forked from OSchip/llvm-project
306 lines
9.7 KiB
C++
306 lines
9.7 KiB
C++
//===-- AVRMCCodeEmitter.cpp - Convert AVR Code to Machine Code -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the AVRMCCodeEmitter class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AVRMCCodeEmitter.h"
|
|
|
|
#include "MCTargetDesc/AVRMCExpr.h"
|
|
#include "MCTargetDesc/AVRMCTargetDesc.h"
|
|
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCFixup.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "mccodeemitter"
|
|
|
|
#define GET_INSTRMAP_INFO
|
|
#include "AVRGenInstrInfo.inc"
|
|
#undef GET_INSTRMAP_INFO
|
|
|
|
namespace llvm {
|
|
|
|
/// Performs a post-encoding step on a `LD` or `ST` instruction.
|
|
///
|
|
/// The encoding of the LD/ST family of instructions is inconsistent w.r.t
|
|
/// the pointer register and the addressing mode.
|
|
///
|
|
/// The permutations of the format are as followed:
|
|
/// ld Rd, X `1001 000d dddd 1100`
|
|
/// ld Rd, X+ `1001 000d dddd 1101`
|
|
/// ld Rd, -X `1001 000d dddd 1110`
|
|
///
|
|
/// ld Rd, Y `1000 000d dddd 1000`
|
|
/// ld Rd, Y+ `1001 000d dddd 1001`
|
|
/// ld Rd, -Y `1001 000d dddd 1010`
|
|
///
|
|
/// ld Rd, Z `1000 000d dddd 0000`
|
|
/// ld Rd, Z+ `1001 000d dddd 0001`
|
|
/// ld Rd, -Z `1001 000d dddd 0010`
|
|
/// ^
|
|
/// |
|
|
/// Note this one inconsistent bit - it is 1 sometimes and 0 at other times.
|
|
/// There is no logical pattern. Looking at a truth table, the following
|
|
/// formula can be derived to fit the pattern:
|
|
//
|
|
/// ```
|
|
/// inconsistent_bit = is_predec OR is_postinc OR is_reg_x
|
|
/// ```
|
|
//
|
|
/// We manually set this bit in this post encoder method.
|
|
unsigned
|
|
AVRMCCodeEmitter::loadStorePostEncoder(const MCInst &MI, unsigned EncodedValue,
|
|
const MCSubtargetInfo &STI) const {
|
|
|
|
assert(MI.getOperand(0).isReg() && MI.getOperand(1).isReg() &&
|
|
"the load/store operands must be registers");
|
|
|
|
unsigned Opcode = MI.getOpcode();
|
|
|
|
// check whether either of the registers are the X pointer register.
|
|
bool IsRegX = MI.getOperand(0).getReg() == AVR::R27R26 ||
|
|
MI.getOperand(1).getReg() == AVR::R27R26;
|
|
|
|
bool IsPredec = Opcode == AVR::LDRdPtrPd || Opcode == AVR::STPtrPdRr;
|
|
bool IsPostinc = Opcode == AVR::LDRdPtrPi || Opcode == AVR::STPtrPiRr;
|
|
|
|
// Check if we need to set the inconsistent bit
|
|
if (IsRegX || IsPredec || IsPostinc) {
|
|
EncodedValue |= (1 << 12);
|
|
}
|
|
|
|
return EncodedValue;
|
|
}
|
|
|
|
template <AVR::Fixups Fixup>
|
|
unsigned
|
|
AVRMCCodeEmitter::encodeRelCondBrTarget(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
|
|
if (MO.isExpr()) {
|
|
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
|
|
MCFixupKind(Fixup), MI.getLoc()));
|
|
return 0;
|
|
}
|
|
|
|
assert(MO.isImm());
|
|
|
|
// Take the size of the current instruction away.
|
|
// With labels, this is implicitly done.
|
|
auto target = MO.getImm();
|
|
AVR::fixups::adjustBranchTarget(target);
|
|
return target;
|
|
}
|
|
|
|
unsigned AVRMCCodeEmitter::encodeLDSTPtrReg(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
auto MO = MI.getOperand(OpNo);
|
|
|
|
// The operand should be a pointer register.
|
|
assert(MO.isReg());
|
|
|
|
switch (MO.getReg()) {
|
|
case AVR::R27R26: return 0x03; // X: 0b11
|
|
case AVR::R29R28: return 0x02; // Y: 0b10
|
|
case AVR::R31R30: return 0x00; // Z: 0b00
|
|
default:
|
|
llvm_unreachable("invalid pointer register");
|
|
}
|
|
}
|
|
|
|
/// Encodes a `memri` operand.
|
|
/// The operand is 7-bits.
|
|
/// * The lower 6 bits is the immediate
|
|
/// * The upper bit is the pointer register bit (Z=0,Y=1)
|
|
unsigned AVRMCCodeEmitter::encodeMemri(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
auto RegOp = MI.getOperand(OpNo);
|
|
auto OffsetOp = MI.getOperand(OpNo + 1);
|
|
|
|
assert(RegOp.isReg() && "Expected register operand");
|
|
|
|
uint8_t RegBit = 0;
|
|
|
|
switch (RegOp.getReg()) {
|
|
default:
|
|
llvm_unreachable("Expected either Y or Z register");
|
|
case AVR::R31R30:
|
|
RegBit = 0;
|
|
break; // Z register
|
|
case AVR::R29R28:
|
|
RegBit = 1;
|
|
break; // Y register
|
|
}
|
|
|
|
int8_t OffsetBits;
|
|
|
|
if (OffsetOp.isImm()) {
|
|
OffsetBits = OffsetOp.getImm();
|
|
} else if (OffsetOp.isExpr()) {
|
|
OffsetBits = 0;
|
|
Fixups.push_back(MCFixup::create(0, OffsetOp.getExpr(),
|
|
MCFixupKind(AVR::fixup_6), MI.getLoc()));
|
|
} else {
|
|
llvm_unreachable("invalid value for offset");
|
|
}
|
|
|
|
return (RegBit << 6) | OffsetBits;
|
|
}
|
|
|
|
unsigned AVRMCCodeEmitter::encodeComplement(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
// The operand should be an immediate.
|
|
assert(MI.getOperand(OpNo).isImm());
|
|
|
|
auto Imm = MI.getOperand(OpNo).getImm();
|
|
return (~0) - Imm;
|
|
}
|
|
|
|
template <AVR::Fixups Fixup, unsigned Offset>
|
|
unsigned AVRMCCodeEmitter::encodeImm(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
auto MO = MI.getOperand(OpNo);
|
|
|
|
if (MO.isExpr()) {
|
|
if (isa<AVRMCExpr>(MO.getExpr())) {
|
|
// If the expression is already an AVRMCExpr (i.e. a lo8(symbol),
|
|
// we shouldn't perform any more fixups. Without this check, we would
|
|
// instead create a fixup to the symbol named 'lo8(symbol)' which
|
|
// is not correct.
|
|
return getExprOpValue(MO.getExpr(), Fixups, STI);
|
|
}
|
|
|
|
MCFixupKind FixupKind = static_cast<MCFixupKind>(Fixup);
|
|
Fixups.push_back(MCFixup::create(Offset, MO.getExpr(), FixupKind, MI.getLoc()));
|
|
|
|
return 0;
|
|
}
|
|
|
|
assert(MO.isImm());
|
|
return MO.getImm();
|
|
}
|
|
|
|
unsigned AVRMCCodeEmitter::encodeCallTarget(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
auto MO = MI.getOperand(OpNo);
|
|
|
|
if (MO.isExpr()) {
|
|
MCFixupKind FixupKind = static_cast<MCFixupKind>(AVR::fixup_call);
|
|
Fixups.push_back(MCFixup::create(0, MO.getExpr(), FixupKind, MI.getLoc()));
|
|
return 0;
|
|
}
|
|
|
|
assert(MO.isImm());
|
|
|
|
auto Target = MO.getImm();
|
|
AVR::fixups::adjustBranchTarget(Target);
|
|
return Target;
|
|
}
|
|
|
|
unsigned AVRMCCodeEmitter::getExprOpValue(const MCExpr *Expr,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
|
|
MCExpr::ExprKind Kind = Expr->getKind();
|
|
|
|
if (Kind == MCExpr::Binary) {
|
|
Expr = static_cast<const MCBinaryExpr *>(Expr)->getLHS();
|
|
Kind = Expr->getKind();
|
|
}
|
|
|
|
if (Kind == MCExpr::Target) {
|
|
AVRMCExpr const *AVRExpr = cast<AVRMCExpr>(Expr);
|
|
int64_t Result;
|
|
if (AVRExpr->evaluateAsConstant(Result)) {
|
|
return Result;
|
|
}
|
|
|
|
MCFixupKind FixupKind = static_cast<MCFixupKind>(AVRExpr->getFixupKind());
|
|
Fixups.push_back(MCFixup::create(0, AVRExpr, FixupKind));
|
|
return 0;
|
|
}
|
|
|
|
assert(Kind == MCExpr::SymbolRef);
|
|
return 0;
|
|
}
|
|
|
|
unsigned AVRMCCodeEmitter::getMachineOpValue(const MCInst &MI,
|
|
const MCOperand &MO,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
if (MO.isReg()) return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
|
|
if (MO.isImm()) return static_cast<unsigned>(MO.getImm());
|
|
|
|
if (MO.isFPImm())
|
|
return static_cast<unsigned>(APFloat(MO.getFPImm())
|
|
.bitcastToAPInt()
|
|
.getHiBits(32)
|
|
.getLimitedValue());
|
|
|
|
// MO must be an Expr.
|
|
assert(MO.isExpr());
|
|
|
|
return getExprOpValue(MO.getExpr(), Fixups, STI);
|
|
}
|
|
|
|
void AVRMCCodeEmitter::emitInstruction(uint64_t Val, unsigned Size,
|
|
const MCSubtargetInfo &STI,
|
|
raw_ostream &OS) const {
|
|
const uint16_t *Words = reinterpret_cast<uint16_t const *>(&Val);
|
|
size_t WordCount = Size / 2;
|
|
|
|
for (int64_t i = WordCount - 1; i >= 0; --i) {
|
|
uint16_t Word = Words[i];
|
|
|
|
OS << (uint8_t) ((Word & 0x00ff) >> 0);
|
|
OS << (uint8_t) ((Word & 0xff00) >> 8);
|
|
}
|
|
}
|
|
|
|
void AVRMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
|
|
|
|
// Get byte count of instruction
|
|
unsigned Size = Desc.getSize();
|
|
|
|
assert(Size > 0 && "Instruction size cannot be zero");
|
|
|
|
uint64_t BinaryOpCode = getBinaryCodeForInstr(MI, Fixups, STI);
|
|
emitInstruction(BinaryOpCode, Size, STI, OS);
|
|
}
|
|
|
|
MCCodeEmitter *createAVRMCCodeEmitter(const MCInstrInfo &MCII,
|
|
const MCRegisterInfo &MRI,
|
|
MCContext &Ctx) {
|
|
return new AVRMCCodeEmitter(MCII, Ctx);
|
|
}
|
|
|
|
#include "AVRGenMCCodeEmitter.inc"
|
|
|
|
} // end of namespace llvm
|