVector<const Expr *, 4> RHSs;
|
|
OMPTaskDataTy Data;
|
|
SmallVector<const Expr *, 4> TaskLHSs;
|
|
SmallVector<const Expr *, 4> TaskRHSs;
|
|
for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
|
|
if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan))
|
|
continue;
|
|
Shareds.append(C->varlist_begin(), C->varlist_end());
|
|
Privates.append(C->privates().begin(), C->privates().end());
|
|
ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
|
|
LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
|
|
RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
|
|
if (C->getModifier() == OMPC_REDUCTION_task) {
|
|
Data.ReductionVars.append(C->privates().begin(), C->privates().end());
|
|
Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
|
|
Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
|
|
Data.ReductionOps.append(C->reduction_ops().begin(),
|
|
C->reduction_ops().end());
|
|
TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
|
|
TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
|
|
}
|
|
}
|
|
ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps);
|
|
unsigned Count = 0;
|
|
auto *ILHS = LHSs.begin();
|
|
auto *IRHS = RHSs.begin();
|
|
auto *IPriv = Privates.begin();
|
|
for (const Expr *IRef : Shareds) {
|
|
const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
|
|
// Emit private VarDecl with reduction init.
|
|
RedCG.emitSharedOrigLValue(*this, Count);
|
|
RedCG.emitAggregateType(*this, Count);
|
|
AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
|
|
RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
|
|
RedCG.getSharedLValue(Count),
|
|
[&Emission](CodeGenFunction &CGF) {
|
|
CGF.EmitAutoVarInit(Emission);
|
|
return true;
|
|
});
|
|
EmitAutoVarCleanups(Emission);
|
|
Address BaseAddr = RedCG.adjustPrivateAddress(
|
|
*this, Count, Emission.getAllocatedAddress());
|
|
bool IsRegistered = PrivateScope.addPrivate(
|
|
RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
|
|
assert(IsRegistered && "private var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
|
|
const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
|
|
const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
|
|
QualType Type = PrivateVD->getType();
|
|
bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
|
|
if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
|
|
// Store the address of the original variable associated with the LHS
|
|
// implicit variable.
|
|
PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
|
|
return RedCG.getSharedLValue(Count).getAddress(*this);
|
|
});
|
|
PrivateScope.addPrivate(
|
|
RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
|
|
} else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
|
|
isa<ArraySubscriptExpr>(IRef)) {
|
|
// Store the address of the original variable associated with the LHS
|
|
// implicit variable.
|
|
PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
|
|
return RedCG.getSharedLValue(Count).getAddress(*this);
|
|
});
|
|
PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
|
|
return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
|
|
ConvertTypeForMem(RHSVD->getType()),
|
|
"rhs.begin");
|
|
});
|
|
} else {
|
|
QualType Type = PrivateVD->getType();
|
|
bool IsArray = getContext().getAsArrayType(Type) != nullptr;
|
|
Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this);
|
|
// Store the address of the original variable associated with the LHS
|
|
// implicit variable.
|
|
if (IsArray) {
|
|
OriginalAddr = Builder.CreateElementBitCast(
|
|
OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
|
|
}
|
|
PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
|
|
PrivateScope.addPrivate(
|
|
RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
|
|
return IsArray
|
|
? Builder.CreateElementBitCast(
|
|
GetAddrOfLocalVar(PrivateVD),
|
|
ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
|
|
: GetAddrOfLocalVar(PrivateVD);
|
|
});
|
|
}
|
|
++ILHS;
|
|
++IRHS;
|
|
++IPriv;
|
|
++Count;
|
|
}
|
|
if (!Data.ReductionVars.empty()) {
|
|
Data.IsReductionWithTaskMod = true;
|
|
Data.IsWorksharingReduction =
|
|
isOpenMPWorksharingDirective(D.getDirectiveKind());
|
|
llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit(
|
|
*this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data);
|
|
const Expr *TaskRedRef = nullptr;
|
|
switch (D.getDirectiveKind()) {
|
|
case OMPD_parallel:
|
|
TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr();
|
|
break;
|
|
case OMPD_for:
|
|
TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr();
|
|
break;
|
|
case OMPD_sections:
|
|
TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr();
|
|
break;
|
|
case OMPD_parallel_for:
|
|
TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr();
|
|
break;
|
|
case OMPD_parallel_master:
|
|
TaskRedRef =
|
|
cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr();
|
|
break;
|
|
case OMPD_parallel_sections:
|
|
TaskRedRef =
|
|
cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr();
|
|
break;
|
|
case OMPD_target_parallel:
|
|
TaskRedRef =
|
|
cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr();
|
|
break;
|
|
case OMPD_target_parallel_for:
|
|
TaskRedRef =
|
|
cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr();
|
|
break;
|
|
case OMPD_distribute_parallel_for:
|
|
TaskRedRef =
|
|
cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr();
|
|
break;
|
|
case OMPD_teams_distribute_parallel_for:
|
|
TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D)
|
|
.getTaskReductionRefExpr();
|
|
break;
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D)
|
|
.getTaskReductionRefExpr();
|
|
break;
|
|
case OMPD_simd:
|
|
case OMPD_for_simd:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_task:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_flush:
|
|
case OMPD_depobj:
|
|
case OMPD_scan:
|
|
case OMPD_ordered:
|
|
case OMPD_atomic:
|
|
case OMPD_teams:
|
|
case OMPD_target:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_cancel:
|
|
case OMPD_target_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_master_taskloop:
|
|
case OMPD_master_taskloop_simd:
|
|
case OMPD_parallel_master_taskloop:
|
|
case OMPD_parallel_master_taskloop_simd:
|
|
case OMPD_distribute:
|
|
case OMPD_target_update:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_target_parallel_for_simd:
|
|
case OMPD_target_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_teams:
|
|
case OMPD_target_teams_distribute:
|
|
case OMPD_target_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_teams_distribute_simd:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_declare_simd:
|
|
case OMPD_requires:
|
|
case OMPD_declare_variant:
|
|
case OMPD_begin_declare_variant:
|
|
case OMPD_end_declare_variant:
|
|
case OMPD_unknown:
|
|
default:
|
|
llvm_unreachable("Enexpected directive with task reductions.");
|
|
}
|
|
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl());
|
|
EmitVarDecl(*VD);
|
|
EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD),
|
|
/*Volatile=*/false, TaskRedRef->getType());
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPReductionClauseFinal(
|
|
const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
|
|
if (!HaveInsertPoint())
|
|
return;
|
|
llvm::SmallVector<const Expr *, 8> Privates;
|
|
llvm::SmallVector<const Expr *, 8> LHSExprs;
|
|
llvm::SmallVector<const Expr *, 8> RHSExprs;
|
|
llvm::SmallVector<const Expr *, 8> ReductionOps;
|
|
bool HasAtLeastOneReduction = false;
|
|
bool IsReductionWithTaskMod = false;
|
|
for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
|
|
// Do not emit for inscan reductions.
|
|
if (C->getModifier() == OMPC_REDUCTION_inscan)
|
|
continue;
|
|
HasAtLeastOneReduction = true;
|
|
Privates.append(C->privates().begin(), C->privates().end());
|
|
LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
|
|
RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
|
|
ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
|
|
IsReductionWithTaskMod =
|
|
IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task;
|
|
}
|
|
if (HasAtLeastOneReduction) {
|
|
if (IsReductionWithTaskMod) {
|
|
CGM.getOpenMPRuntime().emitTaskReductionFini(
|
|
*this, D.getBeginLoc(),
|
|
isOpenMPWorksharingDirective(D.getDirectiveKind()));
|
|
}
|
|
bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
|
|
isOpenMPParallelDirective(D.getDirectiveKind()) ||
|
|
ReductionKind == OMPD_simd;
|
|
bool SimpleReduction = ReductionKind == OMPD_simd;
|
|
// Emit nowait reduction if nowait clause is present or directive is a
|
|
// parallel directive (it always has implicit barrier).
|
|
CGM.getOpenMPRuntime().emitReduction(
|
|
*this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps,
|
|
{WithNowait, SimpleReduction, ReductionKind});
|
|
}
|
|
}
|
|
|
|
static void emitPostUpdateForReductionClause(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D,
|
|
const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
llvm::BasicBlock *DoneBB = nullptr;
|
|
for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
|
|
if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
|
|
if (!DoneBB) {
|
|
if (llvm::Value *Cond = CondGen(CGF)) {
|
|
// If the first post-update expression is found, emit conditional
|
|
// block if it was requested.
|
|
llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
|
|
DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
|
|
CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
|
|
CGF.EmitBlock(ThenBB);
|
|
}
|
|
}
|
|
CGF.EmitIgnoredExpr(PostUpdate);
|
|
}
|
|
}
|
|
if (DoneBB)
|
|
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
namespace {
|
|
/// Codegen lambda for appending distribute lower and upper bounds to outlined
|
|
/// parallel function. This is necessary for combined constructs such as
|
|
/// 'distribute parallel for'
|
|
typedef llvm::function_ref<void(CodeGenFunction &,
|
|
const OMPExecutableDirective &,
|
|
llvm::SmallVectorImpl<llvm::Value *> &)>
|
|
CodeGenBoundParametersTy;
|
|
} // anonymous namespace
|
|
|
|
static void
|
|
checkForLastprivateConditionalUpdate(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &S) {
|
|
if (CGF.getLangOpts().OpenMP < 50)
|
|
return;
|
|
llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls;
|
|
for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
|
|
for (const Expr *Ref : C->varlists()) {
|
|
if (!Ref->getType()->isScalarType())
|
|
continue;
|
|
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
|
|
if (!DRE)
|
|
continue;
|
|
PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
|
|
}
|
|
}
|
|
for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
|
|
for (const Expr *Ref : C->varlists()) {
|
|
if (!Ref->getType()->isScalarType())
|
|
continue;
|
|
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
|
|
if (!DRE)
|
|
continue;
|
|
PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
|
|
}
|
|
}
|
|
for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
|
|
for (const Expr *Ref : C->varlists()) {
|
|
if (!Ref->getType()->isScalarType())
|
|
continue;
|
|
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
|
|
if (!DRE)
|
|
continue;
|
|
PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
|
|
}
|
|
}
|
|
// Privates should ne analyzed since they are not captured at all.
|
|
// Task reductions may be skipped - tasks are ignored.
|
|
// Firstprivates do not return value but may be passed by reference - no need
|
|
// to check for updated lastprivate conditional.
|
|
for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
|
|
for (const Expr *Ref : C->varlists()) {
|
|
if (!Ref->getType()->isScalarType())
|
|
continue;
|
|
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
|
|
if (!DRE)
|
|
continue;
|
|
PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
|
|
}
|
|
}
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional(
|
|
CGF, S, PrivateDecls);
|
|
}
|
|
|
|
static void emitCommonOMPParallelDirective(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &S,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
|
|
const CodeGenBoundParametersTy &CodeGenBoundParameters) {
|
|
const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
|
|
llvm::Function *OutlinedFn =
|
|
CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
|
|
S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
|
|
if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
|
|
CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
|
|
llvm::Value *NumThreads =
|
|
CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
|
|
/*IgnoreResultAssign=*/true);
|
|
CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
|
|
CGF, NumThreads, NumThreadsClause->getBeginLoc());
|
|
}
|
|
if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
|
|
CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
|
|
CGF.CGM.getOpenMPRuntime().emitProcBindClause(
|
|
CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc());
|
|
}
|
|
const Expr *IfCond = nullptr;
|
|
for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
|
|
if (C->getNameModifier() == OMPD_unknown ||
|
|
C->getNameModifier() == OMPD_parallel) {
|
|
IfCond = C->getCondition();
|
|
break;
|
|
}
|
|
}
|
|
|
|
OMPParallelScope Scope(CGF, S);
|
|
llvm::SmallVector<llvm::Value *, 16> CapturedVars;
|
|
// Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
|
|
// lower and upper bounds with the pragma 'for' chunking mechanism.
|
|
// The following lambda takes care of appending the lower and upper bound
|
|
// parameters when necessary
|
|
CodeGenBoundParameters(CGF, S, CapturedVars);
|
|
CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
|
|
CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn,
|
|
CapturedVars, IfCond);
|
|
}
|
|
|
|
static bool isAllocatableDecl(const VarDecl *VD) {
|
|
const VarDecl *CVD = VD->getCanonicalDecl();
|
|
if (!CVD->hasAttr<OMPAllocateDeclAttr>())
|
|
return false;
|
|
const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
|
|
// Use the default allocation.
|
|
return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc ||
|
|
AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) &&
|
|
!AA->getAllocator());
|
|
}
|
|
|
|
static void emitEmptyBoundParameters(CodeGenFunction &,
|
|
const OMPExecutableDirective &,
|
|
llvm::SmallVectorImpl<llvm::Value *> &) {}
|
|
|
|
Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable(
|
|
CodeGenFunction &CGF, const VarDecl *VD) {
|
|
CodeGenModule &CGM = CGF.CGM;
|
|
auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
|
|
|
|
if (!VD)
|
|
return Address::invalid();
|
|
const VarDecl *CVD = VD->getCanonicalDecl();
|
|
if (!isAllocatableDecl(CVD))
|
|
return Address::invalid();
|
|
llvm::Value *Size;
|
|
CharUnits Align = CGM.getContext().getDeclAlign(CVD);
|
|
if (CVD->getType()->isVariablyModifiedType()) {
|
|
Size = CGF.getTypeSize(CVD->getType());
|
|
// Align the size: ((size + align - 1) / align) * align
|
|
Size = CGF.Builder.CreateNUWAdd(
|
|
Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
|
|
Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
|
|
Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
|
|
} else {
|
|
CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
|
|
Size = CGM.getSize(Sz.alignTo(Align));
|
|
}
|
|
|
|
const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
|
|
assert(AA->getAllocator() &&
|
|
"Expected allocator expression for non-default allocator.");
|
|
llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
|
|
// According to the standard, the original allocator type is a enum (integer).
|
|
// Convert to pointer type, if required.
|
|
if (Allocator->getType()->isIntegerTy())
|
|
Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
|
|
else if (Allocator->getType()->isPointerTy())
|
|
Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
|
|
CGM.VoidPtrTy);
|
|
|
|
llvm::Value *Addr = OMPBuilder.createOMPAlloc(
|
|
CGF.Builder, Size, Allocator,
|
|
getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", "."));
|
|
llvm::CallInst *FreeCI =
|
|
OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator);
|
|
|
|
CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI);
|
|
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
Addr,
|
|
CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
|
|
getNameWithSeparators({CVD->getName(), ".addr"}, ".", "."));
|
|
return Address(Addr, Align);
|
|
}
|
|
|
|
Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
|
|
CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr,
|
|
SourceLocation Loc) {
|
|
CodeGenModule &CGM = CGF.CGM;
|
|
if (CGM.getLangOpts().OpenMPUseTLS &&
|
|
CGM.getContext().getTargetInfo().isTLSSupported())
|
|
return VDAddr;
|
|
|
|
llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
|
|
|
|
llvm::Type *VarTy = VDAddr.getElementType();
|
|
llvm::Value *Data =
|
|
CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy);
|
|
llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy));
|
|
std::string Suffix = getNameWithSeparators({"cache", ""});
|
|
llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix);
|
|
|
|
llvm::CallInst *ThreadPrivateCacheCall =
|
|
OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName);
|
|
|
|
return Address(ThreadPrivateCacheCall, VDAddr.getAlignment());
|
|
}
|
|
|
|
std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators(
|
|
ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) {
|
|
SmallString<128> Buffer;
|
|
llvm::raw_svector_ostream OS(Buffer);
|
|
StringRef Sep = FirstSeparator;
|
|
for (StringRef Part : Parts) {
|
|
OS << Sep << Part;
|
|
Sep = Separator;
|
|
}
|
|
return OS.str().str();
|
|
}
|
|
void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
|
|
if (CGM.getLangOpts().OpenMPIRBuilder) {
|
|
llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
|
|
// Check if we have any if clause associated with the directive.
|
|
llvm::Value *IfCond = nullptr;
|
|
if (const auto *C = S.getSingleClause<OMPIfClause>())
|
|
IfCond = EmitScalarExpr(C->getCondition(),
|
|
/*IgnoreResultAssign=*/true);
|
|
|
|
llvm::Value *NumThreads = nullptr;
|
|
if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>())
|
|
NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(),
|
|
/*IgnoreResultAssign=*/true);
|
|
|
|
ProcBindKind ProcBind = OMP_PROC_BIND_default;
|
|
if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>())
|
|
ProcBind = ProcBindClause->getProcBindKind();
|
|
|
|
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
|
|
|
// The cleanup callback that finalizes all variabels at the given location,
|
|
// thus calls destructors etc.
|
|
auto FiniCB = [this](InsertPointTy IP) {
|
|
OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
|
|
};
|
|
|
|
// Privatization callback that performs appropriate action for
|
|
// shared/private/firstprivate/lastprivate/copyin/... variables.
|
|
//
|
|
// TODO: This defaults to shared right now.
|
|
auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
|
|
llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) {
|
|
// The next line is appropriate only for variables (Val) with the
|
|
// data-sharing attribute "shared".
|
|
ReplVal = &Val;
|
|
|
|
return CodeGenIP;
|
|
};
|
|
|
|
const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
|
|
const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt();
|
|
|
|
auto BodyGenCB = [ParallelRegionBodyStmt,
|
|
this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
|
|
llvm::BasicBlock &ContinuationBB) {
|
|
OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP,
|
|
ContinuationBB);
|
|
OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt,
|
|
CodeGenIP, ContinuationBB);
|
|
};
|
|
|
|
CGCapturedStmtInfo CGSI(*CS, CR_OpenMP);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI);
|
|
llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
|
|
AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
|
|
Builder.restoreIP(
|
|
OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB,
|
|
IfCond, NumThreads, ProcBind, S.hasCancel()));
|
|
return;
|
|
}
|
|
|
|
// Emit parallel region as a standalone region.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
OMPPrivateScope PrivateScope(CGF);
|
|
bool Copyins = CGF.EmitOMPCopyinClause(S);
|
|
(void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
|
|
if (Copyins) {
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
// propagation master's thread values of threadprivate variables to local
|
|
// instances of that variables of all other implicit threads.
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(
|
|
CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
|
|
/*ForceSimpleCall=*/true);
|
|
}
|
|
CGF.EmitOMPPrivateClause(S, PrivateScope);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
|
|
};
|
|
{
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
|
|
emitEmptyBoundParameters);
|
|
emitPostUpdateForReductionClause(*this, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
// Check for outer lastprivate conditional update.
|
|
checkForLastprivateConditionalUpdate(*this, S);
|
|
}
|
|
|
|
namespace {
|
|
/// RAII to handle scopes for loop transformation directives.
|
|
class OMPTransformDirectiveScopeRAII {
|
|
OMPLoopScope *Scope = nullptr;
|
|
CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr;
|
|
CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr;
|
|
|
|
public:
|
|
OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) {
|
|
if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) {
|
|
Scope = new OMPLoopScope(CGF, *Dir);
|
|
CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP);
|
|
CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI);
|
|
}
|
|
}
|
|
~OMPTransformDirectiveScopeRAII() {
|
|
if (!Scope)
|
|
return;
|
|
delete CapInfoRAII;
|
|
delete CGSI;
|
|
delete Scope;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop,
|
|
int MaxLevel, int Level = 0) {
|
|
assert(Level < MaxLevel && "Too deep lookup during loop body codegen.");
|
|
const Stmt *SimplifiedS = S->IgnoreContainers();
|
|
if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) {
|
|
PrettyStackTraceLoc CrashInfo(
|
|
CGF.getContext().getSourceManager(), CS->getLBracLoc(),
|
|
"LLVM IR generation of compound statement ('{}')");
|
|
|
|
// Keep track of the current cleanup stack depth, including debug scopes.
|
|
CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange());
|
|
for (const Stmt *CurStmt : CS->body())
|
|
emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level);
|
|
return;
|
|
}
|
|
if (SimplifiedS == NextLoop) {
|
|
if (auto *Dir = dyn_cast<OMPTileDirective>(SimplifiedS))
|
|
SimplifiedS = Dir->getTransformedStmt();
|
|
if (auto *Dir = dyn_cast<OMPUnrollDirective>(SimplifiedS))
|
|
SimplifiedS = Dir->getTransformedStmt();
|
|
if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS))
|
|
SimplifiedS = CanonLoop->getLoopStmt();
|
|
if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) {
|
|
S = For->getBody();
|
|
} else {
|
|
assert(isa<CXXForRangeStmt>(SimplifiedS) &&
|
|
"Expected canonical for loop or range-based for loop.");
|
|
const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS);
|
|
CGF.EmitStmt(CXXFor->getLoopVarStmt());
|
|
S = CXXFor->getBody();
|
|
}
|
|
if (Level + 1 < MaxLevel) {
|
|
NextLoop = OMPLoopDirective::tryToFindNextInnerLoop(
|
|
S, /*TryImperfectlyNestedLoops=*/true);
|
|
emitBody(CGF, S, NextLoop, MaxLevel, Level + 1);
|
|
return;
|
|
}
|
|
}
|
|
CGF.EmitStmt(S);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
|
|
JumpDest LoopExit) {
|
|
RunCleanupsScope BodyScope(*this);
|
|
// Update counters values on current iteration.
|
|
for (const Expr *UE : D.updates())
|
|
EmitIgnoredExpr(UE);
|
|
// Update the linear variables.
|
|
// In distribute directives only loop counters may be marked as linear, no
|
|
// need to generate the code for them.
|
|
if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
|
|
for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
|
|
for (const Expr *UE : C->updates())
|
|
EmitIgnoredExpr(UE);
|
|
}
|
|
}
|
|
|
|
// On a continue in the body, jump to the end.
|
|
JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
|
|
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
|
|
for (const Expr *E : D.finals_conditions()) {
|
|
if (!E)
|
|
continue;
|
|
// Check that loop counter in non-rectangular nest fits into the iteration
|
|
// space.
|
|
llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next");
|
|
EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(),
|
|
getProfileCount(D.getBody()));
|
|
EmitBlock(NextBB);
|
|
}
|
|
|
|
OMPPrivateScope InscanScope(*this);
|
|
EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true);
|
|
bool IsInscanRegion = InscanScope.Privatize();
|
|
if (IsInscanRegion) {
|
|
// Need to remember the block before and after scan directive
|
|
// to dispatch them correctly depending on the clause used in
|
|
// this directive, inclusive or exclusive. For inclusive scan the natural
|
|
// order of the blocks is used, for exclusive clause the blocks must be
|
|
// executed in reverse order.
|
|
OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb");
|
|
OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb");
|
|
// No need to allocate inscan exit block, in simd mode it is selected in the
|
|
// codegen for the scan directive.
|
|
if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd)
|
|
OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb");
|
|
OMPScanDispatch = createBasicBlock("omp.inscan.dispatch");
|
|
EmitBranch(OMPScanDispatch);
|
|
EmitBlock(OMPBeforeScanBlock);
|
|
}
|
|
|
|
// Emit loop variables for C++ range loops.
|
|
const Stmt *Body =
|
|
D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers();
|
|
// Emit loop body.
|
|
emitBody(*this, Body,
|
|
OMPLoopBasedDirective::tryToFindNextInnerLoop(
|
|
Body, /*TryImperfectlyNestedLoops=*/true),
|
|
D.getLoopsNumber());
|
|
|
|
// Jump to the dispatcher at the end of the loop body.
|
|
if (IsInscanRegion)
|
|
EmitBranch(OMPScanExitBlock);
|
|
|
|
// The end (updates/cleanups).
|
|
EmitBlock(Continue.getBlock());
|
|
BreakContinueStack.pop_back();
|
|
}
|
|
|
|
using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>;
|
|
|
|
/// Emit a captured statement and return the function as well as its captured
|
|
/// closure context.
|
|
static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF,
|
|
const CapturedStmt *S) {
|
|
LValue CapStruct = ParentCGF.InitCapturedStruct(*S);
|
|
CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true);
|
|
std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI =
|
|
std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get());
|
|
llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S);
|
|
|
|
return {F, CapStruct.getPointer(ParentCGF)};
|
|
}
|
|
|
|
/// Emit a call to a previously captured closure.
|
|
static llvm::CallInst *
|
|
emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap,
|
|
llvm::ArrayRef<llvm::Value *> Args) {
|
|
// Append the closure context to the argument.
|
|
SmallVector<llvm::Value *> EffectiveArgs;
|
|
EffectiveArgs.reserve(Args.size() + 1);
|
|
llvm::append_range(EffectiveArgs, Args);
|
|
EffectiveArgs.push_back(Cap.second);
|
|
|
|
return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs);
|
|
}
|
|
|
|
llvm::CanonicalLoopInfo *
|
|
CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) {
|
|
assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented");
|
|
|
|
EmitStmt(S);
|
|
assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops");
|
|
|
|
// The last added loop is the outermost one.
|
|
return OMPLoopNestStack.back();
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) {
|
|
const Stmt *SyntacticalLoop = S->getLoopStmt();
|
|
if (!getLangOpts().OpenMPIRBuilder) {
|
|
// Ignore if OpenMPIRBuilder is not enabled.
|
|
EmitStmt(SyntacticalLoop);
|
|
return;
|
|
}
|
|
|
|
LexicalScope ForScope(*this, S->getSourceRange());
|
|
|
|
// Emit init statements. The Distance/LoopVar funcs may reference variable
|
|
// declarations they contain.
|
|
const Stmt *BodyStmt;
|
|
if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) {
|
|
if (const Stmt *InitStmt = For->getInit())
|
|
EmitStmt(InitStmt);
|
|
BodyStmt = For->getBody();
|
|
} else if (const auto *RangeFor =
|
|
dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) {
|
|
if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt())
|
|
EmitStmt(RangeStmt);
|
|
if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt())
|
|
EmitStmt(BeginStmt);
|
|
if (const DeclStmt *EndStmt = RangeFor->getEndStmt())
|
|
EmitStmt(EndStmt);
|
|
if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt())
|
|
EmitStmt(LoopVarStmt);
|
|
BodyStmt = RangeFor->getBody();
|
|
} else
|
|
llvm_unreachable("Expected for-stmt or range-based for-stmt");
|
|
|
|
// Emit closure for later use. By-value captures will be captured here.
|
|
const CapturedStmt *DistanceFunc = S->getDistanceFunc();
|
|
EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc);
|
|
const CapturedStmt *LoopVarFunc = S->getLoopVarFunc();
|
|
EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc);
|
|
|
|
// Call the distance function to get the number of iterations of the loop to
|
|
// come.
|
|
QualType LogicalTy = DistanceFunc->getCapturedDecl()
|
|
->getParam(0)
|
|
->getType()
|
|
.getNonReferenceType();
|
|
Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr");
|
|
emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()});
|
|
llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count");
|
|
|
|
// Emit the loop structure.
|
|
llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
|
|
auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP,
|
|
llvm::Value *IndVar) {
|
|
Builder.restoreIP(CodeGenIP);
|
|
|
|
// Emit the loop body: Convert the logical iteration number to the loop
|
|
// variable and emit the body.
|
|
const DeclRefExpr *LoopVarRef = S->getLoopVarRef();
|
|
LValue LCVal = EmitLValue(LoopVarRef);
|
|
Address LoopVarAddress = LCVal.getAddress(*this);
|
|
emitCapturedStmtCall(*this, LoopVarClosure,
|
|
{LoopVarAddress.getPointer(), IndVar});
|
|
|
|
RunCleanupsScope BodyScope(*this);
|
|
EmitStmt(BodyStmt);
|
|
};
|
|
llvm::CanonicalLoopInfo *CL =
|
|
OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal);
|
|
|
|
// Finish up the loop.
|
|
Builder.restoreIP(CL->getAfterIP());
|
|
ForScope.ForceCleanup();
|
|
|
|
// Remember the CanonicalLoopInfo for parent AST nodes consuming it.
|
|
OMPLoopNestStack.push_back(CL);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPInnerLoop(
|
|
const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond,
|
|
const Expr *IncExpr,
|
|
const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
|
|
const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
|
|
auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
|
|
|
|
// Start the loop with a block that tests the condition.
|
|
auto CondBlock = createBasicBlock("omp.inner.for.cond");
|
|
EmitBlock(CondBlock);
|
|
const SourceRange R = S.getSourceRange();
|
|
|
|
// If attributes are attached, push to the basic block with them.
|
|
const auto &OMPED = cast<OMPExecutableDirective>(S);
|
|
const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt();
|
|
const Stmt *SS = ICS->getCapturedStmt();
|
|
const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS);
|
|
OMPLoopNestStack.clear();
|
|
if (AS)
|
|
LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(),
|
|
AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()),
|
|
SourceLocToDebugLoc(R.getEnd()));
|
|
else
|
|
LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
|
|
SourceLocToDebugLoc(R.getEnd()));
|
|
|
|
// If there are any cleanups between here and the loop-exit scope,
|
|
// create a block to stage a loop exit along.
|
|
llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
|
|
if (RequiresCleanup)
|
|
ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
|
|
|
|
llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
|
|
|
|
// Emit condition.
|
|
EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
|
|
if (ExitBlock != LoopExit.getBlock()) {
|
|
EmitBlock(ExitBlock);
|
|
EmitBranchThroughCleanup(LoopExit);
|
|
}
|
|
|
|
EmitBlock(LoopBody);
|
|
incrementProfileCounter(&S);
|
|
|
|
// Create a block for the increment.
|
|
JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
|
|
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
|
|
|
|
BodyGen(*this);
|
|
|
|
// Emit "IV = IV + 1" and a back-edge to the condition block.
|
|
EmitBlock(Continue.getBlock());
|
|
EmitIgnoredExpr(IncExpr);
|
|
PostIncGen(*this);
|
|
BreakContinueStack.pop_back();
|
|
EmitBranch(CondBlock);
|
|
LoopStack.pop();
|
|
// Emit the fall-through block.
|
|
EmitBlock(LoopExit.getBlock());
|
|
}
|
|
|
|
bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
|
|
if (!HaveInsertPoint())
|
|
return false;
|
|
// Emit inits for the linear variables.
|
|
bool HasLinears = false;
|
|
for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
|
|
for (const Expr *Init : C->inits()) {
|
|
HasLinears = true;
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
|
|
if (const auto *Ref =
|
|
dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
|
|
AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
|
|
const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
|
|
DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
|
|
CapturedStmtInfo->lookup(OrigVD) != nullptr,
|
|
VD->getInit()->getType(), VK_LValue,
|
|
VD->getInit()->getExprLoc());
|
|
EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
|
|
VD->getType()),
|
|
/*capturedByInit=*/false);
|
|
EmitAutoVarCleanups(Emission);
|
|
} else {
|
|
EmitVarDecl(*VD);
|
|
}
|
|
}
|
|
// Emit the linear steps for the linear clauses.
|
|
// If a step is not constant, it is pre-calculated before the loop.
|
|
if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
|
|
if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
|
|
EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
|
|
// Emit calculation of the linear step.
|
|
EmitIgnoredExpr(CS);
|
|
}
|
|
}
|
|
return HasLinears;
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPLinearClauseFinal(
|
|
const OMPLoopDirective &D,
|
|
const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
|
|
if (!HaveInsertPoint())
|
|
return;
|
|
llvm::BasicBlock *DoneBB = nullptr;
|
|
// Emit the final values of the linear variables.
|
|
for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
|
|
auto IC = C->varlist_begin();
|
|
for (const Expr *F : C->finals()) {
|
|
if (!DoneBB) {
|
|
if (llvm::Value *Cond = CondGen(*this)) {
|
|
// If the first post-update expression is found, emit conditional
|
|
// block if it was requested.
|
|
llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
|
|
DoneBB = createBasicBlock(".omp.linear.pu.done");
|
|
Builder.CreateCondBr(Cond, ThenBB, DoneBB);
|
|
EmitBlock(ThenBB);
|
|
}
|
|
}
|
|
const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
|
|
DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
|
|
CapturedStmtInfo->lookup(OrigVD) != nullptr,
|
|
(*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
|
|
Address OrigAddr = EmitLValue(&DRE).getAddress(*this);
|
|
CodeGenFunction::OMPPrivateScope VarScope(*this);
|
|
VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
|
|
(void)VarScope.Privatize();
|
|
EmitIgnoredExpr(F);
|
|
++IC;
|
|
}
|
|
if (const Expr *PostUpdate = C->getPostUpdateExpr())
|
|
EmitIgnoredExpr(PostUpdate);
|
|
}
|
|
if (DoneBB)
|
|
EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
static void emitAlignedClause(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
|
|
llvm::APInt ClauseAlignment(64, 0);
|
|
if (const Expr *AlignmentExpr = Clause->getAlignment()) {
|
|
auto *AlignmentCI =
|
|
cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
|
|
ClauseAlignment = AlignmentCI->getValue();
|
|
}
|
|
for (const Expr *E : Clause->varlists()) {
|
|
llvm::APInt Alignment(ClauseAlignment);
|
|
if (Alignment == 0) {
|
|
// OpenMP [2.8.1, Description]
|
|
// If no optional parameter is specified, implementation-defined default
|
|
// alignments for SIMD instructions on the target platforms are assumed.
|
|
Alignment =
|
|
CGF.getContext()
|
|
.toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
|
|
E->getType()->getPointeeType()))
|
|
.getQuantity();
|
|
}
|
|
assert((Alignment == 0 || Alignment.isPowerOf2()) &&
|
|
"alignment is not power of 2");
|
|
if (Alignment != 0) {
|
|
llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
|
|
CGF.emitAlignmentAssumption(
|
|
PtrValue, E, /*No second loc needed*/ SourceLocation(),
|
|
llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPPrivateLoopCounters(
|
|
const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
|
|
if (!HaveInsertPoint())
|
|
return;
|
|
auto I = S.private_counters().begin();
|
|
for (const Expr *E : S.counters()) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
|
|
// Emit var without initialization.
|
|
AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
|
|
EmitAutoVarCleanups(VarEmission);
|
|
LocalDeclMap.erase(PrivateVD);
|
|
(void)LoopScope.addPrivate(VD, [&VarEmission]() {
|
|
return VarEmission.getAllocatedAddress();
|
|
});
|
|
if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
|
|
VD->hasGlobalStorage()) {
|
|
(void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
|
|
DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD),
|
|
LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
|
|
E->getType(), VK_LValue, E->getExprLoc());
|
|
return EmitLValue(&DRE).getAddress(*this);
|
|
});
|
|
} else {
|
|
(void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
|
|
return VarEmission.getAllocatedAddress();
|
|
});
|
|
}
|
|
++I;
|
|
}
|
|
// Privatize extra loop counters used in loops for ordered(n) clauses.
|
|
for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) {
|
|
if (!C->getNumForLoops())
|
|
continue;
|
|
for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size();
|
|
I < E; ++I) {
|
|
const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I));
|
|
const auto *VD = cast<VarDecl>(DRE->getDecl());
|
|
// Override only those variables that can be captured to avoid re-emission
|
|
// of the variables declared within the loops.
|
|
if (DRE->refersToEnclosingVariableOrCapture()) {
|
|
(void)LoopScope.addPrivate(VD, [this, DRE, VD]() {
|
|
return CreateMemTemp(DRE->getType(), VD->getName());
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
const Expr *Cond, llvm::BasicBlock *TrueBlock,
|
|
llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
{
|
|
CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
|
|
CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
|
|
(void)PreCondScope.Privatize();
|
|
// Get initial values of real counters.
|
|
for (const Expr *I : S.inits()) {
|
|
CGF.EmitIgnoredExpr(I);
|
|
}
|
|
}
|
|
// Create temp loop control variables with their init values to support
|
|
// non-rectangular loops.
|
|
CodeGenFunction::OMPMapVars PreCondVars;
|
|
for (const Expr * E: S.dependent_counters()) {
|
|
if (!E)
|
|
continue;
|
|
assert(!E->getType().getNonReferenceType()->isRecordType() &&
|
|
"dependent counter must not be an iterator.");
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
Address CounterAddr =
|
|
CGF.CreateMemTemp(VD->getType().getNonReferenceType());
|
|
(void)PreCondVars.setVarAddr(CGF, VD, CounterAddr);
|
|
}
|
|
(void)PreCondVars.apply(CGF);
|
|
for (const Expr *E : S.dependent_inits()) {
|
|
if (!E)
|
|
continue;
|
|
CGF.EmitIgnoredExpr(E);
|
|
}
|
|
// Check that loop is executed at least one time.
|
|
CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
|
|
PreCondVars.restore(CGF);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPLinearClause(
|
|
const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
|
|
if (!HaveInsertPoint())
|
|
return;
|
|
llvm::DenseSet<const VarDecl *> SIMDLCVs;
|
|
if (isOpenMPSimdDirective(D.getDirectiveKind())) {
|
|
const auto *LoopDirective = cast<OMPLoopDirective>(&D);
|
|
for (const Expr *C : LoopDirective->counters()) {
|
|
SIMDLCVs.insert(
|
|
cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
|
|
}
|
|
}
|
|
for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
|
|
auto CurPrivate = C->privates().begin();
|
|
for (const Expr *E : C->varlists()) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
|
|
if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
|
|
bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
|
|
// Emit private VarDecl with copy init.
|
|
EmitVarDecl(*PrivateVD);
|
|
return GetAddrOfLocalVar(PrivateVD);
|
|
});
|
|
assert(IsRegistered && "linear var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
} else {
|
|
EmitVarDecl(*PrivateVD);
|
|
}
|
|
++CurPrivate;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
|
|
RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
|
|
/*ignoreResult=*/true);
|
|
auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
|
|
CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
|
|
// In presence of finite 'safelen', it may be unsafe to mark all
|
|
// the memory instructions parallel, because loop-carried
|
|
// dependences of 'safelen' iterations are possible.
|
|
CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
|
|
} else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
|
|
RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
|
|
/*ignoreResult=*/true);
|
|
auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
|
|
CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
|
|
// In presence of finite 'safelen', it may be unsafe to mark all
|
|
// the memory instructions parallel, because loop-carried
|
|
// dependences of 'safelen' iterations are possible.
|
|
CGF.LoopStack.setParallel(/*Enable=*/false);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) {
|
|
// Walk clauses and process safelen/lastprivate.
|
|
LoopStack.setParallel(/*Enable=*/true);
|
|
LoopStack.setVectorizeEnable();
|
|
emitSimdlenSafelenClause(*this, D);
|
|
if (const auto *C = D.getSingleClause<OMPOrderClause>())
|
|
if (C->getKind() == OMPC_ORDER_concurrent)
|
|
LoopStack.setParallel(/*Enable=*/true);
|
|
if ((D.getDirectiveKind() == OMPD_simd ||
|
|
(getLangOpts().OpenMPSimd &&
|
|
isOpenMPSimdDirective(D.getDirectiveKind()))) &&
|
|
llvm::any_of(D.getClausesOfKind<OMPReductionClause>(),
|
|
[](const OMPReductionClause *C) {
|
|
return C->getModifier() == OMPC_REDUCTION_inscan;
|
|
}))
|
|
// Disable parallel access in case of prefix sum.
|
|
LoopStack.setParallel(/*Enable=*/false);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSimdFinal(
|
|
const OMPLoopDirective &D,
|
|
const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
|
|
if (!HaveInsertPoint())
|
|
return;
|
|
llvm::BasicBlock *DoneBB = nullptr;
|
|
auto IC = D.counters().begin();
|
|
auto IPC = D.private_counters().begin();
|
|
for (const Expr *F : D.finals()) {
|
|
const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
|
|
const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
|
|
const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
|
|
if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
|
|
OrigVD->hasGlobalStorage() || CED) {
|
|
if (!DoneBB) {
|
|
if (llvm::Value *Cond = CondGen(*this)) {
|
|
// If the first post-update expression is found, emit conditional
|
|
// block if it was requested.
|
|
llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
|
|
DoneBB = createBasicBlock(".omp.final.done");
|
|
Builder.CreateCondBr(Cond, ThenBB, DoneBB);
|
|
EmitBlock(ThenBB);
|
|
}
|
|
}
|
|
Address OrigAddr = Address::invalid();
|
|
if (CED) {
|
|
OrigAddr =
|
|
EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this);
|
|
} else {
|
|
DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD),
|
|
/*RefersToEnclosingVariableOrCapture=*/false,
|
|
(*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
|
|
OrigAddr = EmitLValue(&DRE).getAddress(*this);
|
|
}
|
|
OMPPrivateScope VarScope(*this);
|
|
VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
|
|
(void)VarScope.Privatize();
|
|
EmitIgnoredExpr(F);
|
|
}
|
|
++IC;
|
|
++IPC;
|
|
}
|
|
if (DoneBB)
|
|
EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
|
|
const OMPLoopDirective &S,
|
|
CodeGenFunction::JumpDest LoopExit) {
|
|
CGF.EmitOMPLoopBody(S, LoopExit);
|
|
CGF.EmitStopPoint(&S);
|
|
}
|
|
|
|
/// Emit a helper variable and return corresponding lvalue.
|
|
static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
|
|
const DeclRefExpr *Helper) {
|
|
auto VDecl = cast<VarDecl>(Helper->getDecl());
|
|
CGF.EmitVarDecl(*VDecl);
|
|
return CGF.EmitLValue(Helper);
|
|
}
|
|
|
|
static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
const RegionCodeGenTy &SimdInitGen,
|
|
const RegionCodeGenTy &BodyCodeGen) {
|
|
auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S);
|
|
CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
|
|
SimdInitGen(CGF);
|
|
|
|
BodyCodeGen(CGF);
|
|
};
|
|
auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
|
|
CGF.LoopStack.setVectorizeEnable(/*Enable=*/false);
|
|
|
|
BodyCodeGen(CGF);
|
|
};
|
|
const Expr *IfCond = nullptr;
|
|
if (isOpenMPSimdDirective(S.getDirectiveKind())) {
|
|
for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
|
|
if (CGF.getLangOpts().OpenMP >= 50 &&
|
|
(C->getNameModifier() == OMPD_unknown ||
|
|
C->getNameModifier() == OMPD_simd)) {
|
|
IfCond = C->getCondition();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (IfCond) {
|
|
CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen);
|
|
} else {
|
|
RegionCodeGenTy ThenRCG(ThenGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
}
|
|
|
|
static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
|
|
"Expected simd directive");
|
|
OMPLoopScope PreInitScope(CGF, S);
|
|
// if (PreCond) {
|
|
// for (IV in 0..LastIteration) BODY;
|
|
// <Final counter/linear vars updates>;
|
|
// }
|
|
//
|
|
if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
|
|
isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
|
|
isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
|
|
(void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
|
|
(void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
|
|
}
|
|
|
|
// Emit: if (PreCond) - begin.
|
|
// If the condition constant folds and can be elided, avoid emitting the
|
|
// whole loop.
|
|
bool CondConstant;
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
|
|
if (!CondConstant)
|
|
return;
|
|
} else {
|
|
llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
|
|
ContBlock = CGF.createBasicBlock("simd.if.end");
|
|
emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
|
|
CGF.getProfileCount(&S));
|
|
CGF.EmitBlock(ThenBlock);
|
|
CGF.incrementProfileCounter(&S);
|
|
}
|
|
|
|
// Emit the loop iteration variable.
|
|
const Expr *IVExpr = S.getIterationVariable();
|
|
const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
|
|
CGF.EmitVarDecl(*IVDecl);
|
|
CGF.EmitIgnoredExpr(S.getInit());
|
|
|
|
// Emit the iterations count variable.
|
|
// If it is not a variable, Sema decided to calculate iterations count on
|
|
// each iteration (e.g., it is foldable into a constant).
|
|
if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
|
|
CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
|
|
// Emit calculation of the iterations count.
|
|
CGF.EmitIgnoredExpr(S.getCalcLastIteration());
|
|
}
|
|
|
|
emitAlignedClause(CGF, S);
|
|
(void)CGF.EmitOMPLinearClauseInit(S);
|
|
{
|
|
CodeGenFunction::OMPPrivateScope LoopScope(CGF);
|
|
CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
|
|
CGF.EmitOMPLinearClause(S, LoopScope);
|
|
CGF.EmitOMPPrivateClause(S, LoopScope);
|
|
CGF.EmitOMPReductionClauseInit(S, LoopScope);
|
|
CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
|
|
CGF, S, CGF.EmitLValue(S.getIterationVariable()));
|
|
bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
|
|
(void)LoopScope.Privatize();
|
|
if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
|
|
CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
|
|
|
|
emitCommonSimdLoop(
|
|
CGF, S,
|
|
[&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPSimdInit(S);
|
|
},
|
|
[&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPInnerLoop(
|
|
S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
|
|
[&S](CodeGenFunction &CGF) {
|
|
emitOMPLoopBodyWithStopPoint(CGF, S,
|
|
CodeGenFunction::JumpDest());
|
|
},
|
|
[](CodeGenFunction &) {});
|
|
});
|
|
CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
|
|
// Emit final copy of the lastprivate variables at the end of loops.
|
|
if (HasLastprivateClause)
|
|
CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
|
|
emitPostUpdateForReductionClause(CGF, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
|
|
// Emit: if (PreCond) - end.
|
|
if (ContBlock) {
|
|
CGF.EmitBranch(ContBlock);
|
|
CGF.EmitBlock(ContBlock, true);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
|
|
ParentLoopDirectiveForScanRegion ScanRegion(*this, S);
|
|
OMPFirstScanLoop = true;
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitOMPSimdRegion(CGF, S, Action);
|
|
};
|
|
{
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
OMPLexicalScope Scope(*this, S, OMPD_unknown);
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
|
|
}
|
|
// Check for outer lastprivate conditional update.
|
|
checkForLastprivateConditionalUpdate(*this, S);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) {
|
|
// Emit the de-sugared statement.
|
|
OMPTransformDirectiveScopeRAII TileScope(*this, &S);
|
|
EmitStmt(S.getTransformedStmt());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) {
|
|
// This function is only called if the unrolled loop is not consumed by any
|
|
// other loop-associated construct. Such a loop-associated construct will have
|
|
// used the transformed AST.
|
|
|
|
// Set the unroll metadata for the next emitted loop.
|
|
LoopStack.setUnrollState(LoopAttributes::Enable);
|
|
|
|
if (S.hasClausesOfKind<OMPFullClause>()) {
|
|
LoopStack.setUnrollState(LoopAttributes::Full);
|
|
} else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) {
|
|
if (Expr *FactorExpr = PartialClause->getFactor()) {
|
|
uint64_t Factor =
|
|
FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue();
|
|
assert(Factor >= 1 && "Only positive factors are valid");
|
|
LoopStack.setUnrollCount(Factor);
|
|
}
|
|
}
|
|
|
|
EmitStmt(S.getAssociatedStmt());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPOuterLoop(
|
|
bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
|
|
CodeGenFunction::OMPPrivateScope &LoopScope,
|
|
const CodeGenFunction::OMPLoopArguments &LoopArgs,
|
|
const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
|
|
const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
|
|
CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
|
|
|
|
const Expr *IVExpr = S.getIterationVariable();
|
|
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
|
|
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
|
|
|
|
JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
|
|
|
|
// Start the loop with a block that tests the condition.
|
|
llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
|
|
EmitBlock(CondBlock);
|
|
const SourceRange R = S.getSourceRange();
|
|
OMPLoopNestStack.clear();
|
|
LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
|
|
SourceLocToDebugLoc(R.getEnd()));
|
|
|
|
llvm::Value *BoolCondVal = nullptr;
|
|
if (!DynamicOrOrdered) {
|
|
// UB = min(UB, GlobalUB) or
|
|
// UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
|
|
// 'distribute parallel for')
|
|
EmitIgnoredExpr(LoopArgs.EUB);
|
|
// IV = LB
|
|
EmitIgnoredExpr(LoopArgs.Init);
|
|
// IV < UB
|
|
BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
|
|
} else {
|
|
BoolCondVal =
|
|
RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL,
|
|
LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
|
|
}
|
|
|
|
// If there are any cleanups between here and the loop-exit scope,
|
|
// create a block to stage a loop exit along.
|
|
llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
|
|
if (LoopScope.requiresCleanups())
|
|
ExitBlock = createBasicBlock("omp.dispatch.cleanup");
|
|
|
|
llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
|
|
Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
|
|
if (ExitBlock != LoopExit.getBlock()) {
|
|
EmitBlock(ExitBlock);
|
|
EmitBranchThroughCleanup(LoopExit);
|
|
}
|
|
EmitBlock(LoopBody);
|
|
|
|
// Emit "IV = LB" (in case of static schedule, we have already calculated new
|
|
// LB for loop condition and emitted it above).
|
|
if (DynamicOrOrdered)
|
|
EmitIgnoredExpr(LoopArgs.Init);
|
|
|
|
// Create a block for the increment.
|
|
JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
|
|
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
|
|
|
|
emitCommonSimdLoop(
|
|
*this, S,
|
|
[&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// Generate !llvm.loop.parallel metadata for loads and stores for loops
|
|
// with dynamic/guided scheduling and without ordered clause.
|
|
if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
|
|
CGF.LoopStack.setParallel(!IsMonotonic);
|
|
if (const auto *C = S.getSingleClause<OMPOrderClause>())
|
|
if (C->getKind() == OMPC_ORDER_concurrent)
|
|
CGF.LoopStack.setParallel(/*Enable=*/true);
|
|
} else {
|
|
CGF.EmitOMPSimdInit(S);
|
|
}
|
|
},
|
|
[&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered,
|
|
&LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
SourceLocation Loc = S.getBeginLoc();
|
|
// when 'distribute' is not combined with a 'for':
|
|
// while (idx <= UB) { BODY; ++idx; }
|
|
// when 'distribute' is combined with a 'for'
|
|
// (e.g. 'distribute parallel for')
|
|
// while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
|
|
CGF.EmitOMPInnerLoop(
|
|
S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
|
|
[&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
|
|
CodeGenLoop(CGF, S, LoopExit);
|
|
},
|
|
[IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
|
|
CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
|
|
});
|
|
});
|
|
|
|
EmitBlock(Continue.getBlock());
|
|
BreakContinueStack.pop_back();
|
|
if (!DynamicOrOrdered) {
|
|
// Emit "LB = LB + Stride", "UB = UB + Stride".
|
|
EmitIgnoredExpr(LoopArgs.NextLB);
|
|
EmitIgnoredExpr(LoopArgs.NextUB);
|
|
}
|
|
|
|
EmitBranch(CondBlock);
|
|
OMPLoopNestStack.clear();
|
|
LoopStack.pop();
|
|
// Emit the fall-through block.
|
|
EmitBlock(LoopExit.getBlock());
|
|
|
|
// Tell the runtime we are done.
|
|
auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
|
|
if (!DynamicOrOrdered)
|
|
CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
|
|
S.getDirectiveKind());
|
|
};
|
|
OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPForOuterLoop(
|
|
const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
|
|
const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
|
|
const OMPLoopArguments &LoopArgs,
|
|
const CodeGenDispatchBoundsTy &CGDispatchBounds) {
|
|
CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
|
|
|
|
// Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
|
|
const bool DynamicOrOrdered =
|
|
Ordered || RT.isDynamic(ScheduleKind.Schedule);
|
|
|
|
assert((Ordered ||
|
|
!RT.isStaticNonchunked(ScheduleKind.Schedule,
|
|
LoopArgs.Chunk != nullptr)) &&
|
|
"static non-chunked schedule does not need outer loop");
|
|
|
|
// Emit outer loop.
|
|
//
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
|
// When schedule(dynamic,chunk_size) is specified, the iterations are
|
|
// distributed to threads in the team in chunks as the threads request them.
|
|
// Each thread executes a chunk of iterations, then requests another chunk,
|
|
// until no chunks remain to be distributed. Each chunk contains chunk_size
|
|
// iterations, except for the last chunk to be distributed, which may have
|
|
// fewer iterations. When no chunk_size is specified, it defaults to 1.
|
|
//
|
|
// When schedule(guided,chunk_size) is specified, the iterations are assigned
|
|
// to threads in the team in chunks as the executing threads request them.
|
|
// Each thread executes a chunk of iterations, then requests another chunk,
|
|
// until no chunks remain to be assigned. For a chunk_size of 1, the size of
|
|
// each chunk is proportional to the number of unassigned iterations divided
|
|
// by the number of threads in the team, decreasing to 1. For a chunk_size
|
|
// with value k (greater than 1), the size of each chunk is determined in the
|
|
// same way, with the restriction that the chunks do not contain fewer than k
|
|
// iterations (except for the last chunk to be assigned, which may have fewer
|
|
// than k iterations).
|
|
//
|
|
// When schedule(auto) is specified, the decision regarding scheduling is
|
|
// delegated to the compiler and/or runtime system. The programmer gives the
|
|
// implementation the freedom to choose any possible mapping of iterations to
|
|
// threads in the team.
|
|
//
|
|
// When schedule(runtime) is specified, the decision regarding scheduling is
|
|
// deferred until run time, and the schedule and chunk size are taken from the
|
|
// run-sched-var ICV. If the ICV is set to auto, the schedule is
|
|
// implementation defined
|
|
//
|
|
// while(__kmpc_dispatch_next(&LB, &UB)) {
|
|
// idx = LB;
|
|
// while (idx <= UB) { BODY; ++idx;
|
|
// __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
|
|
// } // inner loop
|
|
// }
|
|
//
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
|
// When schedule(static, chunk_size) is specified, iterations are divided into
|
|
// chunks of size chunk_size, and the chunks are assigned to the threads in
|
|
// the team in a round-robin fashion in the order of the thread number.
|
|
//
|
|
// while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
|
|
// while (idx <= UB) { BODY; ++idx; } // inner loop
|
|
// LB = LB + ST;
|
|
// UB = UB + ST;
|
|
// }
|
|
//
|
|
|
|
const Expr *IVExpr = S.getIterationVariable();
|
|
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
|
|
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
|
|
|
|
if (DynamicOrOrdered) {
|
|
const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
|
|
CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
|
|
llvm::Value *LBVal = DispatchBounds.first;
|
|
llvm::Value *UBVal = DispatchBounds.second;
|
|
CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
|
|
LoopArgs.Chunk};
|
|
RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize,
|
|
IVSigned, Ordered, DipatchRTInputValues);
|
|
} else {
|
|
CGOpenMPRuntime::StaticRTInput StaticInit(
|
|
IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
|
|
LoopArgs.ST, LoopArgs.Chunk);
|
|
RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
|
|
ScheduleKind, StaticInit);
|
|
}
|
|
|
|
auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
|
|
const unsigned IVSize,
|
|
const bool IVSigned) {
|
|
if (Ordered) {
|
|
CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
|
|
IVSigned);
|
|
}
|
|
};
|
|
|
|
OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
|
|
LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
|
|
OuterLoopArgs.IncExpr = S.getInc();
|
|
OuterLoopArgs.Init = S.getInit();
|
|
OuterLoopArgs.Cond = S.getCond();
|
|
OuterLoopArgs.NextLB = S.getNextLowerBound();
|
|
OuterLoopArgs.NextUB = S.getNextUpperBound();
|
|
EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
|
|
emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
|
|
}
|
|
|
|
static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
|
|
const unsigned IVSize, const bool IVSigned) {}
|
|
|
|
void CodeGenFunction::EmitOMPDistributeOuterLoop(
|
|
OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
|
|
OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
|
|
const CodeGenLoopTy &CodeGenLoopContent) {
|
|
|
|
CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
|
|
|
|
// Emit outer loop.
|
|
// Same behavior as a OMPForOuterLoop, except that schedule cannot be
|
|
// dynamic
|
|
//
|
|
|
|
const Expr *IVExpr = S.getIterationVariable();
|
|
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
|
|
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
|
|
|
|
CGOpenMPRuntime::StaticRTInput StaticInit(
|
|
IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
|
|
LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
|
|
RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit);
|
|
|
|
// for combined 'distribute' and 'for' the increment expression of distribute
|
|
// is stored in DistInc. For 'distribute' alone, it is in Inc.
|
|
Expr *IncExpr;
|
|
if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
|
|
IncExpr = S.getDistInc();
|
|
else
|
|
IncExpr = S.getInc();
|
|
|
|
// this routine is shared by 'omp distribute parallel for' and
|
|
// 'omp distribute': select the right EUB expression depending on the
|
|
// directive
|
|
OMPLoopArguments OuterLoopArgs;
|
|
OuterLoopArgs.LB = LoopArgs.LB;
|
|
OuterLoopArgs.UB = LoopArgs.UB;
|
|
OuterLoopArgs.ST = LoopArgs.ST;
|
|
OuterLoopArgs.IL = LoopArgs.IL;
|
|
OuterLoopArgs.Chunk = LoopArgs.Chunk;
|
|
OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
|
|
? S.getCombinedEnsureUpperBound()
|
|
: S.getEnsureUpperBound();
|
|
OuterLoopArgs.IncExpr = IncExpr;
|
|
OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
|
|
? S.getCombinedInit()
|
|
: S.getInit();
|
|
OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
|
|
? S.getCombinedCond()
|
|
: S.getCond();
|
|
OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
|
|
? S.getCombinedNextLowerBound()
|
|
: S.getNextLowerBound();
|
|
OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
|
|
? S.getCombinedNextUpperBound()
|
|
: S.getNextUpperBound();
|
|
|
|
EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
|
|
LoopScope, OuterLoopArgs, CodeGenLoopContent,
|
|
emitEmptyOrdered);
|
|
}
|
|
|
|
static std::pair<LValue, LValue>
|
|
emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &S) {
|
|
const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
|
|
LValue LB =
|
|
EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
|
|
LValue UB =
|
|
EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
|
|
|
|
// When composing 'distribute' with 'for' (e.g. as in 'distribute
|
|
// parallel for') we need to use the 'distribute'
|
|
// chunk lower and upper bounds rather than the whole loop iteration
|
|
// space. These are parameters to the outlined function for 'parallel'
|
|
// and we copy the bounds of the previous schedule into the
|
|
// the current ones.
|
|
LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
|
|
LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
|
|
llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
|
|
PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
|
|
PrevLBVal = CGF.EmitScalarConversion(
|
|
PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
|
|
LS.getIterationVariable()->getType(),
|
|
LS.getPrevLowerBoundVariable()->getExprLoc());
|
|
llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
|
|
PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
|
|
PrevUBVal = CGF.EmitScalarConversion(
|
|
PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
|
|
LS.getIterationVariable()->getType(),
|
|
LS.getPrevUpperBoundVariable()->getExprLoc());
|
|
|
|
CGF.EmitStoreOfScalar(PrevLBVal, LB);
|
|
CGF.EmitStoreOfScalar(PrevUBVal, UB);
|
|
|
|
return {LB, UB};
|
|
}
|
|
|
|
/// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
|
|
/// we need to use the LB and UB expressions generated by the worksharing
|
|
/// code generation support, whereas in non combined situations we would
|
|
/// just emit 0 and the LastIteration expression
|
|
/// This function is necessary due to the difference of the LB and UB
|
|
/// types for the RT emission routines for 'for_static_init' and
|
|
/// 'for_dispatch_init'
|
|
static std::pair<llvm::Value *, llvm::Value *>
|
|
emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &S,
|
|
Address LB, Address UB) {
|
|
const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
|
|
const Expr *IVExpr = LS.getIterationVariable();
|
|
// when implementing a dynamic schedule for a 'for' combined with a
|
|
// 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
|
|
// is not normalized as each team only executes its own assigned
|
|
// distribute chunk
|
|
QualType IteratorTy = IVExpr->getType();
|
|
llvm::Value *LBVal =
|
|
CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
|
|
llvm::Value *UBVal =
|
|
CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
|
|
return {LBVal, UBVal};
|
|
}
|
|
|
|
static void emitDistributeParallelForDistributeInnerBoundParams(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &S,
|
|
llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
|
|
const auto &Dir = cast<OMPLoopDirective>(S);
|
|
LValue LB =
|
|
CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
|
|
llvm::Value *LBCast =
|
|
CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)),
|
|
CGF.SizeTy, /*isSigned=*/false);
|
|
CapturedVars.push_back(LBCast);
|
|
LValue UB =
|
|
CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
|
|
|
|
llvm::Value *UBCast =
|
|
CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)),
|
|
CGF.SizeTy, /*isSigned=*/false);
|
|
CapturedVars.push_back(UBCast);
|
|
}
|
|
|
|
static void
|
|
emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
|
|
const OMPLoopDirective &S,
|
|
CodeGenFunction::JumpDest LoopExit) {
|
|
auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
bool HasCancel = false;
|
|
if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
|
|
if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
|
|
HasCancel = D->hasCancel();
|
|
else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
|
|
HasCancel = D->hasCancel();
|
|
else if (const auto *D =
|
|
dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
|
|
HasCancel = D->hasCancel();
|
|
}
|
|
CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
|
|
HasCancel);
|
|
CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
|
|
emitDistributeParallelForInnerBounds,
|
|
emitDistributeParallelForDispatchBounds);
|
|
};
|
|
|
|
emitCommonOMPParallelDirective(
|
|
CGF, S,
|
|
isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
|
|
CGInlinedWorksharingLoop,
|
|
emitDistributeParallelForDistributeInnerBoundParams);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPDistributeParallelForDirective(
|
|
const OMPDistributeParallelForDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
|
|
S.getDistInc());
|
|
};
|
|
OMPLexicalScope Scope(*this, S, OMPD_parallel);
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
|
|
const OMPDistributeParallelForSimdDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
|
|
S.getDistInc());
|
|
};
|
|
OMPLexicalScope Scope(*this, S, OMPD_parallel);
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPDistributeSimdDirective(
|
|
const OMPDistributeSimdDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
|
|
};
|
|
OMPLexicalScope Scope(*this, S, OMPD_unknown);
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
|
|
CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
|
|
// Emit SPMD target parallel for region as a standalone region.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitOMPSimdRegion(CGF, S, Action);
|
|
};
|
|
llvm::Function *Fn;
|
|
llvm::Constant *Addr;
|
|
// Emit target region as a standalone region.
|
|
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
|
|
S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
|
|
assert(Fn && Addr && "Target device function emission failed.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetSimdDirective(
|
|
const OMPTargetSimdDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitOMPSimdRegion(CGF, S, Action);
|
|
};
|
|
emitCommonOMPTargetDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
namespace {
|
|
struct ScheduleKindModifiersTy {
|
|
OpenMPScheduleClauseKind Kind;
|
|
OpenMPScheduleClauseModifier M1;
|
|
OpenMPScheduleClauseModifier M2;
|
|
ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
|
|
OpenMPScheduleClauseModifier M1,
|
|
OpenMPScheduleClauseModifier M2)
|
|
: Kind(Kind), M1(M1), M2(M2) {}
|
|
};
|
|
} // namespace
|
|
|
|
bool CodeGenFunction::EmitOMPWorksharingLoop(
|
|
const OMPLoopDirective &S, Expr *EUB,
|
|
const CodeGenLoopBoundsTy &CodeGenLoopBounds,
|
|
const CodeGenDispatchBoundsTy &CGDispatchBounds) {
|
|
// Emit the loop iteration variable.
|
|
const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
|
|
const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
|
|
EmitVarDecl(*IVDecl);
|
|
|
|
// Emit the iterations count variable.
|
|
// If it is not a variable, Sema decided to calculate iterations count on each
|
|
// iteration (e.g., it is foldable into a constant).
|
|
if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
|
|
EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
|
|
// Emit calculation of the iterations count.
|
|
EmitIgnoredExpr(S.getCalcLastIteration());
|
|
}
|
|
|
|
CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
|
|
|
|
bool HasLastprivateClause;
|
|
// Check pre-condition.
|
|
{
|
|
OMPLoopScope PreInitScope(*this, S);
|
|
// Skip the entire loop if we don't meet the precondition.
|
|
// If the condition constant folds and can be elided, avoid emitting the
|
|
// whole loop.
|
|
bool CondConstant;
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
|
|
if (!CondConstant)
|
|
return false;
|
|
} else {
|
|
llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
|
|
ContBlock = createBasicBlock("omp.precond.end");
|
|
emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
|
|
getProfileCount(&S));
|
|
EmitBlock(ThenBlock);
|
|
incrementProfileCounter(&S);
|
|
}
|
|
|
|
RunCleanupsScope DoacrossCleanupScope(*this);
|
|
bool Ordered = false;
|
|
if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
|
|
if (OrderedClause->getNumForLoops())
|
|
RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations());
|
|
else
|
|
Ordered = true;
|
|
}
|
|
|
|
llvm::DenseSet<const Expr *> EmittedFinals;
|
|
emitAlignedClause(*this, S);
|
|
bool HasLinears = EmitOMPLinearClauseInit(S);
|
|
// Emit helper vars inits.
|
|
|
|
std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
|
|
LValue LB = Bounds.first;
|
|
LValue UB = Bounds.second;
|
|
LValue ST =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
|
|
LValue IL =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
|
|
|
|
// Emit 'then' code.
|
|
{
|
|
OMPPrivateScope LoopScope(*this);
|
|
if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
// initialization of firstprivate variables and post-update of
|
|
// lastprivate variables.
|
|
CGM.getOpenMPRuntime().emitBarrierCall(
|
|
*this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
|
|
/*ForceSimpleCall=*/true);
|
|
}
|
|
EmitOMPPrivateClause(S, LoopScope);
|
|
CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
|
|
*this, S, EmitLValue(S.getIterationVariable()));
|
|
HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
|
|
EmitOMPReductionClauseInit(S, LoopScope);
|
|
EmitOMPPrivateLoopCounters(S, LoopScope);
|
|
EmitOMPLinearClause(S, LoopScope);
|
|
(void)LoopScope.Privatize();
|
|
if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
|
|
CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
|
|
|
|
// Detect the loop schedule kind and chunk.
|
|
const Expr *ChunkExpr = nullptr;
|
|
OpenMPScheduleTy ScheduleKind;
|
|
if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
|
|
ScheduleKind.Schedule = C->getScheduleKind();
|
|
ScheduleKind.M1 = C->getFirstScheduleModifier();
|
|
ScheduleKind.M2 = C->getSecondScheduleModifier();
|
|
ChunkExpr = C->getChunkSize();
|
|
} else {
|
|
// Default behaviour for schedule clause.
|
|
CGM.getOpenMPRuntime().getDefaultScheduleAndChunk(
|
|
*this, S, ScheduleKind.Schedule, ChunkExpr);
|
|
}
|
|
bool HasChunkSizeOne = false;
|
|
llvm::Value *Chunk = nullptr;
|
|
if (ChunkExpr) {
|
|
Chunk = EmitScalarExpr(ChunkExpr);
|
|
Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(),
|
|
S.getIterationVariable()->getType(),
|
|
S.getBeginLoc());
|
|
Expr::EvalResult Result;
|
|
if (ChunkExpr->EvaluateAsInt(Result, getContext())) {
|
|
llvm::APSInt EvaluatedChunk = Result.Val.getInt();
|
|
HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1);
|
|
}
|
|
}
|
|
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
|
|
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
|
|
// OpenMP 4.5, 2.7.1 Loop Construct, Description.
|
|
// If the static schedule kind is specified or if the ordered clause is
|
|
// specified, and if no monotonic modifier is specified, the effect will
|
|
// be as if the monotonic modifier was specified.
|
|
bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule,
|
|
/* Chunked */ Chunk != nullptr) && HasChunkSizeOne &&
|
|
isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
|
|
bool IsMonotonic =
|
|
Ordered ||
|
|
(ScheduleKind.Schedule == OMPC_SCHEDULE_static &&
|
|
!(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic ||
|
|
ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) ||
|
|
ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
|
|
ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
|
|
if ((RT.isStaticNonchunked(ScheduleKind.Schedule,
|
|
/* Chunked */ Chunk != nullptr) ||
|
|
StaticChunkedOne) &&
|
|
!Ordered) {
|
|
JumpDest LoopExit =
|
|
getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
|
|
emitCommonSimdLoop(
|
|
*this, S,
|
|
[&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
if (isOpenMPSimdDirective(S.getDirectiveKind())) {
|
|
CGF.EmitOMPSimdInit(S);
|
|
} else if (const auto *C = S.getSingleClause<OMPOrderClause>()) {
|
|
if (C->getKind() == OMPC_ORDER_concurrent)
|
|
CGF.LoopStack.setParallel(/*Enable=*/true);
|
|
}
|
|
},
|
|
[IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk,
|
|
&S, ScheduleKind, LoopExit,
|
|
&LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
|
// When no chunk_size is specified, the iteration space is divided
|
|
// into chunks that are approximately equal in size, and at most
|
|
// one chunk is distributed to each thread. Note that the size of
|
|
// the chunks is unspecified in this case.
|
|
CGOpenMPRuntime::StaticRTInput StaticInit(
|
|
IVSize, IVSigned, Ordered, IL.getAddress(CGF),
|
|
LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF),
|
|
StaticChunkedOne ? Chunk : nullptr);
|
|
CGF.CGM.getOpenMPRuntime().emitForStaticInit(
|
|
CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind,
|
|
StaticInit);
|
|
// UB = min(UB, GlobalUB);
|
|
if (!StaticChunkedOne)
|
|
CGF.EmitIgnoredExpr(S.getEnsureUpperBound());
|
|
// IV = LB;
|
|
CGF.EmitIgnoredExpr(S.getInit());
|
|
// For unchunked static schedule generate:
|
|
//
|
|
// while (idx <= UB) {
|
|
// BODY;
|
|
// ++idx;
|
|
// }
|
|
//
|
|
// For static schedule with chunk one:
|
|
//
|
|
// while (IV <= PrevUB) {
|
|
// BODY;
|
|
// IV += ST;
|
|
// }
|
|
CGF.EmitOMPInnerLoop(
|
|
S, LoopScope.requiresCleanups(),
|
|
StaticChunkedOne ? S.getCombinedParForInDistCond()
|
|
: S.getCond(),
|
|
StaticChunkedOne ? S.getDistInc() : S.getInc(),
|
|
[&S, LoopExit](CodeGenFunction &CGF) {
|
|
emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit);
|
|
},
|
|
[](CodeGenFunction &) {});
|
|
});
|
|
EmitBlock(LoopExit.getBlock());
|
|
// Tell the runtime we are done.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
|
|
S.getDirectiveKind());
|
|
};
|
|
OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
|
|
} else {
|
|
// Emit the outer loop, which requests its work chunk [LB..UB] from
|
|
// runtime and runs the inner loop to process it.
|
|
const OMPLoopArguments LoopArguments(
|
|
LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
|
|
IL.getAddress(*this), Chunk, EUB);
|
|
EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
|
|
LoopArguments, CGDispatchBounds);
|
|
}
|
|
if (isOpenMPSimdDirective(S.getDirectiveKind())) {
|
|
EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
|
|
return CGF.Builder.CreateIsNotNull(
|
|
CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
|
|
});
|
|
}
|
|
EmitOMPReductionClauseFinal(
|
|
S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
|
|
? /*Parallel and Simd*/ OMPD_parallel_for_simd
|
|
: /*Parallel only*/ OMPD_parallel);
|
|
// Emit post-update of the reduction variables if IsLastIter != 0.
|
|
emitPostUpdateForReductionClause(
|
|
*this, S, [IL, &S](CodeGenFunction &CGF) {
|
|
return CGF.Builder.CreateIsNotNull(
|
|
CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
|
|
});
|
|
// Emit final copy of the lastprivate variables if IsLastIter != 0.
|
|
if (HasLastprivateClause)
|
|
EmitOMPLastprivateClauseFinal(
|
|
S, isOpenMPSimdDirective(S.getDirectiveKind()),
|
|
Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
|
|
}
|
|
EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
|
|
return CGF.Builder.CreateIsNotNull(
|
|
CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
|
|
});
|
|
DoacrossCleanupScope.ForceCleanup();
|
|
// We're now done with the loop, so jump to the continuation block.
|
|
if (ContBlock) {
|
|
EmitBranch(ContBlock);
|
|
EmitBlock(ContBlock, /*IsFinished=*/true);
|
|
}
|
|
}
|
|
return HasLastprivateClause;
|
|
}
|
|
|
|
/// The following two functions generate expressions for the loop lower
|
|
/// and upper bounds in case of static and dynamic (dispatch) schedule
|
|
/// of the associated 'for' or 'distribute' loop.
|
|
static std::pair<LValue, LValue>
|
|
emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
|
|
const auto &LS = cast<OMPLoopDirective>(S);
|
|
LValue LB =
|
|
EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
|
|
LValue UB =
|
|
EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
|
|
return {LB, UB};
|
|
}
|
|
|
|
/// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
|
|
/// consider the lower and upper bound expressions generated by the
|
|
/// worksharing loop support, but we use 0 and the iteration space size as
|
|
/// constants
|
|
static std::pair<llvm::Value *, llvm::Value *>
|
|
emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
|
|
Address LB, Address UB) {
|
|
const auto &LS = cast<OMPLoopDirective>(S);
|
|
const Expr *IVExpr = LS.getIterationVariable();
|
|
const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
|
|
llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
|
|
llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
|
|
return {LBVal, UBVal};
|
|
}
|
|
|
|
/// Emits internal temp array declarations for the directive with inscan
|
|
/// reductions.
|
|
/// The code is the following:
|
|
/// \code
|
|
/// size num_iters = <num_iters>;
|
|
/// <type> buffer[num_iters];
|
|
/// \endcode
|
|
static void emitScanBasedDirectiveDecls(
|
|
CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) {
|
|
llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast(
|
|
NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false);
|
|
SmallVector<const Expr *, 4> Shareds;
|
|
SmallVector<const Expr *, 4> Privates;
|
|
SmallVector<const Expr *, 4> ReductionOps;
|
|
SmallVector<const Expr *, 4> CopyArrayTemps;
|
|
for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
|
|
assert(C->getModifier() == OMPC_REDUCTION_inscan &&
|
|
"Only inscan reductions are expected.");
|
|
Shareds.append(C->varlist_begin(), C->varlist_end());
|
|
Privates.append(C->privates().begin(), C->privates().end());
|
|
ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
|
|
CopyArrayTemps.append(C->copy_array_temps().begin(),
|
|
C->copy_array_temps().end());
|
|
}
|
|
{
|
|
// Emit buffers for each reduction variables.
|
|
// ReductionCodeGen is required to emit correctly the code for array
|
|
// reductions.
|
|
ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps);
|
|
unsigned Count = 0;
|
|
auto *ITA = CopyArrayTemps.begin();
|
|
for (const Expr *IRef : Privates) {
|
|
const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
|
|
// Emit variably modified arrays, used for arrays/array sections
|
|
// reductions.
|
|
if (PrivateVD->getType()->isVariablyModifiedType()) {
|
|
RedCG.emitSharedOrigLValue(CGF, Count);
|
|
RedCG.emitAggregateType(CGF, Count);
|
|
}
|
|
CodeGenFunction::OpaqueValueMapping DimMapping(
|
|
CGF,
|
|
cast<OpaqueValueExpr>(
|
|
cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe())
|
|
->getSizeExpr()),
|
|
RValue::get(OMPScanNumIterations));
|
|
// Emit temp buffer.
|
|
CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl()));
|
|
++ITA;
|
|
++Count;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emits the code for the directive with inscan reductions.
|
|
/// The code is the following:
|
|
/// \code
|
|
/// #pragma omp ...
|
|
/// for (i: 0..<num_iters>) {
|
|
/// <input phase>;
|
|
/// buffer[i] = red;
|
|
/// }
|
|
/// #pragma omp master // in parallel region
|
|
/// for (int k = 0; k != ceil(log2(num_iters)); ++k)
|
|
/// for (size cnt = last_iter; cnt >= pow(2, k); --k)
|
|
/// buffer[i] op= buffer[i-pow(2,k)];
|
|
/// #pragma omp barrier // in parallel region
|
|
/// #pragma omp ...
|
|
/// for (0..<num_iters>) {
|
|
/// red = InclusiveScan ? buffer[i] : buffer[i-1];
|
|
/// <scan phase>;
|
|
/// }
|
|
/// \endcode
|
|
static void emitScanBasedDirective(
|
|
CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen,
|
|
llvm::function_ref<void(CodeGenFunction &)> FirstGen,
|
|
llvm::function_ref<void(CodeGenFunction &)> SecondGen) {
|
|
llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast(
|
|
NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false);
|
|
SmallVector<const Expr *, 4> Privates;
|
|
SmallVector<const Expr *, 4> ReductionOps;
|
|
SmallVector<const Expr *, 4> LHSs;
|
|
SmallVector<const Expr *, 4> RHSs;
|
|
SmallVector<const Expr *, 4> CopyArrayElems;
|
|
for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
|
|
assert(C->getModifier() == OMPC_REDUCTION_inscan &&
|
|
"Only inscan reductions are expected.");
|
|
Privates.append(C->privates().begin(), C->privates().end());
|
|
ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
|
|
LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
|
|
RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
|
|
CopyArrayElems.append(C->copy_array_elems().begin(),
|
|
C->copy_array_elems().end());
|
|
}
|
|
CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S);
|
|
{
|
|
// Emit loop with input phase:
|
|
// #pragma omp ...
|
|
// for (i: 0..<num_iters>) {
|
|
// <input phase>;
|
|
// buffer[i] = red;
|
|
// }
|
|
CGF.OMPFirstScanLoop = true;
|
|
CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
|
|
FirstGen(CGF);
|
|
}
|
|
// #pragma omp barrier // in parallel region
|
|
auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems,
|
|
&ReductionOps,
|
|
&Privates](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
// Emit prefix reduction:
|
|
// #pragma omp master // in parallel region
|
|
// for (int k = 0; k <= ceil(log2(n)); ++k)
|
|
llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock();
|
|
llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body");
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit");
|
|
llvm::Function *F =
|
|
CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy);
|
|
llvm::Value *Arg =
|
|
CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy);
|
|
llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg);
|
|
F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy);
|
|
LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal);
|
|
LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy);
|
|
llvm::Value *NMin1 = CGF.Builder.CreateNUWSub(
|
|
OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1));
|
|
auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc());
|
|
CGF.EmitBlock(LoopBB);
|
|
auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2);
|
|
// size pow2k = 1;
|
|
auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2);
|
|
Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB);
|
|
Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB);
|
|
// for (size i = n - 1; i >= 2 ^ k; --i)
|
|
// tmp[i] op= tmp[i-pow2k];
|
|
llvm::BasicBlock *InnerLoopBB =
|
|
CGF.createBasicBlock("omp.inner.log.scan.body");
|
|
llvm::BasicBlock *InnerExitBB =
|
|
CGF.createBasicBlock("omp.inner.log.scan.exit");
|
|
llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K);
|
|
CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB);
|
|
CGF.EmitBlock(InnerLoopBB);
|
|
auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2);
|
|
IVal->addIncoming(NMin1, LoopBB);
|
|
{
|
|
CodeGenFunction::OMPPrivateScope PrivScope(CGF);
|
|
auto *ILHS = LHSs.begin();
|
|
auto *IRHS = RHSs.begin();
|
|
for (const Expr *CopyArrayElem : CopyArrayElems) {
|
|
const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
|
|
const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
|
|
Address LHSAddr = Address::invalid();
|
|
{
|
|
CodeGenFunction::OpaqueValueMapping IdxMapping(
|
|
CGF,
|
|
cast<OpaqueValueExpr>(
|
|
cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
|
|
RValue::get(IVal));
|
|
LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF);
|
|
}
|
|
PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; });
|
|
Address RHSAddr = Address::invalid();
|
|
{
|
|
llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K);
|
|
CodeGenFunction::OpaqueValueMapping IdxMapping(
|
|
CGF,
|
|
cast<OpaqueValueExpr>(
|
|
cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
|
|
RValue::get(OffsetIVal));
|
|
RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF);
|
|
}
|
|
PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; });
|
|
++ILHS;
|
|
++IRHS;
|
|
}
|
|
PrivScope.Privatize();
|
|
CGF.CGM.getOpenMPRuntime().emitReduction(
|
|
CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps,
|
|
{/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown});
|
|
}
|
|
llvm::Value *NextIVal =
|
|
CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1));
|
|
IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock());
|
|
CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K);
|
|
CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB);
|
|
CGF.EmitBlock(InnerExitBB);
|
|
llvm::Value *Next =
|
|
CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1));
|
|
Counter->addIncoming(Next, CGF.Builder.GetInsertBlock());
|
|
// pow2k <<= 1;
|
|
llvm::Value *NextPow2K =
|
|
CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true);
|
|
Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock());
|
|
llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal);
|
|
CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB);
|
|
auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc());
|
|
CGF.EmitBlock(ExitBB);
|
|
};
|
|
if (isOpenMPParallelDirective(S.getDirectiveKind())) {
|
|
CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc());
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(
|
|
CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
|
|
/*ForceSimpleCall=*/true);
|
|
} else {
|
|
RegionCodeGenTy RCG(CodeGen);
|
|
RCG(CGF);
|
|
}
|
|
|
|
CGF.OMPFirstScanLoop = false;
|
|
SecondGen(CGF);
|
|
}
|
|
|
|
static bool emitWorksharingDirective(CodeGenFunction &CGF,
|
|
const OMPLoopDirective &S,
|
|
bool HasCancel) {
|
|
bool HasLastprivates;
|
|
if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(),
|
|
[](const OMPReductionClause *C) {
|
|
return C->getModifier() == OMPC_REDUCTION_inscan;
|
|
})) {
|
|
const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) {
|
|
CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
|
|
OMPLoopScope LoopScope(CGF, S);
|
|
return CGF.EmitScalarExpr(S.getNumIterations());
|
|
};
|
|
const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) {
|
|
CodeGenFunction::OMPCancelStackRAII CancelRegion(
|
|
CGF, S.getDirectiveKind(), HasCancel);
|
|
(void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
|
|
emitForLoopBounds,
|
|
emitDispatchForLoopBounds);
|
|
// Emit an implicit barrier at the end.
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(),
|
|
OMPD_for);
|
|
};
|
|
const auto &&SecondGen = [&S, HasCancel,
|
|
&HasLastprivates](CodeGenFunction &CGF) {
|
|
CodeGenFunction::OMPCancelStackRAII CancelRegion(
|
|
CGF, S.getDirectiveKind(), HasCancel);
|
|
HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
|
|
emitForLoopBounds,
|
|
emitDispatchForLoopBounds);
|
|
};
|
|
if (!isOpenMPParallelDirective(S.getDirectiveKind()))
|
|
emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen);
|
|
emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen);
|
|
} else {
|
|
CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
|
|
HasCancel);
|
|
HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
|
|
emitForLoopBounds,
|
|
emitDispatchForLoopBounds);
|
|
}
|
|
return HasLastprivates;
|
|
}
|
|
|
|
static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) {
|
|
if (S.hasCancel())
|
|
return false;
|
|
for (OMPClause *C : S.clauses())
|
|
if (!isa<OMPNowaitClause>(C))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
|
|
bool HasLastprivates = false;
|
|
bool UseOMPIRBuilder =
|
|
CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S);
|
|
auto &&CodeGen = [this, &S, &HasLastprivates,
|
|
UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// Use the OpenMPIRBuilder if enabled.
|
|
if (UseOMPIRBuilder) {
|
|
// Emit the associated statement and get its loop representation.
|
|
const Stmt *Inner = S.getRawStmt();
|
|
llvm::CanonicalLoopInfo *CLI =
|
|
EmitOMPCollapsedCanonicalLoopNest(Inner, 1);
|
|
|
|
bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>();
|
|
llvm::OpenMPIRBuilder &OMPBuilder =
|
|
CGM.getOpenMPRuntime().getOMPBuilder();
|
|
llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
|
|
AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
|
|
OMPBuilder.createWorkshareLoop(Builder, CLI, AllocaIP, NeedsBarrier);
|
|
return;
|
|
}
|
|
|
|
HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel());
|
|
};
|
|
{
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
OMPLexicalScope Scope(*this, S, OMPD_unknown);
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
|
|
S.hasCancel());
|
|
}
|
|
|
|
if (!UseOMPIRBuilder) {
|
|
// Emit an implicit barrier at the end.
|
|
if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
|
|
}
|
|
// Check for outer lastprivate conditional update.
|
|
checkForLastprivateConditionalUpdate(*this, S);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
|
|
bool HasLastprivates = false;
|
|
auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false);
|
|
};
|
|
{
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
OMPLexicalScope Scope(*this, S, OMPD_unknown);
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
|
|
}
|
|
|
|
// Emit an implicit barrier at the end.
|
|
if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
|
|
// Check for outer lastprivate conditional update.
|
|
checkForLastprivateConditionalUpdate(*this, S);
|
|
}
|
|
|
|
static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
|
|
const Twine &Name,
|
|
llvm::Value *Init = nullptr) {
|
|
LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
|
|
if (Init)
|
|
CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
|
|
return LVal;
|
|
}
|
|
|
|
void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
|
|
const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
|
|
const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
|
|
bool HasLastprivates = false;
|
|
auto &&CodeGen = [&S, CapturedStmt, CS,
|
|
&HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
const ASTContext &C = CGF.getContext();
|
|
QualType KmpInt32Ty =
|
|
C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
|
|
// Emit helper vars inits.
|
|
LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
|
|
CGF.Builder.getInt32(0));
|
|
llvm::ConstantInt *GlobalUBVal = CS != nullptr
|
|
? CGF.Builder.getInt32(CS->size() - 1)
|
|
: CGF.Builder.getInt32(0);
|
|
LValue UB =
|
|
createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
|
|
LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
|
|
CGF.Builder.getInt32(1));
|
|
LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
|
|
CGF.Builder.getInt32(0));
|
|
// Loop counter.
|
|
LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
|
|
OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
|
|
CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
|
|
OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
|
|
CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
|
|
// Generate condition for loop.
|
|
BinaryOperator *Cond = BinaryOperator::Create(
|
|
C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary,
|
|
S.getBeginLoc(), FPOptionsOverride());
|
|
// Increment for loop counter.
|
|
UnaryOperator *Inc = UnaryOperator::Create(
|
|
C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary,
|
|
S.getBeginLoc(), true, FPOptionsOverride());
|
|
auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
|
|
// Iterate through all sections and emit a switch construct:
|
|
// switch (IV) {
|
|
// case 0:
|
|
// <SectionStmt[0]>;
|
|
// break;
|
|
// ...
|
|
// case <NumSection> - 1:
|
|
// <SectionStmt[<NumSection> - 1]>;
|
|
// break;
|
|
// }
|
|
// .omp.sections.exit:
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
|
|
llvm::SwitchInst *SwitchStmt =
|
|
CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()),
|
|
ExitBB, CS == nullptr ? 1 : CS->size());
|
|
if (CS) {
|
|
unsigned CaseNumber = 0;
|
|
for (const Stmt *SubStmt : CS->children()) {
|
|
auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
|
|
CGF.EmitBlock(CaseBB);
|
|
SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
|
|
CGF.EmitStmt(SubStmt);
|
|
CGF.EmitBranch(ExitBB);
|
|
++CaseNumber;
|
|
}
|
|
} else {
|
|
llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
|
|
CGF.EmitBlock(CaseBB);
|
|
SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
|
|
CGF.EmitStmt(CapturedStmt);
|
|
CGF.EmitBranch(ExitBB);
|
|
}
|
|
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
|
|
};
|
|
|
|
CodeGenFunction::OMPPrivateScope LoopScope(CGF);
|
|
if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
// initialization of firstprivate variables and post-update of lastprivate
|
|
// variables.
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(
|
|
CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
|
|
/*ForceSimpleCall=*/true);
|
|
}
|
|
CGF.EmitOMPPrivateClause(S, LoopScope);
|
|
CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV);
|
|
HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
|
|
CGF.EmitOMPReductionClauseInit(S, LoopScope);
|
|
(void)LoopScope.Privatize();
|
|
if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
|
|
CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
|
|
|
|
// Emit static non-chunked loop.
|
|
OpenMPScheduleTy ScheduleKind;
|
|
ScheduleKind.Schedule = OMPC_SCHEDULE_static;
|
|
CGOpenMPRuntime::StaticRTInput StaticInit(
|
|
/*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF),
|
|
LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF));
|
|
CGF.CGM.getOpenMPRuntime().emitForStaticInit(
|
|
CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit);
|
|
// UB = min(UB, GlobalUB);
|
|
llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc());
|
|
llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
|
|
CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
|
|
CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
|
|
// IV = LB;
|
|
CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV);
|
|
// while (idx <= UB) { BODY; ++idx; }
|
|
CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen,
|
|
[](CodeGenFunction &) {});
|
|
// Tell the runtime we are done.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
|
|
S.getDirectiveKind());
|
|
};
|
|
CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
|
|
// Emit post-update of the reduction variables if IsLastIter != 0.
|
|
emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
|
|
return CGF.Builder.CreateIsNotNull(
|
|
CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
|
|
});
|
|
|
|
// Emit final copy of the lastprivate variables if IsLastIter != 0.
|
|
if (HasLastprivates)
|
|
CGF.EmitOMPLastprivateClauseFinal(
|
|
S, /*NoFinals=*/false,
|
|
CGF.Builder.CreateIsNotNull(
|
|
CGF.EmitLoadOfScalar(IL, S.getBeginLoc())));
|
|
};
|
|
|
|
bool HasCancel = false;
|
|
if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
|
|
HasCancel = OSD->hasCancel();
|
|
else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
|
|
HasCancel = OPSD->hasCancel();
|
|
OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
|
|
HasCancel);
|
|
// Emit barrier for lastprivates only if 'sections' directive has 'nowait'
|
|
// clause. Otherwise the barrier will be generated by the codegen for the
|
|
// directive.
|
|
if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
// initialization of firstprivate variables.
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
|
|
OMPD_unknown);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
|
|
if (CGM.getLangOpts().OpenMPIRBuilder) {
|
|
llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
|
|
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
|
using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy;
|
|
|
|
auto FiniCB = [this](InsertPointTy IP) {
|
|
OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
|
|
};
|
|
|
|
const CapturedStmt *ICS = S.getInnermostCapturedStmt();
|
|
const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
|
|
const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
|
|
llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector;
|
|
if (CS) {
|
|
for (const Stmt *SubStmt : CS->children()) {
|
|
auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP,
|
|
InsertPointTy CodeGenIP,
|
|
llvm::BasicBlock &FiniBB) {
|
|
OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP,
|
|
FiniBB);
|
|
OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SubStmt, CodeGenIP,
|
|
FiniBB);
|
|
};
|
|
SectionCBVector.push_back(SectionCB);
|
|
}
|
|
} else {
|
|
auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP,
|
|
InsertPointTy CodeGenIP,
|
|
llvm::BasicBlock &FiniBB) {
|
|
OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
|
|
OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CapturedStmt, CodeGenIP,
|
|
FiniBB);
|
|
};
|
|
SectionCBVector.push_back(SectionCB);
|
|
}
|
|
|
|
// Privatization callback that performs appropriate action for
|
|
// shared/private/firstprivate/lastprivate/copyin/... variables.
|
|
//
|
|
// TODO: This defaults to shared right now.
|
|
auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
|
|
llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) {
|
|
// The next line is appropriate only for variables (Val) with the
|
|
// data-sharing attribute "shared".
|
|
ReplVal = &Val;
|
|
|
|
return CodeGenIP;
|
|
};
|
|
|
|
CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI);
|
|
llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
|
|
AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
|
|
Builder.restoreIP(OMPBuilder.createSections(
|
|
Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(),
|
|
S.getSingleClause<OMPNowaitClause>()));
|
|
return;
|
|
}
|
|
{
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
OMPLexicalScope Scope(*this, S, OMPD_unknown);
|
|
EmitSections(S);
|
|
}
|
|
// Emit an implicit barrier at the end.
|
|
if (!S.getSingleClause<OMPNowaitClause>()) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
|
|
OMPD_sections);
|
|
}
|
|
// Check for outer lastprivate conditional update.
|
|
checkForLastprivateConditionalUpdate(*this, S);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
|
|
if (CGM.getLangOpts().OpenMPIRBuilder) {
|
|
llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
|
|
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
|
|
|
const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt();
|
|
auto FiniCB = [this](InsertPointTy IP) {
|
|
OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
|
|
};
|
|
|
|
auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP,
|
|
InsertPointTy CodeGenIP,
|
|
llvm::BasicBlock &FiniBB) {
|
|
OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
|
|
OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SectionRegionBodyStmt,
|
|
CodeGenIP, FiniBB);
|
|
};
|
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
EmitStopPoint(&S);
|
|
Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB));
|
|
|
|
return;
|
|
}
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
EmitStopPoint(&S);
|
|
EmitStmt(S.getAssociatedStmt());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
|
|
llvm::SmallVector<const Expr *, 8> CopyprivateVars;
|
|
llvm::SmallVector<const Expr *, 8> DestExprs;
|
|
llvm::SmallVector<const Expr *, 8> SrcExprs;
|
|
llvm::SmallVector<const Expr *, 8> AssignmentOps;
|
|
// Check if there are any 'copyprivate' clauses associated with this
|
|
// 'single' construct.
|
|
// Build a list of copyprivate variables along with helper expressions
|
|
// (<source>, <destination>, <destination>=<source> expressions)
|
|
for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
|
|
CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
|
|
DestExprs.append(C->destination_exprs().begin(),
|
|
C->destination_exprs().end());
|
|
SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
|
|
AssignmentOps.append(C->assignment_ops().begin(),
|
|
C->assignment_ops().end());
|
|
}
|
|
// Emit code for 'single' region along with 'copyprivate' clauses
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
OMPPrivateScope SingleScope(CGF);
|
|
(void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
|
|
CGF.EmitOMPPrivateClause(S, SingleScope);
|
|
(void)SingleScope.Privatize();
|
|
CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
|
|
};
|
|
{
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
OMPLexicalScope Scope(*this, S, OMPD_unknown);
|
|
CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(),
|
|
CopyprivateVars, DestExprs,
|
|
SrcExprs, AssignmentOps);
|
|
}
|
|
// Emit an implicit barrier at the end (to avoid data race on firstprivate
|
|
// init or if no 'nowait' clause was specified and no 'copyprivate' clause).
|
|
if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(
|
|
*this, S.getBeginLoc(),
|
|
S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
|
|
}
|
|
// Check for outer lastprivate conditional update.
|
|
checkForLastprivateConditionalUpdate(*this, S);
|
|
}
|
|
|
|
static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CGF.EmitStmt(S.getRawStmt());
|
|
};
|
|
CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
|
|
if (CGM.getLangOpts().OpenMPIRBuilder) {
|
|
llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
|
|
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
|
|
|
const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt();
|
|
|
|
auto FiniCB = [this](InsertPointTy IP) {
|
|
OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
|
|
};
|
|
|
|
auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP,
|
|
InsertPointTy CodeGenIP,
|
|
llvm::BasicBlock &FiniBB) {
|
|
OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
|
|
OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt,
|
|
CodeGenIP, FiniBB);
|
|
};
|
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
EmitStopPoint(&S);
|
|
Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB));
|
|
|
|
return;
|
|
}
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
EmitStopPoint(&S);
|
|
emitMaster(*this, S);
|
|
}
|
|
|
|
static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CGF.EmitStmt(S.getRawStmt());
|
|
};
|
|
Expr *Filter = nullptr;
|
|
if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>())
|
|
Filter = FilterClause->getThreadID();
|
|
CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(),
|
|
Filter);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) {
|
|
if (CGM.getLangOpts().OpenMPIRBuilder) {
|
|
llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
|
|
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
|
|
|
const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt();
|
|
const Expr *Filter = nullptr;
|
|
if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>())
|
|
Filter = FilterClause->getThreadID();
|
|
llvm::Value *FilterVal = Filter
|
|
? EmitScalarExpr(Filter, CGM.Int32Ty)
|
|
: llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0);
|
|
|
|
auto FiniCB = [this](InsertPointTy IP) {
|
|
OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
|
|
};
|
|
|
|
auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP,
|
|
InsertPointTy CodeGenIP,
|
|
llvm::BasicBlock &FiniBB) {
|
|
OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
|
|
OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt,
|
|
CodeGenIP, FiniBB);
|
|
};
|
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
EmitStopPoint(&S);
|
|
Builder.restoreIP(
|
|
OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal));
|
|
|
|
return;
|
|
}
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
EmitStopPoint(&S);
|
|
emitMasked(*this, S);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
|
|
if (CGM.getLangOpts().OpenMPIRBuilder) {
|
|
llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
|
|
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
|
|
|
const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt();
|
|
const Expr *Hint = nullptr;
|
|
if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
|
|
Hint = HintClause->getHint();
|
|
|
|
// TODO: This is slightly different from what's currently being done in
|
|
// clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything
|
|
// about typing is final.
|
|
llvm::Value *HintInst = nullptr;
|
|
if (Hint)
|
|
HintInst =
|
|
Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false);
|
|
|
|
auto FiniCB = [this](InsertPointTy IP) {
|
|
OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
|
|
};
|
|
|
|
auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP,
|
|
InsertPointTy CodeGenIP,
|
|
llvm::BasicBlock &FiniBB) {
|
|
OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
|
|
OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt,
|
|
CodeGenIP, FiniBB);
|
|
};
|
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
EmitStopPoint(&S);
|
|
Builder.restoreIP(OMPBuilder.createCritical(
|
|
Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(),
|
|
HintInst));
|
|
|
|
return;
|
|
}
|
|
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CGF.EmitStmt(S.getAssociatedStmt());
|
|
};
|
|
const Expr *Hint = nullptr;
|
|
if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
|
|
Hint = HintClause->getHint();
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
EmitStopPoint(&S);
|
|
CGM.getOpenMPRuntime().emitCriticalRegion(*this,
|
|
S.getDirectiveName().getAsString(),
|
|
CodeGen, S.getBeginLoc(), Hint);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelForDirective(
|
|
const OMPParallelForDirective &S) {
|
|
// Emit directive as a combined directive that consists of two implicit
|
|
// directives: 'parallel' with 'for' directive.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
(void)emitWorksharingDirective(CGF, S, S.hasCancel());
|
|
};
|
|
{
|
|
if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(),
|
|
[](const OMPReductionClause *C) {
|
|
return C->getModifier() == OMPC_REDUCTION_inscan;
|
|
})) {
|
|
const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) {
|
|
CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
|
|
CGCapturedStmtInfo CGSI(CR_OpenMP);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI);
|
|
OMPLoopScope LoopScope(CGF, S);
|
|
return CGF.EmitScalarExpr(S.getNumIterations());
|
|
};
|
|
emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen);
|
|
}
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
|
|
emitEmptyBoundParameters);
|
|
}
|
|
// Check for outer lastprivate conditional update.
|
|
checkForLastprivateConditionalUpdate(*this, S);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelForSimdDirective(
|
|
const OMPParallelForSimdDirective &S) {
|
|
// Emit directive as a combined directive that consists of two implicit
|
|
// directives: 'parallel' with 'for' directive.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
(void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false);
|
|
};
|
|
{
|
|
if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(),
|
|
[](const OMPReductionClause *C) {
|
|
return C->getModifier() == OMPC_REDUCTION_inscan;
|
|
})) {
|
|
const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) {
|
|
CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
|
|
CGCapturedStmtInfo CGSI(CR_OpenMP);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI);
|
|
OMPLoopScope LoopScope(CGF, S);
|
|
return CGF.EmitScalarExpr(S.getNumIterations());
|
|
};
|
|
emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen);
|
|
}
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen,
|
|
emitEmptyBoundParameters);
|
|
}
|
|
// Check for outer lastprivate conditional update.
|
|
checkForLastprivateConditionalUpdate(*this, S);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelMasterDirective(
|
|
const OMPParallelMasterDirective &S) {
|
|
// Emit directive as a combined directive that consists of two implicit
|
|
// directives: 'parallel' with 'master' directive.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
OMPPrivateScope PrivateScope(CGF);
|
|
bool Copyins = CGF.EmitOMPCopyinClause(S);
|
|
(void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
|
|
if (Copyins) {
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
// propagation master's thread values of threadprivate variables to local
|
|
// instances of that variables of all other implicit threads.
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(
|
|
CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
|
|
/*ForceSimpleCall=*/true);
|
|
}
|
|
CGF.EmitOMPPrivateClause(S, PrivateScope);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
emitMaster(CGF, S);
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
|
|
};
|
|
{
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen,
|
|
emitEmptyBoundParameters);
|
|
emitPostUpdateForReductionClause(*this, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
// Check for outer lastprivate conditional update.
|
|
checkForLastprivateConditionalUpdate(*this, S);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelSectionsDirective(
|
|
const OMPParallelSectionsDirective &S) {
|
|
// Emit directive as a combined directive that consists of two implicit
|
|
// directives: 'parallel' with 'sections' directive.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CGF.EmitSections(S);
|
|
};
|
|
{
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
|
|
emitEmptyBoundParameters);
|
|
}
|
|
// Check for outer lastprivate conditional update.
|
|
checkForLastprivateConditionalUpdate(*this, S);
|
|
}
|
|
|
|
namespace {
|
|
/// Get the list of variables declared in the context of the untied tasks.
|
|
class CheckVarsEscapingUntiedTaskDeclContext final
|
|
: public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> {
|
|
llvm::SmallVector<const VarDecl *, 4> PrivateDecls;
|
|
|
|
public:
|
|
explicit CheckVarsEscapingUntiedTaskDeclContext() = default;
|
|
virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default;
|
|
void VisitDeclStmt(const DeclStmt *S) {
|
|
if (!S)
|
|
return;
|
|
// Need to privatize only local vars, static locals can be processed as is.
|
|
for (const Decl *D : S->decls()) {
|
|
if (const auto *VD = dyn_cast_or_null<VarDecl>(D))
|
|
if (VD->hasLocalStorage())
|
|
PrivateDecls.push_back(VD);
|
|
}
|
|
}
|
|
void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; }
|
|
void VisitCapturedStmt(const CapturedStmt *) { return; }
|
|
void VisitLambdaExpr(const LambdaExpr *) { return; }
|
|
void VisitBlockExpr(const BlockExpr *) { return; }
|
|
void VisitStmt(const Stmt *S) {
|
|
if (!S)
|
|
return;
|
|
for (const Stmt *Child : S->children())
|
|
if (Child)
|
|
Visit(Child);
|
|
}
|
|
|
|
/// Swaps list of vars with the provided one.
|
|
ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; }
|
|
};
|
|
} // anonymous namespace
|
|
|
|
void CodeGenFunction::EmitOMPTaskBasedDirective(
|
|
const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
|
|
const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
|
|
OMPTaskDataTy &Data) {
|
|
// Emit outlined function for task construct.
|
|
const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
|
|
auto I = CS->getCapturedDecl()->param_begin();
|
|
auto PartId = std::next(I);
|
|
auto TaskT = std::next(I, 4);
|
|
// Check if the task is final
|
|
if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
|
|
// If the condition constant folds and can be elided, try to avoid emitting
|
|
// the condition and the dead arm of the if/else.
|
|
const Expr *Cond = Clause->getCondition();
|
|
bool CondConstant;
|
|
if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
|
|
Data.Final.setInt(CondConstant);
|
|
else
|
|
Data.Final.setPointer(EvaluateExprAsBool(Cond));
|
|
} else {
|
|
// By default the task is not final.
|
|
Data.Final.setInt(/*IntVal=*/false);
|
|
}
|
|
// Check if the task has 'priority' clause.
|
|
if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
|
|
const Expr *Prio = Clause->getPriority();
|
|
Data.Priority.setInt(/*IntVal=*/true);
|
|
Data.Priority.setPointer(EmitScalarConversion(
|
|
EmitScalarExpr(Prio), Prio->getType(),
|
|
getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
|
|
Prio->getExprLoc()));
|
|
}
|
|
// The first function argument for tasks is a thread id, the second one is a
|
|
// part id (0 for tied tasks, >=0 for untied task).
|
|
llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
|
|
// Get list of private variables.
|
|
for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
|
|
auto IRef = C->varlist_begin();
|
|
for (const Expr *IInit : C->private_copies()) {
|
|
const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
|
|
Data.PrivateVars.push_back(*IRef);
|
|
Data.PrivateCopies.push_back(IInit);
|
|
}
|
|
++IRef;
|
|
}
|
|
}
|
|
EmittedAsPrivate.clear();
|
|
// Get list of firstprivate variables.
|
|
for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
|
|
auto IRef = C->varlist_begin();
|
|
auto IElemInitRef = C->inits().begin();
|
|
for (const Expr *IInit : C->private_copies()) {
|
|
const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
|
|
Data.FirstprivateVars.push_back(*IRef);
|
|
Data.FirstprivateCopies.push_back(IInit);
|
|
Data.FirstprivateInits.push_back(*IElemInitRef);
|
|
}
|
|
++IRef;
|
|
++IElemInitRef;
|
|
}
|
|
}
|
|
// Get list of lastprivate variables (for taskloops).
|
|
llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
|
|
for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
|
|
auto IRef = C->varlist_begin();
|
|
auto ID = C->destination_exprs().begin();
|
|
for (const Expr *IInit : C->private_copies()) {
|
|
const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
|
|
Data.LastprivateVars.push_back(*IRef);
|
|
Data.LastprivateCopies.push_back(IInit);
|
|
}
|
|
LastprivateDstsOrigs.insert(
|
|
std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
|
|
cast<DeclRefExpr>(*IRef)));
|
|
++IRef;
|
|
++ID;
|
|
}
|
|
}
|
|
SmallVector<const Expr *, 4> LHSs;
|
|
SmallVector<const Expr *, 4> RHSs;
|
|
for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
|
|
Data.ReductionVars.append(C->varlist_begin(), C->varlist_end());
|
|
Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
|
|
Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
|
|
Data.ReductionOps.append(C->reduction_ops().begin(),
|
|
C->reduction_ops().end());
|
|
LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
|
|
RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
|
|
}
|
|
Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
|
|
*this, S.getBeginLoc(), LHSs, RHSs, Data);
|
|
// Build list of dependences.
|
|
for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
|
|
OMPTaskDataTy::DependData &DD =
|
|
Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier());
|
|
DD.DepExprs.append(C->varlist_begin(), C->varlist_end());
|
|
}
|
|
// Get list of local vars for untied tasks.
|
|
if (!Data.Tied) {
|
|
CheckVarsEscapingUntiedTaskDeclContext Checker;
|
|
Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt());
|
|
Data.PrivateLocals.append(Checker.getPrivateDecls().begin(),
|
|
Checker.getPrivateDecls().end());
|
|
}
|
|
auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
|
|
CapturedRegion](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
llvm::MapVector<CanonicalDeclPtr<const VarDecl>,
|
|
std::pair<Address, Address>>
|
|
UntiedLocalVars;
|
|
// Set proper addresses for generated private copies.
|
|
OMPPrivateScope Scope(CGF);
|
|
llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs;
|
|
if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
|
|
!Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) {
|
|
enum { PrivatesParam = 2, CopyFnParam = 3 };
|
|
llvm::Value *CopyFn = CGF.Builder.CreateLoad(
|
|
CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
|
|
llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
|
|
CS->getCapturedDecl()->getParam(PrivatesParam)));
|
|
// Map privates.
|
|
llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
|
|
llvm::SmallVector<llvm::Value *, 16> CallArgs;
|
|
llvm::SmallVector<llvm::Type *, 4> ParamTypes;
|
|
CallArgs.push_back(PrivatesPtr);
|
|
ParamTypes.push_back(PrivatesPtr->getType());
|
|
for (const Expr *E : Data.PrivateVars) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
Address PrivatePtr = CGF.CreateMemTemp(
|
|
CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
|
|
PrivatePtrs.emplace_back(VD, PrivatePtr);
|
|
CallArgs.push_back(PrivatePtr.getPointer());
|
|
ParamTypes.push_back(PrivatePtr.getType());
|
|
}
|
|
for (const Expr *E : Data.FirstprivateVars) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
Address PrivatePtr =
|
|
CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
|
|
".firstpriv.ptr.addr");
|
|
PrivatePtrs.emplace_back(VD, PrivatePtr);
|
|
FirstprivatePtrs.emplace_back(VD, PrivatePtr);
|
|
CallArgs.push_back(PrivatePtr.getPointer());
|
|
ParamTypes.push_back(PrivatePtr.getType());
|
|
}
|
|
for (const Expr *E : Data.LastprivateVars) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
Address PrivatePtr =
|
|
CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
|
|
".lastpriv.ptr.addr");
|
|
PrivatePtrs.emplace_back(VD, PrivatePtr);
|
|
CallArgs.push_back(PrivatePtr.getPointer());
|
|
ParamTypes.push_back(PrivatePtr.getType());
|
|
}
|
|
for (const VarDecl *VD : Data.PrivateLocals) {
|
|
QualType Ty = VD->getType().getNonReferenceType();
|
|
if (VD->getType()->isLValueReferenceType())
|
|
Ty = CGF.getContext().getPointerType(Ty);
|
|
if (isAllocatableDecl(VD))
|
|
Ty = CGF.getContext().getPointerType(Ty);
|
|
Address PrivatePtr = CGF.CreateMemTemp(
|
|
CGF.getContext().getPointerType(Ty), ".local.ptr.addr");
|
|
auto Result = UntiedLocalVars.insert(
|
|
std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid())));
|
|
// If key exists update in place.
|
|
if (Result.second == false)
|
|
*Result.first = std::make_pair(
|
|
VD, std::make_pair(PrivatePtr, Address::invalid()));
|
|
CallArgs.push_back(PrivatePtr.getPointer());
|
|
ParamTypes.push_back(PrivatePtr.getType());
|
|
}
|
|
auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(),
|
|
ParamTypes, /*isVarArg=*/false);
|
|
CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CopyFn, CopyFnTy->getPointerTo());
|
|
CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
|
|
CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
|
|
for (const auto &Pair : LastprivateDstsOrigs) {
|
|
const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
|
|
DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD),
|
|
/*RefersToEnclosingVariableOrCapture=*/
|
|
CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
|
|
Pair.second->getType(), VK_LValue,
|
|
Pair.second->getExprLoc());
|
|
Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
|
|
return CGF.EmitLValue(&DRE).getAddress(CGF);
|
|
});
|
|
}
|
|
for (const auto &Pair : PrivatePtrs) {
|
|
Address Replacement(CGF.Builder.CreateLoad(Pair.second),
|
|
CGF.getContext().getDeclAlign(Pair.first));
|
|
Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
|
|
}
|
|
// Adjust mapping for internal locals by mapping actual memory instead of
|
|
// a pointer to this memory.
|
|
for (auto &Pair : UntiedLocalVars) {
|
|
if (isAllocatableDecl(Pair.first)) {
|
|
llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first);
|
|
Address Replacement(Ptr, CGF.getPointerAlign());
|
|
Pair.second.first = Replacement;
|
|
Ptr = CGF.Builder.CreateLoad(Replacement);
|
|
Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first));
|
|
Pair.second.second = Replacement;
|
|
} else {
|
|
llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first);
|
|
Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first));
|
|
Pair.second.first = Replacement;
|
|
}
|
|
}
|
|
}
|
|
if (Data.Reductions) {
|
|
OMPPrivateScope FirstprivateScope(CGF);
|
|
for (const auto &Pair : FirstprivatePtrs) {
|
|
Address Replacement(CGF.Builder.CreateLoad(Pair.second),
|
|
CGF.getContext().getDeclAlign(Pair.first));
|
|
FirstprivateScope.addPrivate(Pair.first,
|
|
[Replacement]() { return Replacement; });
|
|
}
|
|
(void)FirstprivateScope.Privatize();
|
|
OMPLexicalScope LexScope(CGF, S, CapturedRegion);
|
|
ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars,
|
|
Data.ReductionCopies, Data.ReductionOps);
|
|
llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
|
|
CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
|
|
for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
|
|
RedCG.emitSharedOrigLValue(CGF, Cnt);
|
|
RedCG.emitAggregateType(CGF, Cnt);
|
|
// FIXME: This must removed once the runtime library is fixed.
|
|
// Emit required threadprivate variables for
|
|
// initializer/combiner/finalizer.
|
|
CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
|
|
RedCG, Cnt);
|
|
Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
|
|
CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
|
|
Replacement =
|
|
Address(CGF.EmitScalarConversion(
|
|
Replacement.getPointer(), CGF.getContext().VoidPtrTy,
|
|
CGF.getContext().getPointerType(
|
|
Data.ReductionCopies[Cnt]->getType()),
|
|
Data.ReductionCopies[Cnt]->getExprLoc()),
|
|
Replacement.getAlignment());
|
|
Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
|
|
Scope.addPrivate(RedCG.getBaseDecl(Cnt),
|
|
[Replacement]() { return Replacement; });
|
|
}
|
|
}
|
|
// Privatize all private variables except for in_reduction items.
|
|
(void)Scope.Privatize();
|
|
SmallVector<const Expr *, 4> InRedVars;
|
|
SmallVector<const Expr *, 4> InRedPrivs;
|
|
SmallVector<const Expr *, 4> InRedOps;
|
|
SmallVector<const Expr *, 4> TaskgroupDescriptors;
|
|
for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
|
|
auto IPriv = C->privates().begin();
|
|
auto IRed = C->reduction_ops().begin();
|
|
auto ITD = C->taskgroup_descriptors().begin();
|
|
for (const Expr *Ref : C->varlists()) {
|
|
InRedVars.emplace_back(Ref);
|
|
InRedPrivs.emplace_back(*IPriv);
|
|
InRedOps.emplace_back(*IRed);
|
|
TaskgroupDescriptors.emplace_back(*ITD);
|
|
std::advance(IPriv, 1);
|
|
std::advance(IRed, 1);
|
|
std::advance(ITD, 1);
|
|
}
|
|
}
|
|
// Privatize in_reduction items here, because taskgroup descriptors must be
|
|
// privatized earlier.
|
|
OMPPrivateScope InRedScope(CGF);
|
|
if (!InRedVars.empty()) {
|
|
ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps);
|
|
for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
|
|
RedCG.emitSharedOrigLValue(CGF, Cnt);
|
|
RedCG.emitAggregateType(CGF, Cnt);
|
|
// The taskgroup descriptor variable is always implicit firstprivate and
|
|
// privatized already during processing of the firstprivates.
|
|
// FIXME: This must removed once the runtime library is fixed.
|
|
// Emit required threadprivate variables for
|
|
// initializer/combiner/finalizer.
|
|
CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
|
|
RedCG, Cnt);
|
|
llvm::Value *ReductionsPtr;
|
|
if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) {
|
|
ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr),
|
|
TRExpr->getExprLoc());
|
|
} else {
|
|
ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
|
|
}
|
|
Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
|
|
CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
|
|
Replacement = Address(
|
|
CGF.EmitScalarConversion(
|
|
Replacement.getPointer(), CGF.getContext().VoidPtrTy,
|
|
CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
|
|
InRedPrivs[Cnt]->getExprLoc()),
|
|
Replacement.getAlignment());
|
|
Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
|
|
InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
|
|
[Replacement]() { return Replacement; });
|
|
}
|
|
}
|
|
(void)InRedScope.Privatize();
|
|
|
|
CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF,
|
|
UntiedLocalVars);
|
|
Action.Enter(CGF);
|
|
BodyGen(CGF);
|
|
};
|
|
llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
|
|
S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
|
|
Data.NumberOfParts);
|
|
OMPLexicalScope Scope(*this, S, llvm::None,
|
|
!isOpenMPParallelDirective(S.getDirectiveKind()) &&
|
|
!isOpenMPSimdDirective(S.getDirectiveKind()));
|
|
TaskGen(*this, OutlinedFn, Data);
|
|
}
|
|
|
|
static ImplicitParamDecl *
|
|
createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
|
|
QualType Ty, CapturedDecl *CD,
|
|
SourceLocation Loc) {
|
|
auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
|
|
ImplicitParamDecl::Other);
|
|
auto *OrigRef = DeclRefExpr::Create(
|
|
C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
|
|
/*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
|
|
auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
|
|
ImplicitParamDecl::Other);
|
|
auto *PrivateRef = DeclRefExpr::Create(
|
|
C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
|
|
/*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
|
|
QualType ElemType = C.getBaseElementType(Ty);
|
|
auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
|
|
ImplicitParamDecl::Other);
|
|
auto *InitRef = DeclRefExpr::Create(
|
|
C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
|
|
/*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
|
|
PrivateVD->setInitStyle(VarDecl::CInit);
|
|
PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
|
|
InitRef, /*BasePath=*/nullptr,
|
|
VK_PRValue, FPOptionsOverride()));
|
|
Data.FirstprivateVars.emplace_back(OrigRef);
|
|
Data.FirstprivateCopies.emplace_back(PrivateRef);
|
|
Data.FirstprivateInits.emplace_back(InitRef);
|
|
return OrigVD;
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
|
|
const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
|
|
OMPTargetDataInfo &InputInfo) {
|
|
// Emit outlined function for task construct.
|
|
const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
|
|
Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
|
|
QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
|
|
auto I = CS->getCapturedDecl()->param_begin();
|
|
auto PartId = std::next(I);
|
|
auto TaskT = std::next(I, 4);
|
|
OMPTaskDataTy Data;
|
|
// The task is not final.
|
|
Data.Final.setInt(/*IntVal=*/false);
|
|
// Get list of firstprivate variables.
|
|
for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
|
|
auto IRef = C->varlist_begin();
|
|
auto IElemInitRef = C->inits().begin();
|
|
for (auto *IInit : C->private_copies()) {
|
|
Data.FirstprivateVars.push_back(*IRef);
|
|
Data.FirstprivateCopies.push_back(IInit);
|
|
Data.FirstprivateInits.push_back(*IElemInitRef);
|
|
++IRef;
|
|
++IElemInitRef;
|
|
}
|
|
}
|
|
OMPPrivateScope TargetScope(*this);
|
|
VarDecl *BPVD = nullptr;
|
|
VarDecl *PVD = nullptr;
|
|
VarDecl *SVD = nullptr;
|
|
VarDecl *MVD = nullptr;
|
|
if (InputInfo.NumberOfTargetItems > 0) {
|
|
auto *CD = CapturedDecl::Create(
|
|
getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
|
|
llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
|
|
QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType(
|
|
getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
BPVD = createImplicitFirstprivateForType(
|
|
getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
|
|
PVD = createImplicitFirstprivateForType(
|
|
getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
|
|
QualType SizesType = getContext().getConstantArrayType(
|
|
getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1),
|
|
ArrSize, nullptr, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
|
|
S.getBeginLoc());
|
|
TargetScope.addPrivate(
|
|
BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
|
|
TargetScope.addPrivate(PVD,
|
|
[&InputInfo]() { return InputInfo.PointersArray; });
|
|
TargetScope.addPrivate(SVD,
|
|
[&InputInfo]() { return InputInfo.SizesArray; });
|
|
// If there is no user-defined mapper, the mapper array will be nullptr. In
|
|
// this case, we don't need to privatize it.
|
|
if (!dyn_cast_or_null<llvm::ConstantPointerNull>(
|
|
InputInfo.MappersArray.getPointer())) {
|
|
MVD = createImplicitFirstprivateForType(
|
|
getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
|
|
TargetScope.addPrivate(MVD,
|
|
[&InputInfo]() { return InputInfo.MappersArray; });
|
|
}
|
|
}
|
|
(void)TargetScope.Privatize();
|
|
// Build list of dependences.
|
|
for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
|
|
OMPTaskDataTy::DependData &DD =
|
|
Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier());
|
|
DD.DepExprs.append(C->varlist_begin(), C->varlist_end());
|
|
}
|
|
auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD,
|
|
&InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
// Set proper addresses for generated private copies.
|
|
OMPPrivateScope Scope(CGF);
|
|
if (!Data.FirstprivateVars.empty()) {
|
|
enum { PrivatesParam = 2, CopyFnParam = 3 };
|
|
llvm::Value *CopyFn = CGF.Builder.CreateLoad(
|
|
CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
|
|
llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
|
|
CS->getCapturedDecl()->getParam(PrivatesParam)));
|
|
// Map privates.
|
|
llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
|
|
llvm::SmallVector<llvm::Value *, 16> CallArgs;
|
|
llvm::SmallVector<llvm::Type *, 4> ParamTypes;
|
|
CallArgs.push_back(PrivatesPtr);
|
|
ParamTypes.push_back(PrivatesPtr->getType());
|
|
for (const Expr *E : Data.FirstprivateVars) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
Address PrivatePtr =
|
|
CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
|
|
".firstpriv.ptr.addr");
|
|
PrivatePtrs.emplace_back(VD, PrivatePtr);
|
|
CallArgs.push_back(PrivatePtr.getPointer());
|
|
ParamTypes.push_back(PrivatePtr.getType());
|
|
}
|
|
auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(),
|
|
ParamTypes, /*isVarArg=*/false);
|
|
CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CopyFn, CopyFnTy->getPointerTo());
|
|
CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
|
|
CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
|
|
for (const auto &Pair : PrivatePtrs) {
|
|
Address Replacement(CGF.Builder.CreateLoad(Pair.second),
|
|
CGF.getContext().getDeclAlign(Pair.first));
|
|
Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
|
|
}
|
|
}
|
|
// Privatize all private variables except for in_reduction items.
|
|
(void)Scope.Privatize();
|
|
if (InputInfo.NumberOfTargetItems > 0) {
|
|
InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
|
|
CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0);
|
|
InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
|
|
CGF.GetAddrOfLocalVar(PVD), /*Index=*/0);
|
|
InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
|
|
CGF.GetAddrOfLocalVar(SVD), /*Index=*/0);
|
|
// If MVD is nullptr, the mapper array is not privatized
|
|
if (MVD)
|
|
InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP(
|
|
CGF.GetAddrOfLocalVar(MVD), /*Index=*/0);
|
|
}
|
|
|
|
Action.Enter(CGF);
|
|
OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
|
|
BodyGen(CGF);
|
|
};
|
|
llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
|
|
S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
|
|
Data.NumberOfParts);
|
|
llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
|
|
IntegerLiteral IfCond(getContext(), TrueOrFalse,
|
|
getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
|
|
SourceLocation());
|
|
|
|
CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn,
|
|
SharedsTy, CapturedStruct, &IfCond, Data);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
|
|
// Emit outlined function for task construct.
|
|
const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
|
|
Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
|
|
QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
|
|
const Expr *IfCond = nullptr;
|
|
for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
|
|
if (C->getNameModifier() == OMPD_unknown ||
|
|
C->getNameModifier() == OMPD_task) {
|
|
IfCond = C->getCondition();
|
|
break;
|
|
}
|
|
}
|
|
|
|
OMPTaskDataTy Data;
|
|
// Check if we should emit tied or untied task.
|
|
Data.Tied = !S.getSingleClause<OMPUntiedClause>();
|
|
auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitStmt(CS->getCapturedStmt());
|
|
};
|
|
auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
|
|
IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
|
|
const OMPTaskDataTy &Data) {
|
|
CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn,
|
|
SharedsTy, CapturedStruct, IfCond,
|
|
Data);
|
|
};
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskyieldDirective(
|
|
const OMPTaskyieldDirective &S) {
|
|
CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
|
|
CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskgroupDirective(
|
|
const OMPTaskgroupDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
if (const Expr *E = S.getReductionRef()) {
|
|
SmallVector<const Expr *, 4> LHSs;
|
|
SmallVector<const Expr *, 4> RHSs;
|
|
OMPTaskDataTy Data;
|
|
for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
|
|
Data.ReductionVars.append(C->varlist_begin(), C->varlist_end());
|
|
Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
|
|
Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
|
|
Data.ReductionOps.append(C->reduction_ops().begin(),
|
|
C->reduction_ops().end());
|
|
LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
|
|
RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
|
|
}
|
|
llvm::Value *ReductionDesc =
|
|
CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(),
|
|
LHSs, RHSs, Data);
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
CGF.EmitVarDecl(*VD);
|
|
CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
|
|
/*Volatile=*/false, E->getType());
|
|
}
|
|
CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
|
|
};
|
|
OMPLexicalScope Scope(*this, S, OMPD_unknown);
|
|
CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
|
|
llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>()
|
|
? llvm::AtomicOrdering::NotAtomic
|
|
: llvm::AtomicOrdering::AcquireRelease;
|
|
CGM.getOpenMPRuntime().emitFlush(
|
|
*this,
|
|
[&S]() -> ArrayRef<const Expr *> {
|
|
if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
|
|
return llvm::makeArrayRef(FlushClause->varlist_begin(),
|
|
FlushClause->varlist_end());
|
|
return llvm::None;
|
|
}(),
|
|
S.getBeginLoc(), AO);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) {
|
|
const auto *DO = S.getSingleClause<OMPDepobjClause>();
|
|
LValue DOLVal = EmitLValue(DO->getDepobj());
|
|
if (const auto *DC = S.getSingleClause<OMPDependClause>()) {
|
|
OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(),
|
|
DC->getModifier());
|
|
Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end());
|
|
Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause(
|
|
*this, Dependencies, DC->getBeginLoc());
|
|
EmitStoreOfScalar(DepAddr.getPointer(), DOLVal);
|
|
return;
|
|
}
|
|
if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) {
|
|
CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc());
|
|
return;
|
|
}
|
|
if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) {
|
|
CGM.getOpenMPRuntime().emitUpdateClause(
|
|
*this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc());
|
|
return;
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) {
|
|
if (!OMPParentLoopDirectiveForScan)
|
|
return;
|
|
const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan;
|
|
bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>();
|
|
SmallVector<const Expr *, 4> Shareds;
|
|
SmallVector<const Expr *, 4> Privates;
|
|
SmallVector<const Expr *, 4> LHSs;
|
|
SmallVector<const Expr *, 4> RHSs;
|
|
SmallVector<const Expr *, 4> ReductionOps;
|
|
SmallVector<const Expr *, 4> CopyOps;
|
|
SmallVector<const Expr *, 4> CopyArrayTemps;
|
|
SmallVector<const Expr *, 4> CopyArrayElems;
|
|
for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) {
|
|
if (C->getModifier() != OMPC_REDUCTION_inscan)
|
|
continue;
|
|
Shareds.append(C->varlist_begin(), C->varlist_end());
|
|
Privates.append(C->privates().begin(), C->privates().end());
|
|
LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
|
|
RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
|
|
ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
|
|
CopyOps.append(C->copy_ops().begin(), C->copy_ops().end());
|
|
CopyArrayTemps.append(C->copy_array_temps().begin(),
|
|
C->copy_array_temps().end());
|
|
CopyArrayElems.append(C->copy_array_elems().begin(),
|
|
C->copy_array_elems().end());
|
|
}
|
|
if (ParentDir.getDirectiveKind() == OMPD_simd ||
|
|
(getLangOpts().OpenMPSimd &&
|
|
isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) {
|
|
// For simd directive and simd-based directives in simd only mode, use the
|
|
// following codegen:
|
|
// int x = 0;
|
|
// #pragma omp simd reduction(inscan, +: x)
|
|
// for (..) {
|
|
// <first part>
|
|
// #pragma omp scan inclusive(x)
|
|
// <second part>
|
|
// }
|
|
// is transformed to:
|
|
// int x = 0;
|
|
// for (..) {
|
|
// int x_priv = 0;
|
|
// <first part>
|
|
// x = x_priv + x;
|
|
// x_priv = x;
|
|
// <second part>
|
|
// }
|
|
// and
|
|
// int x = 0;
|
|
// #pragma omp simd reduction(inscan, +: x)
|
|
// for (..) {
|
|
// <first part>
|
|
// #pragma omp scan exclusive(x)
|
|
// <second part>
|
|
// }
|
|
// to
|
|
// int x = 0;
|
|
// for (..) {
|
|
// int x_priv = 0;
|
|
// <second part>
|
|
// int temp = x;
|
|
// x = x_priv + x;
|
|
// x_priv = temp;
|
|
// <first part>
|
|
// }
|
|
llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce");
|
|
EmitBranch(IsInclusive
|
|
? OMPScanReduce
|
|
: BreakContinueStack.back().ContinueBlock.getBlock());
|
|
EmitBlock(OMPScanDispatch);
|
|
{
|
|
// New scope for correct construction/destruction of temp variables for
|
|
// exclusive scan.
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock);
|
|
EmitBlock(OMPScanReduce);
|
|
if (!IsInclusive) {
|
|
// Create temp var and copy LHS value to this temp value.
|
|
// TMP = LHS;
|
|
for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
|
|
const Expr *PrivateExpr = Privates[I];
|
|
const Expr *TempExpr = CopyArrayTemps[I];
|
|
EmitAutoVarDecl(
|
|
*cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl()));
|
|
LValue DestLVal = EmitLValue(TempExpr);
|
|
LValue SrcLVal = EmitLValue(LHSs[I]);
|
|
EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
|
|
SrcLVal.getAddress(*this),
|
|
cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
|
|
cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
|
|
CopyOps[I]);
|
|
}
|
|
}
|
|
CGM.getOpenMPRuntime().emitReduction(
|
|
*this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps,
|
|
{/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd});
|
|
for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
|
|
const Expr *PrivateExpr = Privates[I];
|
|
LValue DestLVal;
|
|
LValue SrcLVal;
|
|
if (IsInclusive) {
|
|
DestLVal = EmitLValue(RHSs[I]);
|
|
SrcLVal = EmitLValue(LHSs[I]);
|
|
} else {
|
|
const Expr *TempExpr = CopyArrayTemps[I];
|
|
DestLVal = EmitLValue(RHSs[I]);
|
|
SrcLVal = EmitLValue(TempExpr);
|
|
}
|
|
EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
|
|
SrcLVal.getAddress(*this),
|
|
cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
|
|
cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
|
|
CopyOps[I]);
|
|
}
|
|
}
|
|
EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock);
|
|
OMPScanExitBlock = IsInclusive
|
|
? BreakContinueStack.back().ContinueBlock.getBlock()
|
|
: OMPScanReduce;
|
|
EmitBlock(OMPAfterScanBlock);
|
|
return;
|
|
}
|
|
if (!IsInclusive) {
|
|
EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
|
|
EmitBlock(OMPScanExitBlock);
|
|
}
|
|
if (OMPFirstScanLoop) {
|
|
// Emit buffer[i] = red; at the end of the input phase.
|
|
const auto *IVExpr = cast<OMPLoopDirective>(ParentDir)
|
|
.getIterationVariable()
|
|
->IgnoreParenImpCasts();
|
|
LValue IdxLVal = EmitLValue(IVExpr);
|
|
llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc());
|
|
IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false);
|
|
for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
|
|
const Expr *PrivateExpr = Privates[I];
|
|
const Expr *OrigExpr = Shareds[I];
|
|
const Expr *CopyArrayElem = CopyArrayElems[I];
|
|
OpaqueValueMapping IdxMapping(
|
|
*this,
|
|
cast<OpaqueValueExpr>(
|
|
cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
|
|
RValue::get(IdxVal));
|
|
LValue DestLVal = EmitLValue(CopyArrayElem);
|
|
LValue SrcLVal = EmitLValue(OrigExpr);
|
|
EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
|
|
SrcLVal.getAddress(*this),
|
|
cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
|
|
cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
|
|
CopyOps[I]);
|
|
}
|
|
}
|
|
EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
|
|
if (IsInclusive) {
|
|
EmitBlock(OMPScanExitBlock);
|
|
EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
|
|
}
|
|
EmitBlock(OMPScanDispatch);
|
|
if (!OMPFirstScanLoop) {
|
|
// Emit red = buffer[i]; at the entrance to the scan phase.
|
|
const auto *IVExpr = cast<OMPLoopDirective>(ParentDir)
|
|
.getIterationVariable()
|
|
->IgnoreParenImpCasts();
|
|
LValue IdxLVal = EmitLValue(IVExpr);
|
|
llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc());
|
|
IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false);
|
|
llvm::BasicBlock *ExclusiveExitBB = nullptr;
|
|
if (!IsInclusive) {
|
|
llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec");
|
|
ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit");
|
|
llvm::Value *Cmp = Builder.CreateIsNull(IdxVal);
|
|
Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB);
|
|
EmitBlock(ContBB);
|
|
// Use idx - 1 iteration for exclusive scan.
|
|
IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1));
|
|
}
|
|
for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
|
|
const Expr *PrivateExpr = Privates[I];
|
|
const Expr *OrigExpr = Shareds[I];
|
|
const Expr *CopyArrayElem = CopyArrayElems[I];
|
|
OpaqueValueMapping IdxMapping(
|
|
*this,
|
|
cast<OpaqueValueExpr>(
|
|
cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
|
|
RValue::get(IdxVal));
|
|
LValue SrcLVal = EmitLValue(CopyArrayElem);
|
|
LValue DestLVal = EmitLValue(OrigExpr);
|
|
EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
|
|
SrcLVal.getAddress(*this),
|
|
cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
|
|
cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
|
|
CopyOps[I]);
|
|
}
|
|
if (!IsInclusive) {
|
|
EmitBlock(ExclusiveExitBB);
|
|
}
|
|
}
|
|
EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock
|
|
: OMPAfterScanBlock);
|
|
EmitBlock(OMPAfterScanBlock);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
|
|
const CodeGenLoopTy &CodeGenLoop,
|
|
Expr *IncExpr) {
|
|
// Emit the loop iteration variable.
|
|
const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
|
|
const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
|
|
EmitVarDecl(*IVDecl);
|
|
|
|
// Emit the iterations count variable.
|
|
// If it is not a variable, Sema decided to calculate iterations count on each
|
|
// iteration (e.g., it is foldable into a constant).
|
|
if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
|
|
EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
|
|
// Emit calculation of the iterations count.
|
|
EmitIgnoredExpr(S.getCalcLastIteration());
|
|
}
|
|
|
|
CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
|
|
|
|
bool HasLastprivateClause = false;
|
|
// Check pre-condition.
|
|
{
|
|
OMPLoopScope PreInitScope(*this, S);
|
|
// Skip the entire loop if we don't meet the precondition.
|
|
// If the condition constant folds and can be elided, avoid emitting the
|
|
// whole loop.
|
|
bool CondConstant;
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
|
|
if (!CondConstant)
|
|
return;
|
|
} else {
|
|
llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
|
|
ContBlock = createBasicBlock("omp.precond.end");
|
|
emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
|
|
getProfileCount(&S));
|
|
EmitBlock(ThenBlock);
|
|
incrementProfileCounter(&S);
|
|
}
|
|
|
|
emitAlignedClause(*this, S);
|
|
// Emit 'then' code.
|
|
{
|
|
// Emit helper vars inits.
|
|
|
|
LValue LB = EmitOMPHelperVar(
|
|
*this, cast<DeclRefExpr>(
|
|
(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
|
|
? S.getCombinedLowerBoundVariable()
|
|
: S.getLowerBoundVariable())));
|
|
LValue UB = EmitOMPHelperVar(
|
|
*this, cast<DeclRefExpr>(
|
|
(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
|
|
? S.getCombinedUpperBoundVariable()
|
|
: S.getUpperBoundVariable())));
|
|
LValue ST =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
|
|
LValue IL =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
|
|
|
|
OMPPrivateScope LoopScope(*this);
|
|
if (EmitOMPFirstprivateClause(S, LoopScope)) {
|
|
// Emit implicit barrier to synchronize threads and avoid data races
|
|
// on initialization of firstprivate variables and post-update of
|
|
// lastprivate variables.
|
|
CGM.getOpenMPRuntime().emitBarrierCall(
|
|
*this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
|
|
/*ForceSimpleCall=*/true);
|
|
}
|
|
EmitOMPPrivateClause(S, LoopScope);
|
|
if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
|
|
!isOpenMPParallelDirective(S.getDirectiveKind()) &&
|
|
!isOpenMPTeamsDirective(S.getDirectiveKind()))
|
|
EmitOMPReductionClauseInit(S, LoopScope);
|
|
HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
|
|
EmitOMPPrivateLoopCounters(S, LoopScope);
|
|
(void)LoopScope.Privatize();
|
|
if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
|
|
CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
|
|
|
|
// Detect the distribute schedule kind and chunk.
|
|
llvm::Value *Chunk = nullptr;
|
|
OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
|
|
if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
|
|
ScheduleKind = C->getDistScheduleKind();
|
|
if (const Expr *Ch = C->getChunkSize()) {
|
|
Chunk = EmitScalarExpr(Ch);
|
|
Chunk = EmitScalarConversion(Chunk, Ch->getType(),
|
|
S.getIterationVariable()->getType(),
|
|
S.getBeginLoc());
|
|
}
|
|
} else {
|
|
// Default behaviour for dist_schedule clause.
|
|
CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk(
|
|
*this, S, ScheduleKind, Chunk);
|
|
}
|
|
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
|
|
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
|
|
|
|
// OpenMP [2.10.8, distribute Construct, Description]
|
|
// If dist_schedule is specified, kind must be static. If specified,
|
|
// iterations are divided into chunks of size chunk_size, chunks are
|
|
// assigned to the teams of the league in a round-robin fashion in the
|
|
// order of the team number. When no chunk_size is specified, the
|
|
// iteration space is divided into chunks that are approximately equal
|
|
// in size, and at most one chunk is distributed to each team of the
|
|
// league. The size of the chunks is unspecified in this case.
|
|
bool StaticChunked = RT.isStaticChunked(
|
|
ScheduleKind, /* Chunked */ Chunk != nullptr) &&
|
|
isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
|
|
if (RT.isStaticNonchunked(ScheduleKind,
|
|
/* Chunked */ Chunk != nullptr) ||
|
|
StaticChunked) {
|
|
CGOpenMPRuntime::StaticRTInput StaticInit(
|
|
IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this),
|
|
LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
|
|
StaticChunked ? Chunk : nullptr);
|
|
RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind,
|
|
StaticInit);
|
|
JumpDest LoopExit =
|
|
getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
|
|
// UB = min(UB, GlobalUB);
|
|
EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
|
|
? S.getCombinedEnsureUpperBound()
|
|
: S.getEnsureUpperBound());
|
|
// IV = LB;
|
|
EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
|
|
? S.getCombinedInit()
|
|
: S.getInit());
|
|
|
|
const Expr *Cond =
|
|
isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
|
|
? S.getCombinedCond()
|
|
: S.getCond();
|
|
|
|
if (StaticChunked)
|
|
Cond = S.getCombinedDistCond();
|
|
|
|
// For static unchunked schedules generate:
|
|
//
|
|
// 1. For distribute alone, codegen
|
|
// while (idx <= UB) {
|
|
// BODY;
|
|
// ++idx;
|
|
// }
|
|
//
|
|
// 2. When combined with 'for' (e.g. as in 'distribute parallel for')
|
|
// while (idx <= UB) {
|
|
// <CodeGen rest of pragma>(LB, UB);
|
|
// idx += ST;
|
|
// }
|
|
//
|
|
// For static chunk one schedule generate:
|
|
//
|
|
// while (IV <= GlobalUB) {
|
|
// <CodeGen rest of pragma>(LB, UB);
|
|
// LB += ST;
|
|
// UB += ST;
|
|
// UB = min(UB, GlobalUB);
|
|
// IV = LB;
|
|
// }
|
|
//
|
|
emitCommonSimdLoop(
|
|
*this, S,
|
|
[&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
if (isOpenMPSimdDirective(S.getDirectiveKind()))
|
|
CGF.EmitOMPSimdInit(S);
|
|
},
|
|
[&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop,
|
|
StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPInnerLoop(
|
|
S, LoopScope.requiresCleanups(), Cond, IncExpr,
|
|
[&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
|
|
CodeGenLoop(CGF, S, LoopExit);
|
|
},
|
|
[&S, StaticChunked](CodeGenFunction &CGF) {
|
|
if (StaticChunked) {
|
|
CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound());
|
|
CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound());
|
|
CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound());
|
|
CGF.EmitIgnoredExpr(S.getCombinedInit());
|
|
}
|
|
});
|
|
});
|
|
EmitBlock(LoopExit.getBlock());
|
|
// Tell the runtime we are done.
|
|
RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind());
|
|
} else {
|
|
// Emit the outer loop, which requests its work chunk [LB..UB] from
|
|
// runtime and runs the inner loop to process it.
|
|
const OMPLoopArguments LoopArguments = {
|
|
LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
|
|
IL.getAddress(*this), Chunk};
|
|
EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
|
|
CodeGenLoop);
|
|
}
|
|
if (isOpenMPSimdDirective(S.getDirectiveKind())) {
|
|
EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
|
|
return CGF.Builder.CreateIsNotNull(
|
|
CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
|
|
});
|
|
}
|
|
if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
|
|
!isOpenMPParallelDirective(S.getDirectiveKind()) &&
|
|
!isOpenMPTeamsDirective(S.getDirectiveKind())) {
|
|
EmitOMPReductionClauseFinal(S, OMPD_simd);
|
|
// Emit post-update of the reduction variables if IsLastIter != 0.
|
|
emitPostUpdateForReductionClause(
|
|
*this, S, [IL, &S](CodeGenFunction &CGF) {
|
|
return CGF.Builder.CreateIsNotNull(
|
|
CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
|
|
});
|
|
}
|
|
// Emit final copy of the lastprivate variables if IsLastIter != 0.
|
|
if (HasLastprivateClause) {
|
|
EmitOMPLastprivateClauseFinal(
|
|
S, /*NoFinals=*/false,
|
|
Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
|
|
}
|
|
}
|
|
|
|
// We're now done with the loop, so jump to the continuation block.
|
|
if (ContBlock) {
|
|
EmitBranch(ContBlock);
|
|
EmitBlock(ContBlock, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPDistributeDirective(
|
|
const OMPDistributeDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
|
|
};
|
|
OMPLexicalScope Scope(*this, S, OMPD_unknown);
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
|
|
}
|
|
|
|
static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
|
|
const CapturedStmt *S,
|
|
SourceLocation Loc) {
|
|
CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
|
|
CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
|
|
CGF.CapturedStmtInfo = &CapStmtInfo;
|
|
llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc);
|
|
Fn->setDoesNotRecurse();
|
|
return Fn;
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
|
|
if (S.hasClausesOfKind<OMPDependClause>()) {
|
|
assert(!S.hasAssociatedStmt() &&
|
|
"No associated statement must be in ordered depend construct.");
|
|
for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
|
|
CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
|
|
return;
|
|
}
|
|
const auto *C = S.getSingleClause<OMPSIMDClause>();
|
|
auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
const CapturedStmt *CS = S.getInnermostCapturedStmt();
|
|
if (C) {
|
|
llvm::SmallVector<llvm::Value *, 16> CapturedVars;
|
|
CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
|
|
llvm::Function *OutlinedFn =
|
|
emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc());
|
|
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
|
|
OutlinedFn, CapturedVars);
|
|
} else {
|
|
Action.Enter(CGF);
|
|
CGF.EmitStmt(CS->getCapturedStmt());
|
|
}
|
|
};
|
|
OMPLexicalScope Scope(*this, S, OMPD_unknown);
|
|
CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C);
|
|
}
|
|
|
|
static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
|
|
QualType SrcType, QualType DestType,
|
|
SourceLocation Loc) {
|
|
assert(CGF.hasScalarEvaluationKind(DestType) &&
|
|
"DestType must have scalar evaluation kind.");
|
|
assert(!Val.isAggregate() && "Must be a scalar or complex.");
|
|
return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
|
|
DestType, Loc)
|
|
: CGF.EmitComplexToScalarConversion(
|
|
Val.getComplexVal(), SrcType, DestType, Loc);
|
|
}
|
|
|
|
static CodeGenFunction::ComplexPairTy
|
|
convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
|
|
QualType DestType, SourceLocation Loc) {
|
|
assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
|
|
"DestType must have complex evaluation kind.");
|
|
CodeGenFunction::ComplexPairTy ComplexVal;
|
|
if (Val.isScalar()) {
|
|
// Convert the input element to the element type of the complex.
|
|
QualType DestElementType =
|
|
DestType->castAs<ComplexType>()->getElementType();
|
|
llvm::Value *ScalarVal = CGF.EmitScalarConversion(
|
|
Val.getScalarVal(), SrcType, DestElementType, Loc);
|
|
ComplexVal = CodeGenFunction::ComplexPairTy(
|
|
ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
|
|
} else {
|
|
assert(Val.isComplex() && "Must be a scalar or complex.");
|
|
QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
|
|
QualType DestElementType =
|
|
DestType->castAs<ComplexType>()->getElementType();
|
|
ComplexVal.first = CGF.EmitScalarConversion(
|
|
Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
|
|
ComplexVal.second = CGF.EmitScalarConversion(
|
|
Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
|
|
}
|
|
return ComplexVal;
|
|
}
|
|
|
|
static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
|
|
LValue LVal, RValue RVal) {
|
|
if (LVal.isGlobalReg())
|
|
CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
|
|
else
|
|
CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false);
|
|
}
|
|
|
|
static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF,
|
|
llvm::AtomicOrdering AO, LValue LVal,
|
|
SourceLocation Loc) {
|
|
if (LVal.isGlobalReg())
|
|
return CGF.EmitLoadOfLValue(LVal, Loc);
|
|
return CGF.EmitAtomicLoad(
|
|
LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO),
|
|
LVal.isVolatile());
|
|
}
|
|
|
|
void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
|
|
QualType RValTy, SourceLocation Loc) {
|
|
switch (getEvaluationKind(LVal.getType())) {
|
|
case TEK_Scalar:
|
|
EmitStoreThroughLValue(RValue::get(convertToScalarValue(
|
|
*this, RVal, RValTy, LVal.getType(), Loc)),
|
|
LVal);
|
|
break;
|
|
case TEK_Complex:
|
|
EmitStoreOfComplex(
|
|
convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
|
|
/*isInit=*/false);
|
|
break;
|
|
case TEK_Aggregate:
|
|
llvm_unreachable("Must be a scalar or complex.");
|
|
}
|
|
}
|
|
|
|
static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
|
|
const Expr *X, const Expr *V,
|
|
SourceLocation Loc) {
|
|
// v = x;
|
|
assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
|
|
assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
LValue VLValue = CGF.EmitLValue(V);
|
|
RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc);
|
|
// OpenMP, 2.17.7, atomic Construct
|
|
// If the read or capture clause is specified and the acquire, acq_rel, or
|
|
// seq_cst clause is specified then the strong flush on exit from the atomic
|
|
// operation is also an acquire flush.
|
|
switch (AO) {
|
|
case llvm::AtomicOrdering::Acquire:
|
|
case llvm::AtomicOrdering::AcquireRelease:
|
|
case llvm::AtomicOrdering::SequentiallyConsistent:
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
|
|
llvm::AtomicOrdering::Acquire);
|
|
break;
|
|
case llvm::AtomicOrdering::Monotonic:
|
|
case llvm::AtomicOrdering::Release:
|
|
break;
|
|
case llvm::AtomicOrdering::NotAtomic:
|
|
case llvm::AtomicOrdering::Unordered:
|
|
llvm_unreachable("Unexpected ordering.");
|
|
}
|
|
CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
|
|
}
|
|
|
|
static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF,
|
|
llvm::AtomicOrdering AO, const Expr *X,
|
|
const Expr *E, SourceLocation Loc) {
|
|
// x = expr;
|
|
assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
|
|
emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
|
|
// OpenMP, 2.17.7, atomic Construct
|
|
// If the write, update, or capture clause is specified and the release,
|
|
// acq_rel, or seq_cst clause is specified then the strong flush on entry to
|
|
// the atomic operation is also a release flush.
|
|
switch (AO) {
|
|
case llvm::AtomicOrdering::Release:
|
|
case llvm::AtomicOrdering::AcquireRelease:
|
|
case llvm::AtomicOrdering::SequentiallyConsistent:
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
|
|
llvm::AtomicOrdering::Release);
|
|
break;
|
|
case llvm::AtomicOrdering::Acquire:
|
|
case llvm::AtomicOrdering::Monotonic:
|
|
break;
|
|
case llvm::AtomicOrdering::NotAtomic:
|
|
case llvm::AtomicOrdering::Unordered:
|
|
llvm_unreachable("Unexpected ordering.");
|
|
}
|
|
}
|
|
|
|
static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
|
|
RValue Update,
|
|
BinaryOperatorKind BO,
|
|
llvm::AtomicOrdering AO,
|
|
bool IsXLHSInRHSPart) {
|
|
ASTContext &Context = CGF.getContext();
|
|
// Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
|
|
// expression is simple and atomic is allowed for the given type for the
|
|
// target platform.
|
|
if (BO == BO_Comma || !Update.isScalar() ||
|
|
!Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() ||
|
|
(!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
|
|
(Update.getScalarVal()->getType() !=
|
|
X.getAddress(CGF).getElementType())) ||
|
|
!X.getAddress(CGF).getElementType()->isIntegerTy() ||
|
|
!Context.getTargetInfo().hasBuiltinAtomic(
|
|
Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
|
|
return std::make_pair(false, RValue::get(nullptr));
|
|
|
|
llvm::AtomicRMWInst::BinOp RMWOp;
|
|
switch (BO) {
|
|
case BO_Add:
|
|
RMWOp = llvm::AtomicRMWInst::Add;
|
|
break;
|
|
case BO_Sub:
|
|
if (!IsXLHSInRHSPart)
|
|
return std::make_pair(false, RValue::get(nullptr));
|
|
RMWOp = llvm::AtomicRMWInst::Sub;
|
|
break;
|
|
case BO_And:
|
|
RMWOp = llvm::AtomicRMWInst::And;
|
|
break;
|
|
case BO_Or:
|
|
RMWOp = llvm::AtomicRMWInst::Or;
|
|
break;
|
|
case BO_Xor:
|
|
RMWOp = llvm::AtomicRMWInst::Xor;
|
|
break;
|
|
case BO_LT:
|
|
RMWOp = X.getType()->hasSignedIntegerRepresentation()
|
|
? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
|
|
: llvm::AtomicRMWInst::Max)
|
|
: (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
|
|
: llvm::AtomicRMWInst::UMax);
|
|
break;
|
|
case BO_GT:
|
|
RMWOp = X.getType()->hasSignedIntegerRepresentation()
|
|
? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
|
|
: llvm::AtomicRMWInst::Min)
|
|
: (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
|
|
: llvm::AtomicRMWInst::UMin);
|
|
break;
|
|
case BO_Assign:
|
|
RMWOp = llvm::AtomicRMWInst::Xchg;
|
|
break;
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_Rem:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
return std::make_pair(false, RValue::get(nullptr));
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
case BO_Cmp:
|
|
case BO_AddAssign:
|
|
case BO_SubAssign:
|
|
case BO_AndAssign:
|
|
case BO_OrAssign:
|
|
case BO_XorAssign:
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_RemAssign:
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
case BO_Comma:
|
|
llvm_unreachable("Unsupported atomic update operation");
|
|
}
|
|
llvm::Value *UpdateVal = Update.getScalarVal();
|
|
if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
|
|
UpdateVal = CGF.Builder.CreateIntCast(
|
|
IC, X.getAddress(CGF).getElementType(),
|
|
X.getType()->hasSignedIntegerRepresentation());
|
|
}
|
|
llvm::Value *Res =
|
|
CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO);
|
|
return std::make_pair(true, RValue::get(Res));
|
|
}
|
|
|
|
std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
|
|
LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
|
|
llvm::AtomicOrdering AO, SourceLocation Loc,
|
|
const llvm::function_ref<RValue(RValue)> CommonGen) {
|
|
// Update expressions are allowed to have the following forms:
|
|
// x binop= expr; -> xrval + expr;
|
|
// x++, ++x -> xrval + 1;
|
|
// x--, --x -> xrval - 1;
|
|
// x = x binop expr; -> xrval binop expr
|
|
// x = expr Op x; - > expr binop xrval;
|
|
auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
|
|
if (!Res.first) {
|
|
if (X.isGlobalReg()) {
|
|
// Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
|
|
// 'xrval'.
|
|
EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
|
|
} else {
|
|
// Perform compare-and-swap procedure.
|
|
EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
|
|
}
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF,
|
|
llvm::AtomicOrdering AO, const Expr *X,
|
|
const Expr *E, const Expr *UE,
|
|
bool IsXLHSInRHSPart, SourceLocation Loc) {
|
|
assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
|
|
"Update expr in 'atomic update' must be a binary operator.");
|
|
const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
|
|
// Update expressions are allowed to have the following forms:
|
|
// x binop= expr; -> xrval + expr;
|
|
// x++, ++x -> xrval + 1;
|
|
// x--, --x -> xrval - 1;
|
|
// x = x binop expr; -> xrval binop expr
|
|
// x = expr Op x; - > expr binop xrval;
|
|
assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
RValue ExprRValue = CGF.EmitAnyExpr(E);
|
|
const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
|
|
const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
|
|
const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
|
|
const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
|
|
auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
|
|
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
|
|
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
|
|
return CGF.EmitAnyExpr(UE);
|
|
};
|
|
(void)CGF.EmitOMPAtomicSimpleUpdateExpr(
|
|
XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
|
|
// OpenMP, 2.17.7, atomic Construct
|
|
// If the write, update, or capture clause is specified and the release,
|
|
// acq_rel, or seq_cst clause is specified then the strong flush on entry to
|
|
// the atomic operation is also a release flush.
|
|
switch (AO) {
|
|
case llvm::AtomicOrdering::Release:
|
|
case llvm::AtomicOrdering::AcquireRelease:
|
|
case llvm::AtomicOrdering::SequentiallyConsistent:
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
|
|
llvm::AtomicOrdering::Release);
|
|
break;
|
|
case llvm::AtomicOrdering::Acquire:
|
|
case llvm::AtomicOrdering::Monotonic:
|
|
break;
|
|
case llvm::AtomicOrdering::NotAtomic:
|
|
case llvm::AtomicOrdering::Unordered:
|
|
llvm_unreachable("Unexpected ordering.");
|
|
}
|
|
}
|
|
|
|
static RValue convertToType(CodeGenFunction &CGF, RValue Value,
|
|
QualType SourceType, QualType ResType,
|
|
SourceLocation Loc) {
|
|
switch (CGF.getEvaluationKind(ResType)) {
|
|
case TEK_Scalar:
|
|
return RValue::get(
|
|
convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
|
|
case TEK_Complex: {
|
|
auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
|
|
return RValue::getComplex(Res.first, Res.second);
|
|
}
|
|
case TEK_Aggregate:
|
|
break;
|
|
}
|
|
llvm_unreachable("Must be a scalar or complex.");
|
|
}
|
|
|
|
static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF,
|
|
llvm::AtomicOrdering AO,
|
|
bool IsPostfixUpdate, const Expr *V,
|
|
const Expr *X, const Expr *E,
|
|
const Expr *UE, bool IsXLHSInRHSPart,
|
|
SourceLocation Loc) {
|
|
assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
|
|
assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
|
|
RValue NewVVal;
|
|
LValue VLValue = CGF.EmitLValue(V);
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
RValue ExprRValue = CGF.EmitAnyExpr(E);
|
|
QualType NewVValType;
|
|
if (UE) {
|
|
// 'x' is updated with some additional value.
|
|
assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
|
|
"Update expr in 'atomic capture' must be a binary operator.");
|
|
const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
|
|
// Update expressions are allowed to have the following forms:
|
|
// x binop= expr; -> xrval + expr;
|
|
// x++, ++x -> xrval + 1;
|
|
// x--, --x -> xrval - 1;
|
|
// x = x binop expr; -> xrval binop expr
|
|
// x = expr Op x; - > expr binop xrval;
|
|
const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
|
|
const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
|
|
const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
|
|
NewVValType = XRValExpr->getType();
|
|
const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
|
|
auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
|
|
IsPostfixUpdate](RValue XRValue) {
|
|
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
|
|
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
|
|
RValue Res = CGF.EmitAnyExpr(UE);
|
|
NewVVal = IsPostfixUpdate ? XRValue : Res;
|
|
return Res;
|
|
};
|
|
auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
|
|
XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
|
|
if (Res.first) {
|
|
// 'atomicrmw' instruction was generated.
|
|
if (IsPostfixUpdate) {
|
|
// Use old value from 'atomicrmw'.
|
|
NewVVal = Res.second;
|
|
} else {
|
|
// 'atomicrmw' does not provide new value, so evaluate it using old
|
|
// value of 'x'.
|
|
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
|
|
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
|
|
NewVVal = CGF.EmitAnyExpr(UE);
|
|
}
|
|
}
|
|
} else {
|
|
// 'x' is simply rewritten with some 'expr'.
|
|
NewVValType = X->getType().getNonReferenceType();
|
|
ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
|
|
X->getType().getNonReferenceType(), Loc);
|
|
auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
|
|
NewVVal = XRValue;
|
|
return ExprRValue;
|
|
};
|
|
// Try to perform atomicrmw xchg, otherwise simple exchange.
|
|
auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
|
|
XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
|
|
Loc, Gen);
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
|
|
if (Res.first) {
|
|
// 'atomicrmw' instruction was generated.
|
|
NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
|
|
}
|
|
}
|
|
// Emit post-update store to 'v' of old/new 'x' value.
|
|
CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
|
|
// OpenMP, 2.17.7, atomic Construct
|
|
// If the write, update, or capture clause is specified and the release,
|
|
// acq_rel, or seq_cst clause is specified then the strong flush on entry to
|
|
// the atomic operation is also a release flush.
|
|
// If the read or capture clause is specified and the acquire, acq_rel, or
|
|
// seq_cst clause is specified then the strong flush on exit from the atomic
|
|
// operation is also an acquire flush.
|
|
switch (AO) {
|
|
case llvm::AtomicOrdering::Release:
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
|
|
llvm::AtomicOrdering::Release);
|
|
break;
|
|
case llvm::AtomicOrdering::Acquire:
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
|
|
llvm::AtomicOrdering::Acquire);
|
|
break;
|
|
case llvm::AtomicOrdering::AcquireRelease:
|
|
case llvm::AtomicOrdering::SequentiallyConsistent:
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
|
|
llvm::AtomicOrdering::AcquireRelease);
|
|
break;
|
|
case llvm::AtomicOrdering::Monotonic:
|
|
break;
|
|
case llvm::AtomicOrdering::NotAtomic:
|
|
case llvm::AtomicOrdering::Unordered:
|
|
llvm_unreachable("Unexpected ordering.");
|
|
}
|
|
}
|
|
|
|
static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
|
|
llvm::AtomicOrdering AO, bool IsPostfixUpdate,
|
|
const Expr *X, const Expr *V, const Expr *E,
|
|
const Expr *UE, bool IsXLHSInRHSPart,
|
|
SourceLocation Loc) {
|
|
switch (Kind) {
|
|
case OMPC_read:
|
|
emitOMPAtomicReadExpr(CGF, AO, X, V, Loc);
|
|
break;
|
|
case OMPC_write:
|
|
emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc);
|
|
break;
|
|
case OMPC_unknown:
|
|
case OMPC_update:
|
|
emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc);
|
|
break;
|
|
case OMPC_capture:
|
|
emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE,
|
|
IsXLHSInRHSPart, Loc);
|
|
break;
|
|
case OMPC_if:
|
|
case OMPC_final:
|
|
case OMPC_num_threads:
|
|
case OMPC_private:
|
|
case OMPC_firstprivate:
|
|
case OMPC_lastprivate:
|
|
case OMPC_reduction:
|
|
case OMPC_task_reduction:
|
|
case OMPC_in_reduction:
|
|
case OMPC_safelen:
|
|
case OMPC_simdlen:
|
|
case OMPC_sizes:
|
|
case OMPC_full:
|
|
case OMPC_partial:
|
|
case OMPC_allocator:
|
|
case OMPC_allocate:
|
|
case OMPC_collapse:
|
|
case OMPC_default:
|
|
case OMPC_seq_cst:
|
|
case OMPC_acq_rel:
|
|
case OMPC_acquire:
|
|
case OMPC_release:
|
|
case OMPC_relaxed:
|
|
case OMPC_shared:
|
|
case OMPC_linear:
|
|
case OMPC_aligned:
|
|
case OMPC_copyin:
|
|
case OMPC_copyprivate:
|
|
case OMPC_flush:
|
|
case OMPC_depobj:
|
|
case OMPC_proc_bind:
|
|
case OMPC_schedule:
|
|
case OMPC_ordered:
|
|
case OMPC_nowait:
|
|
case OMPC_untied:
|
|
case OMPC_threadprivate:
|
|
case OMPC_depend:
|
|
case OMPC_mergeable:
|
|
case OMPC_device:
|
|
case OMPC_threads:
|
|
case OMPC_simd:
|
|
case OMPC_map:
|
|
case OMPC_num_teams:
|
|
case OMPC_thread_limit:
|
|
case OMPC_priority:
|
|
case OMPC_grainsize:
|
|
case OMPC_nogroup:
|
|
case OMPC_num_tasks:
|
|
case OMPC_hint:
|
|
case OMPC_dist_schedule:
|
|
case OMPC_defaultmap:
|
|
case OMPC_uniform:
|
|
case OMPC_to:
|
|
case OMPC_from:
|
|
case OMPC_use_device_ptr:
|
|
case OMPC_use_device_addr:
|
|
case OMPC_is_device_ptr:
|
|
case OMPC_unified_address:
|
|
case OMPC_unified_shared_memory:
|
|
case OMPC_reverse_offload:
|
|
case OMPC_dynamic_allocators:
|
|
case OMPC_atomic_default_mem_order:
|
|
case OMPC_device_type:
|
|
case OMPC_match:
|
|
case OMPC_nontemporal:
|
|
case OMPC_order:
|
|
case OMPC_destroy:
|
|
case OMPC_detach:
|
|
case OMPC_inclusive:
|
|
case OMPC_exclusive:
|
|
case OMPC_uses_allocators:
|
|
case OMPC_affinity:
|
|
case OMPC_init:
|
|
case OMPC_inbranch:
|
|
case OMPC_notinbranch:
|
|
case OMPC_link:
|
|
case OMPC_use:
|
|
case OMPC_novariants:
|
|
case OMPC_nocontext:
|
|
case OMPC_filter:
|
|
llvm_unreachable("Clause is not allowed in 'omp atomic'.");
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
|
|
llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic;
|
|
bool MemOrderingSpecified = false;
|
|
if (S.getSingleClause<OMPSeqCstClause>()) {
|
|
AO = llvm::AtomicOrdering::SequentiallyConsistent;
|
|
MemOrderingSpecified = true;
|
|
} else if (S.getSingleClause<OMPAcqRelClause>()) {
|
|
AO = llvm::AtomicOrdering::AcquireRelease;
|
|
MemOrderingSpecified = true;
|
|
} else if (S.getSingleClause<OMPAcquireClause>()) {
|
|
AO = llvm::AtomicOrdering::Acquire;
|
|
MemOrderingSpecified = true;
|
|
} else if (S.getSingleClause<OMPReleaseClause>()) {
|
|
AO = llvm::AtomicOrdering::Release;
|
|
MemOrderingSpecified = true;
|
|
} else if (S.getSingleClause<OMPRelaxedClause>()) {
|
|
AO = llvm::AtomicOrdering::Monotonic;
|
|
MemOrderingSpecified = true;
|
|
}
|
|
OpenMPClauseKind Kind = OMPC_unknown;
|
|
for (const OMPClause *C : S.clauses()) {
|
|
// Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause,
|
|
// if it is first).
|
|
if (C->getClauseKind() != OMPC_seq_cst &&
|
|
C->getClauseKind() != OMPC_acq_rel &&
|
|
C->getClauseKind() != OMPC_acquire &&
|
|
C->getClauseKind() != OMPC_release &&
|
|
C->getClauseKind() != OMPC_relaxed && C->getClauseKind() != OMPC_hint) {
|
|
Kind = C->getClauseKind();
|
|
break;
|
|
}
|
|
}
|
|
if (!MemOrderingSpecified) {
|
|
llvm::AtomicOrdering DefaultOrder =
|
|
CGM.getOpenMPRuntime().getDefaultMemoryOrdering();
|
|
if (DefaultOrder == llvm::AtomicOrdering::Monotonic ||
|
|
DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent ||
|
|
(DefaultOrder == llvm::AtomicOrdering::AcquireRelease &&
|
|
Kind == OMPC_capture)) {
|
|
AO = DefaultOrder;
|
|
} else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) {
|
|
if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) {
|
|
AO = llvm::AtomicOrdering::Release;
|
|
} else if (Kind == OMPC_read) {
|
|
assert(Kind == OMPC_read && "Unexpected atomic kind.");
|
|
AO = llvm::AtomicOrdering::Acquire;
|
|
}
|
|
}
|
|
}
|
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
EmitStopPoint(S.getAssociatedStmt());
|
|
emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(),
|
|
S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(),
|
|
S.getBeginLoc());
|
|
}
|
|
|
|
static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &S,
|
|
const RegionCodeGenTy &CodeGen) {
|
|
assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
|
|
CodeGenModule &CGM = CGF.CGM;
|
|
|
|
// On device emit this construct as inlined code.
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
OMPLexicalScope Scope(CGF, S, OMPD_target);
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(
|
|
CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
|
|
});
|
|
return;
|
|
}
|
|
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S);
|
|
llvm::Function *Fn = nullptr;
|
|
llvm::Constant *FnID = nullptr;
|
|
|
|
const Expr *IfCond = nullptr;
|
|
// Check for the at most one if clause associated with the target region.
|
|
for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
|
|
if (C->getNameModifier() == OMPD_unknown ||
|
|
C->getNameModifier() == OMPD_target) {
|
|
IfCond = C->getCondition();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check if we have any device clause associated with the directive.
|
|
llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device(
|
|
nullptr, OMPC_DEVICE_unknown);
|
|
if (auto *C = S.getSingleClause<OMPDeviceClause>())
|
|
Device.setPointerAndInt(C->getDevice(), C->getModifier());
|
|
|
|
// Check if we have an if clause whose conditional always evaluates to false
|
|
// or if we do not have any targets specified. If so the target region is not
|
|
// an offload entry point.
|
|
bool IsOffloadEntry = true;
|
|
if (IfCond) {
|
|
bool Val;
|
|
if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
|
|
IsOffloadEntry = false;
|
|
}
|
|
if (CGM.getLangOpts().OMPTargetTriples.empty())
|
|
IsOffloadEntry = false;
|
|
|
|
assert(CGF.CurFuncDecl && "No parent declaration for target region!");
|
|
StringRef ParentName;
|
|
// In case we have Ctors/Dtors we use the complete type variant to produce
|
|
// the mangling of the device outlined kernel.
|
|
if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
|
|
ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
|
|
else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
|
|
ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
|
|
else
|
|
ParentName =
|
|
CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
|
|
|
|
// Emit target region as a standalone region.
|
|
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
|
|
IsOffloadEntry, CodeGen);
|
|
OMPLexicalScope Scope(CGF, S, OMPD_task);
|
|
auto &&SizeEmitter =
|
|
[IsOffloadEntry](CodeGenFunction &CGF,
|
|
const OMPLoopDirective &D) -> llvm::Value * {
|
|
if (IsOffloadEntry) {
|
|
OMPLoopScope(CGF, D);
|
|
// Emit calculation of the iterations count.
|
|
llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations());
|
|
NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty,
|
|
/*isSigned=*/false);
|
|
return NumIterations;
|
|
}
|
|
return nullptr;
|
|
};
|
|
CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device,
|
|
SizeEmitter);
|
|
}
|
|
|
|
static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
(void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
|
|
CGF.EmitOMPPrivateClause(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
|
|
CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
|
|
|
|
CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
|
|
CGF.EnsureInsertPoint();
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
|
|
StringRef ParentName,
|
|
const OMPTargetDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetRegion(CGF, S, Action);
|
|
};
|
|
llvm::Function *Fn;
|
|
llvm::Constant *Addr;
|
|
// Emit target region as a standalone region.
|
|
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
|
|
S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
|
|
assert(Fn && Addr && "Target device function emission failed.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetRegion(CGF, S, Action);
|
|
};
|
|
emitCommonOMPTargetDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &S,
|
|
OpenMPDirectiveKind InnermostKind,
|
|
const RegionCodeGenTy &CodeGen) {
|
|
const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
|
|
llvm::Function *OutlinedFn =
|
|
CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
|
|
S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
|
|
|
|
const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
|
|
const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
|
|
if (NT || TL) {
|
|
const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
|
|
const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
|
|
S.getBeginLoc());
|
|
}
|
|
|
|
OMPTeamsScope Scope(CGF, S);
|
|
llvm::SmallVector<llvm::Value *, 16> CapturedVars;
|
|
CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
|
|
CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn,
|
|
CapturedVars);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
|
|
// Emit teams region as a standalone region.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
OMPPrivateScope PrivateScope(CGF);
|
|
(void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
|
|
CGF.EmitOMPPrivateClause(S, PrivateScope);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
|
|
};
|
|
emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
|
|
emitPostUpdateForReductionClause(*this, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
|
|
static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
|
|
const OMPTargetTeamsDirective &S) {
|
|
auto *CS = S.getCapturedStmt(OMPD_teams);
|
|
Action.Enter(CGF);
|
|
// Emit teams region as a standalone region.
|
|
auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
(void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
|
|
CGF.EmitOMPPrivateClause(S, PrivateScope);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
|
|
CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
|
|
CGF.EmitStmt(CS->getCapturedStmt());
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
|
|
};
|
|
emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
|
|
emitPostUpdateForReductionClause(CGF, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
|
|
CodeGenModule &CGM, StringRef ParentName,
|
|
const OMPTargetTeamsDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetTeamsRegion(CGF, Action, S);
|
|
};
|
|
llvm::Function *Fn;
|
|
llvm::Constant *Addr;
|
|
// Emit target region as a standalone region.
|
|
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
|
|
S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
|
|
assert(Fn && Addr && "Target device function emission failed.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetTeamsDirective(
|
|
const OMPTargetTeamsDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetTeamsRegion(CGF, Action, S);
|
|
};
|
|
emitCommonOMPTargetDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
static void
|
|
emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
|
|
const OMPTargetTeamsDistributeDirective &S) {
|
|
Action.Enter(CGF);
|
|
auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
|
|
};
|
|
|
|
// Emit teams region as a standalone region.
|
|
auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
|
|
CodeGenDistribute);
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
|
|
};
|
|
emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
|
|
emitPostUpdateForReductionClause(CGF, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
|
|
CodeGenModule &CGM, StringRef ParentName,
|
|
const OMPTargetTeamsDistributeDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetTeamsDistributeRegion(CGF, Action, S);
|
|
};
|
|
llvm::Function *Fn;
|
|
llvm::Constant *Addr;
|
|
// Emit target region as a standalone region.
|
|
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
|
|
S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
|
|
assert(Fn && Addr && "Target device function emission failed.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
|
|
const OMPTargetTeamsDistributeDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetTeamsDistributeRegion(CGF, Action, S);
|
|
};
|
|
emitCommonOMPTargetDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
static void emitTargetTeamsDistributeSimdRegion(
|
|
CodeGenFunction &CGF, PrePostActionTy &Action,
|
|
const OMPTargetTeamsDistributeSimdDirective &S) {
|
|
Action.Enter(CGF);
|
|
auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
|
|
};
|
|
|
|
// Emit teams region as a standalone region.
|
|
auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
|
|
CodeGenDistribute);
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
|
|
};
|
|
emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
|
|
emitPostUpdateForReductionClause(CGF, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
|
|
CodeGenModule &CGM, StringRef ParentName,
|
|
const OMPTargetTeamsDistributeSimdDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
|
|
};
|
|
llvm::Function *Fn;
|
|
llvm::Constant *Addr;
|
|
// Emit target region as a standalone region.
|
|
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
|
|
S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
|
|
assert(Fn && Addr && "Target device function emission failed.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
|
|
const OMPTargetTeamsDistributeSimdDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
|
|
};
|
|
emitCommonOMPTargetDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTeamsDistributeDirective(
|
|
const OMPTeamsDistributeDirective &S) {
|
|
|
|
auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
|
|
};
|
|
|
|
// Emit teams region as a standalone region.
|
|
auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
OMPPrivateScope PrivateScope(CGF);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
|
|
CodeGenDistribute);
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
|
|
};
|
|
emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
|
|
emitPostUpdateForReductionClause(*this, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
|
|
const OMPTeamsDistributeSimdDirective &S) {
|
|
auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
|
|
};
|
|
|
|
// Emit teams region as a standalone region.
|
|
auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
OMPPrivateScope PrivateScope(CGF);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
|
|
CodeGenDistribute);
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
|
|
};
|
|
emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
|
|
emitPostUpdateForReductionClause(*this, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
|
|
const OMPTeamsDistributeParallelForDirective &S) {
|
|
auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
|
|
S.getDistInc());
|
|
};
|
|
|
|
// Emit teams region as a standalone region.
|
|
auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
OMPPrivateScope PrivateScope(CGF);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
|
|
CodeGenDistribute);
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
|
|
};
|
|
emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
|
|
emitPostUpdateForReductionClause(*this, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
|
|
const OMPTeamsDistributeParallelForSimdDirective &S) {
|
|
auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
|
|
S.getDistInc());
|
|
};
|
|
|
|
// Emit teams region as a standalone region.
|
|
auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
OMPPrivateScope PrivateScope(CGF);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
|
|
CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
|
|
};
|
|
emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd,
|
|
CodeGen);
|
|
emitPostUpdateForReductionClause(*this, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
|
|
static void emitTargetTeamsDistributeParallelForRegion(
|
|
CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
|
|
S.getDistInc());
|
|
};
|
|
|
|
// Emit teams region as a standalone region.
|
|
auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
|
|
CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
|
|
};
|
|
|
|
emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
|
|
CodeGenTeams);
|
|
emitPostUpdateForReductionClause(CGF, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
|
|
CodeGenModule &CGM, StringRef ParentName,
|
|
const OMPTargetTeamsDistributeParallelForDirective &S) {
|
|
// Emit SPMD target teams distribute parallel for region as a standalone
|
|
// region.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
|
|
};
|
|
llvm::Function *Fn;
|
|
llvm::Constant *Addr;
|
|
// Emit target region as a standalone region.
|
|
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
|
|
S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
|
|
assert(Fn && Addr && "Target device function emission failed.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
|
|
const OMPTargetTeamsDistributeParallelForDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
|
|
};
|
|
emitCommonOMPTargetDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
static void emitTargetTeamsDistributeParallelForSimdRegion(
|
|
CodeGenFunction &CGF,
|
|
const OMPTargetTeamsDistributeParallelForSimdDirective &S,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
|
|
S.getDistInc());
|
|
};
|
|
|
|
// Emit teams region as a standalone region.
|
|
auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
|
|
CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
|
|
};
|
|
|
|
emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
|
|
CodeGenTeams);
|
|
emitPostUpdateForReductionClause(CGF, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
|
|
CodeGenModule &CGM, StringRef ParentName,
|
|
const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
|
|
// Emit SPMD target teams distribute parallel for simd region as a standalone
|
|
// region.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
|
|
};
|
|
llvm::Function *Fn;
|
|
llvm::Constant *Addr;
|
|
// Emit target region as a standalone region.
|
|
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
|
|
S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
|
|
assert(Fn && Addr && "Target device function emission failed.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
|
|
const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
|
|
};
|
|
emitCommonOMPTargetDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPCancellationPointDirective(
|
|
const OMPCancellationPointDirective &S) {
|
|
CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(),
|
|
S.getCancelRegion());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
|
|
const Expr *IfCond = nullptr;
|
|
for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
|
|
if (C->getNameModifier() == OMPD_unknown ||
|
|
C->getNameModifier() == OMPD_cancel) {
|
|
IfCond = C->getCondition();
|
|
break;
|
|
}
|
|
}
|
|
if (CGM.getLangOpts().OpenMPIRBuilder) {
|
|
llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
|
|
// TODO: This check is necessary as we only generate `omp parallel` through
|
|
// the OpenMPIRBuilder for now.
|
|
if (S.getCancelRegion() == OMPD_parallel ||
|
|
S.getCancelRegion() == OMPD_sections ||
|
|
S.getCancelRegion() == OMPD_section) {
|
|
llvm::Value *IfCondition = nullptr;
|
|
if (IfCond)
|
|
IfCondition = EmitScalarExpr(IfCond,
|
|
/*IgnoreResultAssign=*/true);
|
|
return Builder.restoreIP(
|
|
OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion()));
|
|
}
|
|
}
|
|
|
|
CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond,
|
|
S.getCancelRegion());
|
|
}
|
|
|
|
CodeGenFunction::JumpDest
|
|
CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
|
|
if (Kind == OMPD_parallel || Kind == OMPD_task ||
|
|
Kind == OMPD_target_parallel || Kind == OMPD_taskloop ||
|
|
Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop)
|
|
return ReturnBlock;
|
|
assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
|
|
Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
|
|
Kind == OMPD_distribute_parallel_for ||
|
|
Kind == OMPD_target_parallel_for ||
|
|
Kind == OMPD_teams_distribute_parallel_for ||
|
|
Kind == OMPD_target_teams_distribute_parallel_for);
|
|
return OMPCancelStack.getExitBlock();
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPUseDevicePtrClause(
|
|
const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
|
|
const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
|
|
auto OrigVarIt = C.varlist_begin();
|
|
auto InitIt = C.inits().begin();
|
|
for (const Expr *PvtVarIt : C.private_copies()) {
|
|
const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
|
|
const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
|
|
const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
|
|
|
|
// In order to identify the right initializer we need to match the
|
|
// declaration used by the mapping logic. In some cases we may get
|
|
// OMPCapturedExprDecl that refers to the original declaration.
|
|
const ValueDecl *MatchingVD = OrigVD;
|
|
if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
|
|
// OMPCapturedExprDecl are used to privative fields of the current
|
|
// structure.
|
|
const auto *ME = cast<MemberExpr>(OED->getInit());
|
|
assert(isa<CXXThisExpr>(ME->getBase()) &&
|
|
"Base should be the current struct!");
|
|
MatchingVD = ME->getMemberDecl();
|
|
}
|
|
|
|
// If we don't have information about the current list item, move on to
|
|
// the next one.
|
|
auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
|
|
if (InitAddrIt == CaptureDeviceAddrMap.end())
|
|
continue;
|
|
|
|
bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
|
|
InitAddrIt, InitVD,
|
|
PvtVD]() {
|
|
// Initialize the temporary initialization variable with the address we
|
|
// get from the runtime library. We have to cast the source address
|
|
// because it is always a void *. References are materialized in the
|
|
// privatization scope, so the initialization here disregards the fact
|
|
// the original variable is a reference.
|
|
QualType AddrQTy =
|
|
getContext().getPointerType(OrigVD->getType().getNonReferenceType());
|
|
llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
|
|
Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
|
|
setAddrOfLocalVar(InitVD, InitAddr);
|
|
|
|
// Emit private declaration, it will be initialized by the value we
|
|
// declaration we just added to the local declarations map.
|
|
EmitDecl(*PvtVD);
|
|
|
|
// The initialization variables reached its purpose in the emission
|
|
// of the previous declaration, so we don't need it anymore.
|
|
LocalDeclMap.erase(InitVD);
|
|
|
|
// Return the address of the private variable.
|
|
return GetAddrOfLocalVar(PvtVD);
|
|
});
|
|
assert(IsRegistered && "firstprivate var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
|
|
++OrigVarIt;
|
|
++InitIt;
|
|
}
|
|
}
|
|
|
|
static const VarDecl *getBaseDecl(const Expr *Ref) {
|
|
const Expr *Base = Ref->IgnoreParenImpCasts();
|
|
while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base))
|
|
Base = OASE->getBase()->IgnoreParenImpCasts();
|
|
while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base))
|
|
Base = ASE->getBase()->IgnoreParenImpCasts();
|
|
return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPUseDeviceAddrClause(
|
|
const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
|
|
const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
|
|
llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
|
|
for (const Expr *Ref : C.varlists()) {
|
|
const VarDecl *OrigVD = getBaseDecl(Ref);
|
|
if (!Processed.insert(OrigVD).second)
|
|
continue;
|
|
// In order to identify the right initializer we need to match the
|
|
// declaration used by the mapping logic. In some cases we may get
|
|
// OMPCapturedExprDecl that refers to the original declaration.
|
|
const ValueDecl *MatchingVD = OrigVD;
|
|
if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
|
|
// OMPCapturedExprDecl are used to privative fields of the current
|
|
// structure.
|
|
const auto *ME = cast<MemberExpr>(OED->getInit());
|
|
assert(isa<CXXThisExpr>(ME->getBase()) &&
|
|
"Base should be the current struct!");
|
|
MatchingVD = ME->getMemberDecl();
|
|
}
|
|
|
|
// If we don't have information about the current list item, move on to
|
|
// the next one.
|
|
auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
|
|
if (InitAddrIt == CaptureDeviceAddrMap.end())
|
|
continue;
|
|
|
|
Address PrivAddr = InitAddrIt->getSecond();
|
|
// For declrefs and variable length array need to load the pointer for
|
|
// correct mapping, since the pointer to the data was passed to the runtime.
|
|
if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) ||
|
|
MatchingVD->getType()->isArrayType())
|
|
PrivAddr =
|
|
EmitLoadOfPointer(PrivAddr, getContext()
|
|
.getPointerType(OrigVD->getType())
|
|
->castAs<PointerType>());
|
|
llvm::Type *RealTy =
|
|
ConvertTypeForMem(OrigVD->getType().getNonReferenceType())
|
|
->getPointerTo();
|
|
PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy);
|
|
|
|
(void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; });
|
|
}
|
|
}
|
|
|
|
// Generate the instructions for '#pragma omp target data' directive.
|
|
void CodeGenFunction::EmitOMPTargetDataDirective(
|
|
const OMPTargetDataDirective &S) {
|
|
CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true,
|
|
/*SeparateBeginEndCalls=*/true);
|
|
|
|
// Create a pre/post action to signal the privatization of the device pointer.
|
|
// This action can be replaced by the OpenMP runtime code generation to
|
|
// deactivate privatization.
|
|
bool PrivatizeDevicePointers = false;
|
|
class DevicePointerPrivActionTy : public PrePostActionTy {
|
|
bool &PrivatizeDevicePointers;
|
|
|
|
public:
|
|
explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
|
|
: PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
PrivatizeDevicePointers = true;
|
|
}
|
|
};
|
|
DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
|
|
|
|
auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
|
|
CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
|
|
};
|
|
|
|
// Codegen that selects whether to generate the privatization code or not.
|
|
auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
|
|
&InnermostCodeGen](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
RegionCodeGenTy RCG(InnermostCodeGen);
|
|
PrivatizeDevicePointers = false;
|
|
|
|
// Call the pre-action to change the status of PrivatizeDevicePointers if
|
|
// needed.
|
|
Action.Enter(CGF);
|
|
|
|
if (PrivatizeDevicePointers) {
|
|
OMPPrivateScope PrivateScope(CGF);
|
|
// Emit all instances of the use_device_ptr clause.
|
|
for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
|
|
CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
|
|
Info.CaptureDeviceAddrMap);
|
|
for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>())
|
|
CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope,
|
|
Info.CaptureDeviceAddrMap);
|
|
(void)PrivateScope.Privatize();
|
|
RCG(CGF);
|
|
} else {
|
|
OMPLexicalScope Scope(CGF, S, OMPD_unknown);
|
|
RCG(CGF);
|
|
}
|
|
};
|
|
|
|
// Forward the provided action to the privatization codegen.
|
|
RegionCodeGenTy PrivRCG(PrivCodeGen);
|
|
PrivRCG.setAction(Action);
|
|
|
|
// Notwithstanding the body of the region is emitted as inlined directive,
|
|
// we don't use an inline scope as changes in the references inside the
|
|
// region are expected to be visible outside, so we do not privative them.
|
|
OMPLexicalScope Scope(CGF, S);
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
|
|
PrivRCG);
|
|
};
|
|
|
|
RegionCodeGenTy RCG(CodeGen);
|
|
|
|
// If we don't have target devices, don't bother emitting the data mapping
|
|
// code.
|
|
if (CGM.getLangOpts().OMPTargetTriples.empty()) {
|
|
RCG(*this);
|
|
return;
|
|
}
|
|
|
|
// Check if we have any if clause associated with the directive.
|
|
const Expr *IfCond = nullptr;
|
|
if (const auto *C = S.getSingleClause<OMPIfClause>())
|
|
IfCond = C->getCondition();
|
|
|
|
// Check if we have any device clause associated with the directive.
|
|
const Expr *Device = nullptr;
|
|
if (const auto *C = S.getSingleClause<OMPDeviceClause>())
|
|
Device = C->getDevice();
|
|
|
|
// Set the action to signal privatization of device pointers.
|
|
RCG.setAction(PrivAction);
|
|
|
|
// Emit region code.
|
|
CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
|
|
Info);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetEnterDataDirective(
|
|
const OMPTargetEnterDataDirective &S) {
|
|
// If we don't have target devices, don't bother emitting the data mapping
|
|
// code.
|
|
if (CGM.getLangOpts().OMPTargetTriples.empty())
|
|
return;
|
|
|
|
// Check if we have any if clause associated with the directive.
|
|
const Expr *IfCond = nullptr;
|
|
if (const auto *C = S.getSingleClause<OMPIfClause>())
|
|
IfCond = C->getCondition();
|
|
|
|
// Check if we have any device clause associated with the directive.
|
|
const Expr *Device = nullptr;
|
|
if (const auto *C = S.getSingleClause<OMPDeviceClause>())
|
|
Device = C->getDevice();
|
|
|
|
OMPLexicalScope Scope(*this, S, OMPD_task);
|
|
CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetExitDataDirective(
|
|
const OMPTargetExitDataDirective &S) {
|
|
// If we don't have target devices, don't bother emitting the data mapping
|
|
// code.
|
|
if (CGM.getLangOpts().OMPTargetTriples.empty())
|
|
return;
|
|
|
|
// Check if we have any if clause associated with the directive.
|
|
const Expr *IfCond = nullptr;
|
|
if (const auto *C = S.getSingleClause<OMPIfClause>())
|
|
IfCond = C->getCondition();
|
|
|
|
// Check if we have any device clause associated with the directive.
|
|
const Expr *Device = nullptr;
|
|
if (const auto *C = S.getSingleClause<OMPDeviceClause>())
|
|
Device = C->getDevice();
|
|
|
|
OMPLexicalScope Scope(*this, S, OMPD_task);
|
|
CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
|
|
}
|
|
|
|
static void emitTargetParallelRegion(CodeGenFunction &CGF,
|
|
const OMPTargetParallelDirective &S,
|
|
PrePostActionTy &Action) {
|
|
// Get the captured statement associated with the 'parallel' region.
|
|
const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
|
|
Action.Enter(CGF);
|
|
auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
(void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
|
|
CGF.EmitOMPPrivateClause(S, PrivateScope);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
|
|
CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
|
|
// TODO: Add support for clauses.
|
|
CGF.EmitStmt(CS->getCapturedStmt());
|
|
CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
|
|
};
|
|
emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
|
|
emitEmptyBoundParameters);
|
|
emitPostUpdateForReductionClause(CGF, S,
|
|
[](CodeGenFunction &) { return nullptr; });
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
|
|
CodeGenModule &CGM, StringRef ParentName,
|
|
const OMPTargetParallelDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetParallelRegion(CGF, S, Action);
|
|
};
|
|
llvm::Function *Fn;
|
|
llvm::Constant *Addr;
|
|
// Emit target region as a standalone region.
|
|
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
|
|
S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
|
|
assert(Fn && Addr && "Target device function emission failed.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetParallelDirective(
|
|
const OMPTargetParallelDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetParallelRegion(CGF, S, Action);
|
|
};
|
|
emitCommonOMPTargetDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
static void emitTargetParallelForRegion(CodeGenFunction &CGF,
|
|
const OMPTargetParallelForDirective &S,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
// Emit directive as a combined directive that consists of two implicit
|
|
// directives: 'parallel' with 'for' directive.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CodeGenFunction::OMPCancelStackRAII CancelRegion(
|
|
CGF, OMPD_target_parallel_for, S.hasCancel());
|
|
CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
|
|
emitDispatchForLoopBounds);
|
|
};
|
|
emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
|
|
emitEmptyBoundParameters);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
|
|
CodeGenModule &CGM, StringRef ParentName,
|
|
const OMPTargetParallelForDirective &S) {
|
|
// Emit SPMD target parallel for region as a standalone region.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetParallelForRegion(CGF, S, Action);
|
|
};
|
|
llvm::Function *Fn;
|
|
llvm::Constant *Addr;
|
|
// Emit target region as a standalone region.
|
|
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
|
|
S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
|
|
assert(Fn && Addr && "Target device function emission failed.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetParallelForDirective(
|
|
const OMPTargetParallelForDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetParallelForRegion(CGF, S, Action);
|
|
};
|
|
emitCommonOMPTargetDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
static void
|
|
emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
|
|
const OMPTargetParallelForSimdDirective &S,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
// Emit directive as a combined directive that consists of two implicit
|
|
// directives: 'parallel' with 'for' directive.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
|
|
emitDispatchForLoopBounds);
|
|
};
|
|
emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
|
|
emitEmptyBoundParameters);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
|
|
CodeGenModule &CGM, StringRef ParentName,
|
|
const OMPTargetParallelForSimdDirective &S) {
|
|
// Emit SPMD target parallel for region as a standalone region.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetParallelForSimdRegion(CGF, S, Action);
|
|
};
|
|
llvm::Function *Fn;
|
|
llvm::Constant *Addr;
|
|
// Emit target region as a standalone region.
|
|
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
|
|
S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
|
|
assert(Fn && Addr && "Target device function emission failed.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
|
|
const OMPTargetParallelForSimdDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
emitTargetParallelForSimdRegion(CGF, S, Action);
|
|
};
|
|
emitCommonOMPTargetDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
/// Emit a helper variable and return corresponding lvalue.
|
|
static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
|
|
const ImplicitParamDecl *PVD,
|
|
CodeGenFunction::OMPPrivateScope &Privates) {
|
|
const auto *VDecl = cast<VarDecl>(Helper->getDecl());
|
|
Privates.addPrivate(VDecl,
|
|
[&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
|
|
assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
|
|
// Emit outlined function for task construct.
|
|
const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
|
|
Address CapturedStruct = Address::invalid();
|
|
{
|
|
OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false);
|
|
CapturedStruct = GenerateCapturedStmtArgument(*CS);
|
|
}
|
|
QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
|
|
const Expr *IfCond = nullptr;
|
|
for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
|
|
if (C->getNameModifier() == OMPD_unknown ||
|
|
C->getNameModifier() == OMPD_taskloop) {
|
|
IfCond = C->getCondition();
|
|
break;
|
|
}
|
|
}
|
|
|
|
OMPTaskDataTy Data;
|
|
// Check if taskloop must be emitted without taskgroup.
|
|
Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
|
|
// TODO: Check if we should emit tied or untied task.
|
|
Data.Tied = true;
|
|
// Set scheduling for taskloop
|
|
if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
|
|
// grainsize clause
|
|
Data.Schedule.setInt(/*IntVal=*/false);
|
|
Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
|
|
} else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
|
|
// num_tasks clause
|
|
Data.Schedule.setInt(/*IntVal=*/true);
|
|
Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
|
|
}
|
|
|
|
auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// if (PreCond) {
|
|
// for (IV in 0..LastIteration) BODY;
|
|
// <Final counter/linear vars updates>;
|
|
// }
|
|
//
|
|
|
|
// Emit: if (PreCond) - begin.
|
|
// If the condition constant folds and can be elided, avoid emitting the
|
|
// whole loop.
|
|
bool CondConstant;
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
OMPLoopScope PreInitScope(CGF, S);
|
|
if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
|
|
if (!CondConstant)
|
|
return;
|
|
} else {
|
|
llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
|
|
ContBlock = CGF.createBasicBlock("taskloop.if.end");
|
|
emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
|
|
CGF.getProfileCount(&S));
|
|
CGF.EmitBlock(ThenBlock);
|
|
CGF.incrementProfileCounter(&S);
|
|
}
|
|
|
|
(void)CGF.EmitOMPLinearClauseInit(S);
|
|
|
|
OMPPrivateScope LoopScope(CGF);
|
|
// Emit helper vars inits.
|
|
enum { LowerBound = 5, UpperBound, Stride, LastIter };
|
|
auto *I = CS->getCapturedDecl()->param_begin();
|
|
auto *LBP = std::next(I, LowerBound);
|
|
auto *UBP = std::next(I, UpperBound);
|
|
auto *STP = std::next(I, Stride);
|
|
auto *LIP = std::next(I, LastIter);
|
|
mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
|
|
LoopScope);
|
|
mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
|
|
LoopScope);
|
|
mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
|
|
mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
|
|
LoopScope);
|
|
CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
|
|
CGF.EmitOMPLinearClause(S, LoopScope);
|
|
bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
|
|
(void)LoopScope.Privatize();
|
|
// Emit the loop iteration variable.
|
|
const Expr *IVExpr = S.getIterationVariable();
|
|
const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
|
|
CGF.EmitVarDecl(*IVDecl);
|
|
CGF.EmitIgnoredExpr(S.getInit());
|
|
|
|
// Emit the iterations count variable.
|
|
// If it is not a variable, Sema decided to calculate iterations count on
|
|
// each iteration (e.g., it is foldable into a constant).
|
|
if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
|
|
CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
|
|
// Emit calculation of the iterations count.
|
|
CGF.EmitIgnoredExpr(S.getCalcLastIteration());
|
|
}
|
|
|
|
{
|
|
OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false);
|
|
emitCommonSimdLoop(
|
|
CGF, S,
|
|
[&S](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
if (isOpenMPSimdDirective(S.getDirectiveKind()))
|
|
CGF.EmitOMPSimdInit(S);
|
|
},
|
|
[&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGF.EmitOMPInnerLoop(
|
|
S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
|
|
[&S](CodeGenFunction &CGF) {
|
|
emitOMPLoopBodyWithStopPoint(CGF, S,
|
|
CodeGenFunction::JumpDest());
|
|
},
|
|
[](CodeGenFunction &) {});
|
|
});
|
|
}
|
|
// Emit: if (PreCond) - end.
|
|
if (ContBlock) {
|
|
CGF.EmitBranch(ContBlock);
|
|
CGF.EmitBlock(ContBlock, true);
|
|
}
|
|
// Emit final copy of the lastprivate variables if IsLastIter != 0.
|
|
if (HasLastprivateClause) {
|
|
CGF.EmitOMPLastprivateClauseFinal(
|
|
S, isOpenMPSimdDirective(S.getDirectiveKind()),
|
|
CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
|
|
CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
|
|
(*LIP)->getType(), S.getBeginLoc())));
|
|
}
|
|
CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) {
|
|
return CGF.Builder.CreateIsNotNull(
|
|
CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
|
|
(*LIP)->getType(), S.getBeginLoc()));
|
|
});
|
|
};
|
|
auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
|
|
IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
|
|
const OMPTaskDataTy &Data) {
|
|
auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
|
|
&Data](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
OMPLoopScope PreInitScope(CGF, S);
|
|
CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S,
|
|
OutlinedFn, SharedsTy,
|
|
CapturedStruct, IfCond, Data);
|
|
};
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
|
|
CodeGen);
|
|
};
|
|
if (Data.Nogroup) {
|
|
EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
|
|
} else {
|
|
CGM.getOpenMPRuntime().emitTaskgroupRegion(
|
|
*this,
|
|
[&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
|
|
Data);
|
|
},
|
|
S.getBeginLoc());
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
EmitOMPTaskLoopBasedDirective(S);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
|
|
const OMPTaskLoopSimdDirective &S) {
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
OMPLexicalScope Scope(*this, S);
|
|
EmitOMPTaskLoopBasedDirective(S);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPMasterTaskLoopDirective(
|
|
const OMPMasterTaskLoopDirective &S) {
|
|
auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
EmitOMPTaskLoopBasedDirective(S);
|
|
};
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false);
|
|
CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective(
|
|
const OMPMasterTaskLoopSimdDirective &S) {
|
|
auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
EmitOMPTaskLoopBasedDirective(S);
|
|
};
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
OMPLexicalScope Scope(*this, S);
|
|
CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective(
|
|
const OMPParallelMasterTaskLoopDirective &S) {
|
|
auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CGF.EmitOMPTaskLoopBasedDirective(S);
|
|
};
|
|
OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
|
|
CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
|
|
S.getBeginLoc());
|
|
};
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen,
|
|
emitEmptyBoundParameters);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective(
|
|
const OMPParallelMasterTaskLoopSimdDirective &S) {
|
|
auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
CGF.EmitOMPTaskLoopBasedDirective(S);
|
|
};
|
|
OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
|
|
CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
|
|
S.getBeginLoc());
|
|
};
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
|
|
emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen,
|
|
emitEmptyBoundParameters);
|
|
}
|
|
|
|
// Generate the instructions for '#pragma omp target update' directive.
|
|
void CodeGenFunction::EmitOMPTargetUpdateDirective(
|
|
const OMPTargetUpdateDirective &S) {
|
|
// If we don't have target devices, don't bother emitting the data mapping
|
|
// code.
|
|
if (CGM.getLangOpts().OMPTargetTriples.empty())
|
|
return;
|
|
|
|
// Check if we have any if clause associated with the directive.
|
|
const Expr *IfCond = nullptr;
|
|
if (const auto *C = S.getSingleClause<OMPIfClause>())
|
|
IfCond = C->getCondition();
|
|
|
|
// Check if we have any device clause associated with the directive.
|
|
const Expr *Device = nullptr;
|
|
if (const auto *C = S.getSingleClause<OMPDeviceClause>())
|
|
Device = C->getDevice();
|
|
|
|
OMPLexicalScope Scope(*this, S, OMPD_task);
|
|
CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
|
|
}
|
|
|
|
void CodeGenFunction::EmitSimpleOMPExecutableDirective(
|
|
const OMPExecutableDirective &D) {
|
|
if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) {
|
|
EmitOMPScanDirective(*SD);
|
|
return;
|
|
}
|
|
if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
|
|
return;
|
|
auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
OMPPrivateScope GlobalsScope(CGF);
|
|
if (isOpenMPTaskingDirective(D.getDirectiveKind())) {
|
|
// Capture global firstprivates to avoid crash.
|
|
for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
|
|
for (const Expr *Ref : C->varlists()) {
|
|
const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
|
|
if (!DRE)
|
|
continue;
|
|
const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
|
|
if (!VD || VD->hasLocalStorage())
|
|
continue;
|
|
if (!CGF.LocalDeclMap.count(VD)) {
|
|
LValue GlobLVal = CGF.EmitLValue(Ref);
|
|
GlobalsScope.addPrivate(
|
|
VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); });
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (isOpenMPSimdDirective(D.getDirectiveKind())) {
|
|
(void)GlobalsScope.Privatize();
|
|
ParentLoopDirectiveForScanRegion ScanRegion(CGF, D);
|
|
emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
|
|
} else {
|
|
if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
|
|
for (const Expr *E : LD->counters()) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) {
|
|
LValue GlobLVal = CGF.EmitLValue(E);
|
|
GlobalsScope.addPrivate(
|
|
VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); });
|
|
}
|
|
if (isa<OMPCapturedExprDecl>(VD)) {
|
|
// Emit only those that were not explicitly referenced in clauses.
|
|
if (!CGF.LocalDeclMap.count(VD))
|
|
CGF.EmitVarDecl(*VD);
|
|
}
|
|
}
|
|
for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) {
|
|
if (!C->getNumForLoops())
|
|
continue;
|
|
for (unsigned I = LD->getLoopsNumber(),
|
|
E = C->getLoopNumIterations().size();
|
|
I < E; ++I) {
|
|
if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
|
|
cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) {
|
|
// Emit only those that were not explicitly referenced in clauses.
|
|
if (!CGF.LocalDeclMap.count(VD))
|
|
CGF.EmitVarDecl(*VD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
(void)GlobalsScope.Privatize();
|
|
CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
|
|
}
|
|
};
|
|
if (D.getDirectiveKind() == OMPD_atomic ||
|
|
D.getDirectiveKind() == OMPD_critical ||
|
|
D.getDirectiveKind() == OMPD_section ||
|
|
D.getDirectiveKind() == OMPD_master ||
|
|
D.getDirectiveKind() == OMPD_masked) {
|
|
EmitStmt(D.getAssociatedStmt());
|
|
} else {
|
|
auto LPCRegion =
|
|
CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D);
|
|
OMPSimdLexicalScope Scope(*this, D);
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(
|
|
*this,
|
|
isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
|
|
: D.getDirectiveKind(),
|
|
CodeGen);
|
|
}
|
|
// Check for outer lastprivate conditional update.
|
|
checkForLastprivateConditionalUpdate(*this, D);
|
|
}
|