forked from OSchip/llvm-project
504 lines
20 KiB
C++
504 lines
20 KiB
C++
//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Expr nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/AST.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Miscellaneous Helper Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
|
|
/// block.
|
|
llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
|
|
const char *Name) {
|
|
return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
|
|
}
|
|
|
|
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
|
|
/// expression and compare the result against zero, returning an Int1Ty value.
|
|
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
|
|
QualType BoolTy = getContext().BoolTy;
|
|
if (!E->getType()->isComplexType())
|
|
return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
|
|
|
|
return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
|
|
}
|
|
|
|
/// EmitAnyExpr - Emit code to compute the specified expression which can have
|
|
/// any type. The result is returned as an RValue struct. If this is an
|
|
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
|
|
/// the result should be returned.
|
|
RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
|
|
bool isAggLocVolatile) {
|
|
if (!hasAggregateLLVMType(E->getType()))
|
|
return RValue::get(EmitScalarExpr(E));
|
|
else if (E->getType()->isComplexType())
|
|
return RValue::getComplex(EmitComplexExpr(E));
|
|
|
|
EmitAggExpr(E, AggLoc, isAggLocVolatile);
|
|
return RValue::getAggregate(AggLoc);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LValue Expression Emission
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EmitLValue - Emit code to compute a designator that specifies the location
|
|
/// of the expression.
|
|
///
|
|
/// This can return one of two things: a simple address or a bitfield
|
|
/// reference. In either case, the LLVM Value* in the LValue structure is
|
|
/// guaranteed to be an LLVM pointer type.
|
|
///
|
|
/// If this returns a bitfield reference, nothing about the pointee type of
|
|
/// the LLVM value is known: For example, it may not be a pointer to an
|
|
/// integer.
|
|
///
|
|
/// If this returns a normal address, and if the lvalue's C type is fixed
|
|
/// size, this method guarantees that the returned pointer type will point to
|
|
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
|
|
/// variable length type, this is not possible.
|
|
///
|
|
LValue CodeGenFunction::EmitLValue(const Expr *E) {
|
|
switch (E->getStmtClass()) {
|
|
default: {
|
|
WarnUnsupported(E, "l-value expression");
|
|
llvm::Type *Ty = llvm::PointerType::get(ConvertType(E->getType()));
|
|
return LValue::MakeAddr(llvm::UndefValue::get(Ty));
|
|
}
|
|
|
|
case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
|
|
case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
|
|
case Expr::PreDefinedExprClass:
|
|
return EmitPreDefinedLValue(cast<PreDefinedExpr>(E));
|
|
case Expr::StringLiteralClass:
|
|
return EmitStringLiteralLValue(cast<StringLiteral>(E));
|
|
|
|
case Expr::UnaryOperatorClass:
|
|
return EmitUnaryOpLValue(cast<UnaryOperator>(E));
|
|
case Expr::ArraySubscriptExprClass:
|
|
return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
|
|
case Expr::OCUVectorElementExprClass:
|
|
return EmitOCUVectorElementExpr(cast<OCUVectorElementExpr>(E));
|
|
case Expr::MemberExprClass: return EmitMemberExpr(cast<MemberExpr>(E));
|
|
}
|
|
}
|
|
|
|
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
|
|
/// this method emits the address of the lvalue, then loads the result as an
|
|
/// rvalue, returning the rvalue.
|
|
RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
|
|
if (LV.isSimple()) {
|
|
llvm::Value *Ptr = LV.getAddress();
|
|
const llvm::Type *EltTy =
|
|
cast<llvm::PointerType>(Ptr->getType())->getElementType();
|
|
|
|
// Simple scalar l-value.
|
|
if (EltTy->isFirstClassType())
|
|
return RValue::get(Builder.CreateLoad(Ptr, "tmp"));
|
|
|
|
assert(ExprType->isFunctionType() && "Unknown scalar value");
|
|
return RValue::get(Ptr);
|
|
}
|
|
|
|
if (LV.isVectorElt()) {
|
|
llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
|
|
return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
|
|
"vecext"));
|
|
}
|
|
|
|
// If this is a reference to a subset of the elements of a vector, either
|
|
// shuffle the input or extract/insert them as appropriate.
|
|
if (LV.isOCUVectorElt())
|
|
return EmitLoadOfOCUElementLValue(LV, ExprType);
|
|
|
|
assert(0 && "Bitfield ref not impl!");
|
|
//an invalid RValue, but the assert will
|
|
//ensure that this point is never reached
|
|
return RValue();
|
|
}
|
|
|
|
// If this is a reference to a subset of the elements of a vector, either
|
|
// shuffle the input or extract/insert them as appropriate.
|
|
RValue CodeGenFunction::EmitLoadOfOCUElementLValue(LValue LV,
|
|
QualType ExprType) {
|
|
llvm::Value *Vec = Builder.CreateLoad(LV.getOCUVectorAddr(), "tmp");
|
|
|
|
unsigned EncFields = LV.getOCUVectorElts();
|
|
|
|
// If the result of the expression is a non-vector type, we must be
|
|
// extracting a single element. Just codegen as an extractelement.
|
|
const VectorType *ExprVT = ExprType->getAsVectorType();
|
|
if (!ExprVT) {
|
|
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
|
|
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
|
|
return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
|
|
}
|
|
|
|
// If the source and destination have the same number of elements, use a
|
|
// vector shuffle instead of insert/extracts.
|
|
unsigned NumResultElts = ExprVT->getNumElements();
|
|
unsigned NumSourceElts =
|
|
cast<llvm::VectorType>(Vec->getType())->getNumElements();
|
|
|
|
if (NumResultElts == NumSourceElts) {
|
|
llvm::SmallVector<llvm::Constant*, 4> Mask;
|
|
for (unsigned i = 0; i != NumResultElts; ++i) {
|
|
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
|
|
Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
|
|
}
|
|
|
|
llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
|
|
Vec = Builder.CreateShuffleVector(Vec,
|
|
llvm::UndefValue::get(Vec->getType()),
|
|
MaskV, "tmp");
|
|
return RValue::get(Vec);
|
|
}
|
|
|
|
// Start out with an undef of the result type.
|
|
llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType));
|
|
|
|
// Extract/Insert each element of the result.
|
|
for (unsigned i = 0; i != NumResultElts; ++i) {
|
|
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
|
|
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
|
|
Elt = Builder.CreateExtractElement(Vec, Elt, "tmp");
|
|
|
|
llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
|
|
Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp");
|
|
}
|
|
|
|
return RValue::get(Result);
|
|
}
|
|
|
|
|
|
|
|
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
|
|
/// lvalue, where both are guaranteed to the have the same type, and that type
|
|
/// is 'Ty'.
|
|
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
|
|
QualType Ty) {
|
|
if (!Dst.isSimple()) {
|
|
if (Dst.isVectorElt()) {
|
|
// Read/modify/write the vector, inserting the new element.
|
|
// FIXME: Volatility.
|
|
llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
|
|
Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
|
|
Dst.getVectorIdx(), "vecins");
|
|
Builder.CreateStore(Vec, Dst.getVectorAddr());
|
|
return;
|
|
}
|
|
|
|
// If this is an update of elements of a vector, insert them as appropriate.
|
|
if (Dst.isOCUVectorElt())
|
|
return EmitStoreThroughOCUComponentLValue(Src, Dst, Ty);
|
|
|
|
assert(0 && "FIXME: Don't support store to bitfield yet");
|
|
}
|
|
|
|
llvm::Value *DstAddr = Dst.getAddress();
|
|
assert(Src.isScalar() && "Can't emit an agg store with this method");
|
|
// FIXME: Handle volatility etc.
|
|
const llvm::Type *SrcTy = Src.getScalarVal()->getType();
|
|
const llvm::Type *AddrTy =
|
|
cast<llvm::PointerType>(DstAddr->getType())->getElementType();
|
|
|
|
if (AddrTy != SrcTy)
|
|
DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy),
|
|
"storetmp");
|
|
Builder.CreateStore(Src.getScalarVal(), DstAddr);
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreThroughOCUComponentLValue(RValue Src, LValue Dst,
|
|
QualType Ty) {
|
|
// This access turns into a read/modify/write of the vector. Load the input
|
|
// value now.
|
|
llvm::Value *Vec = Builder.CreateLoad(Dst.getOCUVectorAddr(), "tmp");
|
|
// FIXME: Volatility.
|
|
unsigned EncFields = Dst.getOCUVectorElts();
|
|
|
|
llvm::Value *SrcVal = Src.getScalarVal();
|
|
|
|
if (const VectorType *VTy = Ty->getAsVectorType()) {
|
|
unsigned NumSrcElts = VTy->getNumElements();
|
|
|
|
// Extract/Insert each element.
|
|
for (unsigned i = 0; i != NumSrcElts; ++i) {
|
|
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
|
|
Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp");
|
|
|
|
unsigned Idx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
|
|
llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx);
|
|
Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp");
|
|
}
|
|
} else {
|
|
// If the Src is a scalar (not a vector) it must be updating one element.
|
|
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
|
|
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
|
|
Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
|
|
}
|
|
|
|
Builder.CreateStore(Vec, Dst.getOCUVectorAddr());
|
|
}
|
|
|
|
|
|
LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
|
|
const ValueDecl *D = E->getDecl();
|
|
if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
|
|
llvm::Value *V = LocalDeclMap[D];
|
|
assert(V && "BlockVarDecl not entered in LocalDeclMap?");
|
|
return LValue::MakeAddr(V);
|
|
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
return LValue::MakeAddr(CGM.GetAddrOfFunctionDecl(FD, false));
|
|
} else if (const FileVarDecl *FVD = dyn_cast<FileVarDecl>(D)) {
|
|
return LValue::MakeAddr(CGM.GetAddrOfFileVarDecl(FVD, false));
|
|
}
|
|
assert(0 && "Unimp declref");
|
|
//an invalid LValue, but the assert will
|
|
//ensure that this point is never reached.
|
|
return LValue();
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
|
|
// __extension__ doesn't affect lvalue-ness.
|
|
if (E->getOpcode() == UnaryOperator::Extension)
|
|
return EmitLValue(E->getSubExpr());
|
|
|
|
switch (E->getOpcode()) {
|
|
default: assert(0 && "Unknown unary operator lvalue!");
|
|
case UnaryOperator::Deref:
|
|
return LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()));
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag:
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
|
|
llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty,
|
|
E->getOpcode() == UnaryOperator::Imag);
|
|
llvm::Value *Ops[] = {Zero, Idx};
|
|
return LValue::MakeAddr(Builder.CreateGEP(LV.getAddress(), Ops, Ops+2,
|
|
"idx"));
|
|
}
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
|
|
assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
|
|
const char *StrData = E->getStrData();
|
|
unsigned Len = E->getByteLength();
|
|
std::string StringLiteral(StrData, StrData+Len);
|
|
return LValue::MakeAddr(CGM.GetAddrOfConstantString(StringLiteral));
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) {
|
|
std::string FunctionName(CurFuncDecl->getName());
|
|
std::string GlobalVarName;
|
|
|
|
switch (E->getIdentType()) {
|
|
default:
|
|
assert(0 && "unknown pre-defined ident type");
|
|
case PreDefinedExpr::Func:
|
|
GlobalVarName = "__func__.";
|
|
break;
|
|
case PreDefinedExpr::Function:
|
|
GlobalVarName = "__FUNCTION__.";
|
|
break;
|
|
case PreDefinedExpr::PrettyFunction:
|
|
// FIXME:: Demangle C++ method names
|
|
GlobalVarName = "__PRETTY_FUNCTION__.";
|
|
break;
|
|
}
|
|
|
|
GlobalVarName += CurFuncDecl->getName();
|
|
|
|
// FIXME: Can cache/reuse these within the module.
|
|
llvm::Constant *C=llvm::ConstantArray::get(FunctionName);
|
|
|
|
// Create a global variable for this.
|
|
C = new llvm::GlobalVariable(C->getType(), true,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
C, GlobalVarName, CurFn->getParent());
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
|
|
llvm::Constant *Zeros[] = { Zero, Zero };
|
|
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
|
|
return LValue::MakeAddr(C);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
|
|
// The index must always be an integer, which is not an aggregate. Emit it.
|
|
llvm::Value *Idx = EmitScalarExpr(E->getIdx());
|
|
|
|
// If the base is a vector type, then we are forming a vector element lvalue
|
|
// with this subscript.
|
|
if (E->getLHS()->getType()->isVectorType()) {
|
|
// Emit the vector as an lvalue to get its address.
|
|
LValue LHS = EmitLValue(E->getLHS());
|
|
assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
|
|
// FIXME: This should properly sign/zero/extend or truncate Idx to i32.
|
|
return LValue::MakeVectorElt(LHS.getAddress(), Idx);
|
|
}
|
|
|
|
// The base must be a pointer, which is not an aggregate. Emit it.
|
|
llvm::Value *Base = EmitScalarExpr(E->getBase());
|
|
|
|
// Extend or truncate the index type to 32 or 64-bits.
|
|
QualType IdxTy = E->getIdx()->getType();
|
|
bool IdxSigned = IdxTy->isSignedIntegerType();
|
|
unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
|
|
if (IdxBitwidth != LLVMPointerWidth)
|
|
Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
|
|
IdxSigned, "idxprom");
|
|
|
|
// We know that the pointer points to a type of the correct size, unless the
|
|
// size is a VLA.
|
|
if (!E->getType()->isConstantSizeType(getContext()))
|
|
assert(0 && "VLA idx not implemented");
|
|
return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitOCUVectorElementExpr(const OCUVectorElementExpr *E) {
|
|
// Emit the base vector as an l-value.
|
|
LValue Base = EmitLValue(E->getBase());
|
|
assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
|
|
|
|
return LValue::MakeOCUVectorElt(Base.getAddress(),
|
|
E->getEncodedElementAccess());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
|
|
|
|
Expr *BaseExpr = E->getBase();
|
|
llvm::Value *BaseValue = NULL;
|
|
|
|
// If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
|
|
if (E->isArrow())
|
|
BaseValue = EmitScalarExpr(BaseExpr);
|
|
else {
|
|
LValue BaseLV = EmitLValue(BaseExpr);
|
|
// FIXME: this isn't right for bitfields.
|
|
BaseValue = BaseLV.getAddress();
|
|
}
|
|
|
|
FieldDecl *Field = E->getMemberDecl();
|
|
|
|
assert (!Field->isBitField() && "Bit-field access is not yet implmented");
|
|
|
|
unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
|
|
llvm::Value *Idxs[2] = { llvm::Constant::getNullValue(llvm::Type::Int32Ty),
|
|
llvm::ConstantInt::get(llvm::Type::Int32Ty, idx) };
|
|
|
|
llvm::Value *V = Builder.CreateGEP(BaseValue,Idxs, Idxs + 2, "tmp");
|
|
// Match union field type.
|
|
if (BaseExpr->getType()->isUnionType()) {
|
|
const llvm::Type * FieldTy = ConvertType(Field->getType());
|
|
const llvm::PointerType * BaseTy =
|
|
cast<llvm::PointerType>(BaseValue->getType());
|
|
if (FieldTy != BaseTy->getElementType()) {
|
|
V = Builder.CreateBitCast(V, llvm::PointerType::get(FieldTy), "tmp");
|
|
}
|
|
}
|
|
return LValue::MakeAddr(V);
|
|
|
|
// FIXME: If record field does not have one to one match with llvm::StructType
|
|
// field then apply appropriate masks to select only member field bits.
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Expression Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
|
|
RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
|
|
if (const ImplicitCastExpr *IcExpr =
|
|
dyn_cast<const ImplicitCastExpr>(E->getCallee()))
|
|
if (const DeclRefExpr *DRExpr =
|
|
dyn_cast<const DeclRefExpr>(IcExpr->getSubExpr()))
|
|
if (const FunctionDecl *FDecl =
|
|
dyn_cast<const FunctionDecl>(DRExpr->getDecl()))
|
|
if (unsigned builtinID = FDecl->getIdentifier()->getBuiltinID())
|
|
return EmitBuiltinExpr(builtinID, E);
|
|
|
|
llvm::Value *Callee = EmitScalarExpr(E->getCallee());
|
|
return EmitCallExpr(Callee, E);
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitCallExpr(llvm::Value *Callee, const CallExpr *E) {
|
|
// The callee type will always be a pointer to function type, get the function
|
|
// type.
|
|
QualType CalleeTy = E->getCallee()->getType();
|
|
CalleeTy = cast<PointerType>(CalleeTy.getCanonicalType())->getPointeeType();
|
|
|
|
// Get information about the argument types.
|
|
FunctionTypeProto::arg_type_iterator ArgTyIt = 0, ArgTyEnd = 0;
|
|
|
|
// Calling unprototyped functions provides no argument info.
|
|
if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(CalleeTy)) {
|
|
ArgTyIt = FTP->arg_type_begin();
|
|
ArgTyEnd = FTP->arg_type_end();
|
|
}
|
|
|
|
llvm::SmallVector<llvm::Value*, 16> Args;
|
|
|
|
// Handle struct-return functions by passing a pointer to the location that
|
|
// we would like to return into.
|
|
if (hasAggregateLLVMType(E->getType())) {
|
|
// Create a temporary alloca to hold the result of the call. :(
|
|
Args.push_back(CreateTempAlloca(ConvertType(E->getType())));
|
|
// FIXME: set the stret attribute on the argument.
|
|
}
|
|
|
|
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
|
|
QualType ArgTy = E->getArg(i)->getType();
|
|
|
|
if (!hasAggregateLLVMType(ArgTy)) {
|
|
// Scalar argument is passed by-value.
|
|
Args.push_back(EmitScalarExpr(E->getArg(i)));
|
|
} else if (ArgTy->isComplexType()) {
|
|
// Make a temporary alloca to pass the argument.
|
|
llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
|
|
EmitComplexExprIntoAddr(E->getArg(i), DestMem, false);
|
|
Args.push_back(DestMem);
|
|
} else {
|
|
llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
|
|
EmitAggExpr(E->getArg(i), DestMem, false);
|
|
Args.push_back(DestMem);
|
|
}
|
|
}
|
|
|
|
llvm::Value *V = Builder.CreateCall(Callee, &Args[0], &Args[0]+Args.size());
|
|
if (V->getType() != llvm::Type::VoidTy)
|
|
V->setName("call");
|
|
else if (E->getType()->isComplexType())
|
|
return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
|
|
else if (hasAggregateLLVMType(E->getType()))
|
|
// Struct return.
|
|
return RValue::getAggregate(Args[0]);
|
|
else {
|
|
// void return.
|
|
assert(E->getType()->isVoidType() && "Should only have a void expr here");
|
|
V = 0;
|
|
}
|
|
|
|
return RValue::get(V);
|
|
}
|