llvm-project/llvm/lib/Target/AMDGPU/SIInstrInfo.cpp

3002 lines
103 KiB
C++

//===-- SIInstrInfo.cpp - SI Instruction Information ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief SI Implementation of TargetInstrInfo.
//
//===----------------------------------------------------------------------===//
#include "SIInstrInfo.h"
#include "AMDGPUTargetMachine.h"
#include "GCNHazardRecognizer.h"
#include "SIDefines.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/IR/Function.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
SIInstrInfo::SIInstrInfo(const AMDGPUSubtarget &st)
: AMDGPUInstrInfo(st), RI() {}
//===----------------------------------------------------------------------===//
// TargetInstrInfo callbacks
//===----------------------------------------------------------------------===//
static unsigned getNumOperandsNoGlue(SDNode *Node) {
unsigned N = Node->getNumOperands();
while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
--N;
return N;
}
static SDValue findChainOperand(SDNode *Load) {
SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1);
assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node");
return LastOp;
}
/// \brief Returns true if both nodes have the same value for the given
/// operand \p Op, or if both nodes do not have this operand.
static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
unsigned Opc0 = N0->getMachineOpcode();
unsigned Opc1 = N1->getMachineOpcode();
int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName);
int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName);
if (Op0Idx == -1 && Op1Idx == -1)
return true;
if ((Op0Idx == -1 && Op1Idx != -1) ||
(Op1Idx == -1 && Op0Idx != -1))
return false;
// getNamedOperandIdx returns the index for the MachineInstr's operands,
// which includes the result as the first operand. We are indexing into the
// MachineSDNode's operands, so we need to skip the result operand to get
// the real index.
--Op0Idx;
--Op1Idx;
return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx);
}
bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
AliasAnalysis *AA) const {
// TODO: The generic check fails for VALU instructions that should be
// rematerializable due to implicit reads of exec. We really want all of the
// generic logic for this except for this.
switch (MI->getOpcode()) {
case AMDGPU::V_MOV_B32_e32:
case AMDGPU::V_MOV_B32_e64:
case AMDGPU::V_MOV_B64_PSEUDO:
return true;
default:
return false;
}
}
bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
int64_t &Offset0,
int64_t &Offset1) const {
if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
return false;
unsigned Opc0 = Load0->getMachineOpcode();
unsigned Opc1 = Load1->getMachineOpcode();
// Make sure both are actually loads.
if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
return false;
if (isDS(Opc0) && isDS(Opc1)) {
// FIXME: Handle this case:
if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1))
return false;
// Check base reg.
if (Load0->getOperand(1) != Load1->getOperand(1))
return false;
// Check chain.
if (findChainOperand(Load0) != findChainOperand(Load1))
return false;
// Skip read2 / write2 variants for simplicity.
// TODO: We should report true if the used offsets are adjacent (excluded
// st64 versions).
if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 ||
AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1)
return false;
Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue();
Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue();
return true;
}
if (isSMRD(Opc0) && isSMRD(Opc1)) {
assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1));
// Check base reg.
if (Load0->getOperand(0) != Load1->getOperand(0))
return false;
const ConstantSDNode *Load0Offset =
dyn_cast<ConstantSDNode>(Load0->getOperand(1));
const ConstantSDNode *Load1Offset =
dyn_cast<ConstantSDNode>(Load1->getOperand(1));
if (!Load0Offset || !Load1Offset)
return false;
// Check chain.
if (findChainOperand(Load0) != findChainOperand(Load1))
return false;
Offset0 = Load0Offset->getZExtValue();
Offset1 = Load1Offset->getZExtValue();
return true;
}
// MUBUF and MTBUF can access the same addresses.
if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) {
// MUBUF and MTBUF have vaddr at different indices.
if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
findChainOperand(Load0) != findChainOperand(Load1) ||
!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
return false;
int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
if (OffIdx0 == -1 || OffIdx1 == -1)
return false;
// getNamedOperandIdx returns the index for MachineInstrs. Since they
// inlcude the output in the operand list, but SDNodes don't, we need to
// subtract the index by one.
--OffIdx0;
--OffIdx1;
SDValue Off0 = Load0->getOperand(OffIdx0);
SDValue Off1 = Load1->getOperand(OffIdx1);
// The offset might be a FrameIndexSDNode.
if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1))
return false;
Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue();
Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue();
return true;
}
return false;
}
static bool isStride64(unsigned Opc) {
switch (Opc) {
case AMDGPU::DS_READ2ST64_B32:
case AMDGPU::DS_READ2ST64_B64:
case AMDGPU::DS_WRITE2ST64_B32:
case AMDGPU::DS_WRITE2ST64_B64:
return true;
default:
return false;
}
}
bool SIInstrInfo::getMemOpBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
int64_t &Offset,
const TargetRegisterInfo *TRI) const {
unsigned Opc = LdSt->getOpcode();
if (isDS(*LdSt)) {
const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
AMDGPU::OpName::offset);
if (OffsetImm) {
// Normal, single offset LDS instruction.
const MachineOperand *AddrReg = getNamedOperand(*LdSt,
AMDGPU::OpName::addr);
BaseReg = AddrReg->getReg();
Offset = OffsetImm->getImm();
return true;
}
// The 2 offset instructions use offset0 and offset1 instead. We can treat
// these as a load with a single offset if the 2 offsets are consecutive. We
// will use this for some partially aligned loads.
const MachineOperand *Offset0Imm = getNamedOperand(*LdSt,
AMDGPU::OpName::offset0);
const MachineOperand *Offset1Imm = getNamedOperand(*LdSt,
AMDGPU::OpName::offset1);
uint8_t Offset0 = Offset0Imm->getImm();
uint8_t Offset1 = Offset1Imm->getImm();
if (Offset1 > Offset0 && Offset1 - Offset0 == 1) {
// Each of these offsets is in element sized units, so we need to convert
// to bytes of the individual reads.
unsigned EltSize;
if (LdSt->mayLoad())
EltSize = getOpRegClass(*LdSt, 0)->getSize() / 2;
else {
assert(LdSt->mayStore());
int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
EltSize = getOpRegClass(*LdSt, Data0Idx)->getSize();
}
if (isStride64(Opc))
EltSize *= 64;
const MachineOperand *AddrReg = getNamedOperand(*LdSt,
AMDGPU::OpName::addr);
BaseReg = AddrReg->getReg();
Offset = EltSize * Offset0;
return true;
}
return false;
}
if (isMUBUF(*LdSt) || isMTBUF(*LdSt)) {
if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1)
return false;
const MachineOperand *AddrReg = getNamedOperand(*LdSt,
AMDGPU::OpName::vaddr);
if (!AddrReg)
return false;
const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
AMDGPU::OpName::offset);
BaseReg = AddrReg->getReg();
Offset = OffsetImm->getImm();
return true;
}
if (isSMRD(*LdSt)) {
const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
AMDGPU::OpName::offset);
if (!OffsetImm)
return false;
const MachineOperand *SBaseReg = getNamedOperand(*LdSt,
AMDGPU::OpName::sbase);
BaseReg = SBaseReg->getReg();
Offset = OffsetImm->getImm();
return true;
}
return false;
}
bool SIInstrInfo::shouldClusterMemOps(MachineInstr *FirstLdSt,
MachineInstr *SecondLdSt,
unsigned NumLoads) const {
const MachineOperand *FirstDst = nullptr;
const MachineOperand *SecondDst = nullptr;
if (isDS(*FirstLdSt) && isDS(*SecondLdSt)) {
FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::vdst);
SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::vdst);
}
if (isSMRD(*FirstLdSt) && isSMRD(*SecondLdSt)) {
FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::sdst);
SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::sdst);
}
if ((isMUBUF(*FirstLdSt) && isMUBUF(*SecondLdSt)) ||
(isMTBUF(*FirstLdSt) && isMTBUF(*SecondLdSt))) {
FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::vdata);
SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::vdata);
}
if (!FirstDst || !SecondDst)
return false;
// Try to limit clustering based on the total number of bytes loaded
// rather than the number of instructions. This is done to help reduce
// register pressure. The method used is somewhat inexact, though,
// because it assumes that all loads in the cluster will load the
// same number of bytes as FirstLdSt.
// The unit of this value is bytes.
// FIXME: This needs finer tuning.
unsigned LoadClusterThreshold = 16;
const MachineRegisterInfo &MRI =
FirstLdSt->getParent()->getParent()->getRegInfo();
const TargetRegisterClass *DstRC = MRI.getRegClass(FirstDst->getReg());
return (NumLoads * DstRC->getSize()) <= LoadClusterThreshold;
}
void
SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
// If we are trying to copy to or from SCC, there is a bug somewhere else in
// the backend. While it may be theoretically possible to do this, it should
// never be necessary.
assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC);
static const int16_t Sub0_15[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
};
static const int16_t Sub0_15_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
AMDGPU::sub12_sub13, AMDGPU::sub14_sub15,
};
static const int16_t Sub0_7[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
};
static const int16_t Sub0_7_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
};
static const int16_t Sub0_3[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
};
static const int16_t Sub0_3_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
};
static const int16_t Sub0_2[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2,
};
static const int16_t Sub0_1[] = {
AMDGPU::sub0, AMDGPU::sub1,
};
unsigned Opcode;
ArrayRef<int16_t> SubIndices;
bool Forward;
if (AMDGPU::SReg_32RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
} else if (AMDGPU::SReg_64RegClass.contains(DestReg)) {
if (DestReg == AMDGPU::VCC) {
if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC)
.addReg(SrcReg, getKillRegState(KillSrc));
} else {
// FIXME: Hack until VReg_1 removed.
assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_I32_e32))
.addImm(0)
.addReg(SrcReg, getKillRegState(KillSrc));
}
return;
}
assert(AMDGPU::SReg_64RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
} else if (AMDGPU::SReg_128RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_128RegClass.contains(SrcReg));
Opcode = AMDGPU::S_MOV_B64;
SubIndices = Sub0_3_64;
} else if (AMDGPU::SReg_256RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_256RegClass.contains(SrcReg));
Opcode = AMDGPU::S_MOV_B64;
SubIndices = Sub0_7_64;
} else if (AMDGPU::SReg_512RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_512RegClass.contains(SrcReg));
Opcode = AMDGPU::S_MOV_B64;
SubIndices = Sub0_15_64;
} else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) {
assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
AMDGPU::SReg_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
} else if (AMDGPU::VReg_64RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_64RegClass.contains(SrcReg) ||
AMDGPU::SReg_64RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_1;
} else if (AMDGPU::VReg_96RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_96RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_2;
} else if (AMDGPU::VReg_128RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_128RegClass.contains(SrcReg) ||
AMDGPU::SReg_128RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_3;
} else if (AMDGPU::VReg_256RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_256RegClass.contains(SrcReg) ||
AMDGPU::SReg_256RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_7;
} else if (AMDGPU::VReg_512RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_512RegClass.contains(SrcReg) ||
AMDGPU::SReg_512RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_15;
} else {
llvm_unreachable("Can't copy register!");
}
if (RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg))
Forward = true;
else
Forward = false;
for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
unsigned SubIdx;
if (Forward)
SubIdx = SubIndices[Idx];
else
SubIdx = SubIndices[SubIndices.size() - Idx - 1];
MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
get(Opcode), RI.getSubReg(DestReg, SubIdx));
Builder.addReg(RI.getSubReg(SrcReg, SubIdx));
if (Idx == SubIndices.size() - 1)
Builder.addReg(SrcReg, RegState::Kill | RegState::Implicit);
if (Idx == 0)
Builder.addReg(DestReg, RegState::Define | RegState::Implicit);
}
}
int SIInstrInfo::commuteOpcode(const MachineInstr &MI) const {
const unsigned Opcode = MI.getOpcode();
int NewOpc;
// Try to map original to commuted opcode
NewOpc = AMDGPU::getCommuteRev(Opcode);
if (NewOpc != -1)
// Check if the commuted (REV) opcode exists on the target.
return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
// Try to map commuted to original opcode
NewOpc = AMDGPU::getCommuteOrig(Opcode);
if (NewOpc != -1)
// Check if the original (non-REV) opcode exists on the target.
return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
return Opcode;
}
unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const {
if (DstRC->getSize() == 4) {
return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
} else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) {
return AMDGPU::S_MOV_B64;
} else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) {
return AMDGPU::V_MOV_B64_PSEUDO;
}
return AMDGPU::COPY;
}
static unsigned getSGPRSpillSaveOpcode(unsigned Size) {
switch (Size) {
case 4:
return AMDGPU::SI_SPILL_S32_SAVE;
case 8:
return AMDGPU::SI_SPILL_S64_SAVE;
case 16:
return AMDGPU::SI_SPILL_S128_SAVE;
case 32:
return AMDGPU::SI_SPILL_S256_SAVE;
case 64:
return AMDGPU::SI_SPILL_S512_SAVE;
default:
llvm_unreachable("unknown register size");
}
}
static unsigned getVGPRSpillSaveOpcode(unsigned Size) {
switch (Size) {
case 4:
return AMDGPU::SI_SPILL_V32_SAVE;
case 8:
return AMDGPU::SI_SPILL_V64_SAVE;
case 12:
return AMDGPU::SI_SPILL_V96_SAVE;
case 16:
return AMDGPU::SI_SPILL_V128_SAVE;
case 32:
return AMDGPU::SI_SPILL_V256_SAVE;
case 64:
return AMDGPU::SI_SPILL_V512_SAVE;
default:
llvm_unreachable("unknown register size");
}
}
void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill,
int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineFunction *MF = MBB.getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
MachineFrameInfo *FrameInfo = MF->getFrameInfo();
DebugLoc DL = MBB.findDebugLoc(MI);
unsigned Size = FrameInfo->getObjectSize(FrameIndex);
unsigned Align = FrameInfo->getObjectAlignment(FrameIndex);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, FrameIndex);
MachineMemOperand *MMO
= MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
Size, Align);
if (RI.isSGPRClass(RC)) {
MFI->setHasSpilledSGPRs();
// We are only allowed to create one new instruction when spilling
// registers, so we need to use pseudo instruction for spilling
// SGPRs.
unsigned Opcode = getSGPRSpillSaveOpcode(RC->getSize());
BuildMI(MBB, MI, DL, get(Opcode))
.addReg(SrcReg) // src
.addFrameIndex(FrameIndex) // frame_idx
.addMemOperand(MMO);
return;
}
if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) {
LLVMContext &Ctx = MF->getFunction()->getContext();
Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to"
" spill register");
BuildMI(MBB, MI, DL, get(AMDGPU::KILL))
.addReg(SrcReg);
return;
}
assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected");
unsigned Opcode = getVGPRSpillSaveOpcode(RC->getSize());
MFI->setHasSpilledVGPRs();
BuildMI(MBB, MI, DL, get(Opcode))
.addReg(SrcReg) // src
.addFrameIndex(FrameIndex) // frame_idx
.addReg(MFI->getScratchRSrcReg()) // scratch_rsrc
.addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset
.addImm(0) // offset
.addMemOperand(MMO);
}
static unsigned getSGPRSpillRestoreOpcode(unsigned Size) {
switch (Size) {
case 4:
return AMDGPU::SI_SPILL_S32_RESTORE;
case 8:
return AMDGPU::SI_SPILL_S64_RESTORE;
case 16:
return AMDGPU::SI_SPILL_S128_RESTORE;
case 32:
return AMDGPU::SI_SPILL_S256_RESTORE;
case 64:
return AMDGPU::SI_SPILL_S512_RESTORE;
default:
llvm_unreachable("unknown register size");
}
}
static unsigned getVGPRSpillRestoreOpcode(unsigned Size) {
switch (Size) {
case 4:
return AMDGPU::SI_SPILL_V32_RESTORE;
case 8:
return AMDGPU::SI_SPILL_V64_RESTORE;
case 12:
return AMDGPU::SI_SPILL_V96_RESTORE;
case 16:
return AMDGPU::SI_SPILL_V128_RESTORE;
case 32:
return AMDGPU::SI_SPILL_V256_RESTORE;
case 64:
return AMDGPU::SI_SPILL_V512_RESTORE;
default:
llvm_unreachable("unknown register size");
}
}
void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineFunction *MF = MBB.getParent();
const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
MachineFrameInfo *FrameInfo = MF->getFrameInfo();
DebugLoc DL = MBB.findDebugLoc(MI);
unsigned Align = FrameInfo->getObjectAlignment(FrameIndex);
unsigned Size = FrameInfo->getObjectSize(FrameIndex);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, FrameIndex);
MachineMemOperand *MMO = MF->getMachineMemOperand(
PtrInfo, MachineMemOperand::MOLoad, Size, Align);
if (RI.isSGPRClass(RC)) {
// FIXME: Maybe this should not include a memoperand because it will be
// lowered to non-memory instructions.
unsigned Opcode = getSGPRSpillRestoreOpcode(RC->getSize());
BuildMI(MBB, MI, DL, get(Opcode), DestReg)
.addFrameIndex(FrameIndex) // frame_idx
.addMemOperand(MMO);
return;
}
if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) {
LLVMContext &Ctx = MF->getFunction()->getContext();
Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to"
" restore register");
BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg);
return;
}
assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected");
unsigned Opcode = getVGPRSpillRestoreOpcode(RC->getSize());
BuildMI(MBB, MI, DL, get(Opcode), DestReg)
.addFrameIndex(FrameIndex) // frame_idx
.addReg(MFI->getScratchRSrcReg()) // scratch_rsrc
.addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset
.addImm(0) // offset
.addMemOperand(MMO);
}
/// \param @Offset Offset in bytes of the FrameIndex being spilled
unsigned SIInstrInfo::calculateLDSSpillAddress(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
RegScavenger *RS, unsigned TmpReg,
unsigned FrameOffset,
unsigned Size) const {
MachineFunction *MF = MBB.getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
const AMDGPUSubtarget &ST = MF->getSubtarget<AMDGPUSubtarget>();
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo*>(ST.getRegisterInfo());
DebugLoc DL = MBB.findDebugLoc(MI);
unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF);
unsigned WavefrontSize = ST.getWavefrontSize();
unsigned TIDReg = MFI->getTIDReg();
if (!MFI->hasCalculatedTID()) {
MachineBasicBlock &Entry = MBB.getParent()->front();
MachineBasicBlock::iterator Insert = Entry.front();
DebugLoc DL = Insert->getDebugLoc();
TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass);
if (TIDReg == AMDGPU::NoRegister)
return TIDReg;
if (!AMDGPU::isShader(MF->getFunction()->getCallingConv()) &&
WorkGroupSize > WavefrontSize) {
unsigned TIDIGXReg
= TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_X);
unsigned TIDIGYReg
= TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Y);
unsigned TIDIGZReg
= TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Z);
unsigned InputPtrReg =
TRI->getPreloadedValue(*MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
for (unsigned Reg : {TIDIGXReg, TIDIGYReg, TIDIGZReg}) {
if (!Entry.isLiveIn(Reg))
Entry.addLiveIn(Reg);
}
RS->enterBasicBlock(Entry);
// FIXME: Can we scavenge an SReg_64 and access the subregs?
unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0)
.addReg(InputPtrReg)
.addImm(SI::KernelInputOffsets::NGROUPS_Z);
BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1)
.addReg(InputPtrReg)
.addImm(SI::KernelInputOffsets::NGROUPS_Y);
// NGROUPS.X * NGROUPS.Y
BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1)
.addReg(STmp1)
.addReg(STmp0);
// (NGROUPS.X * NGROUPS.Y) * TIDIG.X
BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg)
.addReg(STmp1)
.addReg(TIDIGXReg);
// NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)
BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg)
.addReg(STmp0)
.addReg(TIDIGYReg)
.addReg(TIDReg);
// (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z
BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg)
.addReg(TIDReg)
.addReg(TIDIGZReg);
} else {
// Get the wave id
BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64),
TIDReg)
.addImm(-1)
.addImm(0);
BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64),
TIDReg)
.addImm(-1)
.addReg(TIDReg);
}
BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32),
TIDReg)
.addImm(2)
.addReg(TIDReg);
MFI->setTIDReg(TIDReg);
}
// Add FrameIndex to LDS offset
unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize);
BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg)
.addImm(LDSOffset)
.addReg(TIDReg);
return TmpReg;
}
void SIInstrInfo::insertWaitStates(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
int Count) const {
DebugLoc DL = MBB.findDebugLoc(MI);
while (Count > 0) {
int Arg;
if (Count >= 8)
Arg = 7;
else
Arg = Count - 1;
Count -= 8;
BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP))
.addImm(Arg);
}
}
void SIInstrInfo::insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
insertWaitStates(MBB, MI, 1);
}
unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
default: return 1; // FIXME: Do wait states equal cycles?
case AMDGPU::S_NOP:
return MI.getOperand(0).getImm() + 1;
}
}
bool SIInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MBB.findDebugLoc(MI);
switch (MI->getOpcode()) {
default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
case AMDGPU::SGPR_USE:
// This is just a placeholder for register allocation.
MI->eraseFromParent();
break;
case AMDGPU::V_MOV_B64_PSEUDO: {
unsigned Dst = MI->getOperand(0).getReg();
unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
const MachineOperand &SrcOp = MI->getOperand(1);
// FIXME: Will this work for 64-bit floating point immediates?
assert(!SrcOp.isFPImm());
if (SrcOp.isImm()) {
APInt Imm(64, SrcOp.getImm());
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
.addImm(Imm.getLoBits(32).getZExtValue())
.addReg(Dst, RegState::Implicit);
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
.addImm(Imm.getHiBits(32).getZExtValue())
.addReg(Dst, RegState::Implicit);
} else {
assert(SrcOp.isReg());
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
.addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0))
.addReg(Dst, RegState::Implicit);
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
.addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1))
.addReg(Dst, RegState::Implicit);
}
MI->eraseFromParent();
break;
}
case AMDGPU::V_CNDMASK_B64_PSEUDO: {
unsigned Dst = MI->getOperand(0).getReg();
unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
unsigned Src0 = MI->getOperand(1).getReg();
unsigned Src1 = MI->getOperand(2).getReg();
const MachineOperand &SrcCond = MI->getOperand(3);
BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
.addReg(RI.getSubReg(Src0, AMDGPU::sub0))
.addReg(RI.getSubReg(Src1, AMDGPU::sub0))
.addOperand(SrcCond);
BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
.addReg(RI.getSubReg(Src0, AMDGPU::sub1))
.addReg(RI.getSubReg(Src1, AMDGPU::sub1))
.addOperand(SrcCond);
MI->eraseFromParent();
break;
}
case AMDGPU::SI_CONSTDATA_PTR: {
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo *>(ST.getRegisterInfo());
MachineFunction &MF = *MBB.getParent();
unsigned Reg = MI->getOperand(0).getReg();
unsigned RegLo = TRI->getSubReg(Reg, AMDGPU::sub0);
unsigned RegHi = TRI->getSubReg(Reg, AMDGPU::sub1);
// Create a bundle so these instructions won't be re-ordered by the
// post-RA scheduler.
MIBundleBuilder Bundler(MBB, MI);
Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg));
// Add 32-bit offset from this instruction to the start of the
// constant data.
Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo)
.addReg(RegLo)
.addOperand(MI->getOperand(1)));
Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi)
.addReg(RegHi)
.addImm(0));
llvm::finalizeBundle(MBB, Bundler.begin());
MI->eraseFromParent();
break;
}
}
return true;
}
/// Commutes the operands in the given instruction.
/// The commutable operands are specified by their indices OpIdx0 and OpIdx1.
///
/// Do not call this method for a non-commutable instruction or for
/// non-commutable pair of operand indices OpIdx0 and OpIdx1.
/// Even though the instruction is commutable, the method may still
/// fail to commute the operands, null pointer is returned in such cases.
MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr *MI,
bool NewMI,
unsigned OpIdx0,
unsigned OpIdx1) const {
int CommutedOpcode = commuteOpcode(*MI);
if (CommutedOpcode == -1)
return nullptr;
int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::src0);
MachineOperand &Src0 = MI->getOperand(Src0Idx);
if (!Src0.isReg())
return nullptr;
int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::src1);
if ((OpIdx0 != static_cast<unsigned>(Src0Idx) ||
OpIdx1 != static_cast<unsigned>(Src1Idx)) &&
(OpIdx0 != static_cast<unsigned>(Src1Idx) ||
OpIdx1 != static_cast<unsigned>(Src0Idx)))
return nullptr;
MachineOperand &Src1 = MI->getOperand(Src1Idx);
if (isVOP2(*MI) || isVOPC(*MI)) {
const MCInstrDesc &InstrDesc = MI->getDesc();
// For VOP2 and VOPC instructions, any operand type is valid to use for
// src0. Make sure we can use the src0 as src1.
//
// We could be stricter here and only allow commuting if there is a reason
// to do so. i.e. if both operands are VGPRs there is no real benefit,
// although MachineCSE attempts to find matches by commuting.
const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
if (!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0))
return nullptr;
}
if (!Src1.isReg()) {
// Allow commuting instructions with Imm operands.
if (NewMI || !Src1.isImm() ||
(!isVOP2(*MI) && !isVOP3(*MI))) {
return nullptr;
}
// Be sure to copy the source modifiers to the right place.
if (MachineOperand *Src0Mods
= getNamedOperand(*MI, AMDGPU::OpName::src0_modifiers)) {
MachineOperand *Src1Mods
= getNamedOperand(*MI, AMDGPU::OpName::src1_modifiers);
int Src0ModsVal = Src0Mods->getImm();
if (!Src1Mods && Src0ModsVal != 0)
return nullptr;
// XXX - This assert might be a lie. It might be useful to have a neg
// modifier with 0.0.
int Src1ModsVal = Src1Mods->getImm();
assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates");
Src1Mods->setImm(Src0ModsVal);
Src0Mods->setImm(Src1ModsVal);
}
unsigned Reg = Src0.getReg();
unsigned SubReg = Src0.getSubReg();
if (Src1.isImm())
Src0.ChangeToImmediate(Src1.getImm());
else
llvm_unreachable("Should only have immediates");
Src1.ChangeToRegister(Reg, false);
Src1.setSubReg(SubReg);
} else {
MI = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx0, OpIdx1);
}
if (MI)
MI->setDesc(get(CommutedOpcode));
return MI;
}
// This needs to be implemented because the source modifiers may be inserted
// between the true commutable operands, and the base
// TargetInstrInfo::commuteInstruction uses it.
bool SIInstrInfo::findCommutedOpIndices(MachineInstr *MI,
unsigned &SrcOpIdx0,
unsigned &SrcOpIdx1) const {
const MCInstrDesc &MCID = MI->getDesc();
if (!MCID.isCommutable())
return false;
unsigned Opc = MI->getOpcode();
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
if (Src0Idx == -1)
return false;
// FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on
// immediate. Also, immediate src0 operand is not handled in
// SIInstrInfo::commuteInstruction();
if (!MI->getOperand(Src0Idx).isReg())
return false;
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
if (Src1Idx == -1)
return false;
MachineOperand &Src1 = MI->getOperand(Src1Idx);
if (Src1.isImm()) {
// SIInstrInfo::commuteInstruction() does support commuting the immediate
// operand src1 in 2 and 3 operand instructions.
if (!isVOP2(MI->getOpcode()) && !isVOP3(MI->getOpcode()))
return false;
} else if (Src1.isReg()) {
// If any source modifiers are set, the generic instruction commuting won't
// understand how to copy the source modifiers.
if (hasModifiersSet(*MI, AMDGPU::OpName::src0_modifiers) ||
hasModifiersSet(*MI, AMDGPU::OpName::src1_modifiers))
return false;
} else
return false;
return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx);
}
static void removeModOperands(MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc,
AMDGPU::OpName::src0_modifiers);
int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc,
AMDGPU::OpName::src1_modifiers);
int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc,
AMDGPU::OpName::src2_modifiers);
MI.RemoveOperand(Src2ModIdx);
MI.RemoveOperand(Src1ModIdx);
MI.RemoveOperand(Src0ModIdx);
}
// TODO: Maybe this should be removed this and custom fold everything in
// SIFoldOperands?
bool SIInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
unsigned Reg, MachineRegisterInfo *MRI) const {
if (!MRI->hasOneNonDBGUse(Reg))
return false;
unsigned Opc = UseMI->getOpcode();
if (Opc == AMDGPU::V_MAD_F32 || Opc == AMDGPU::V_MAC_F32_e64) {
// Don't fold if we are using source modifiers. The new VOP2 instructions
// don't have them.
if (hasModifiersSet(*UseMI, AMDGPU::OpName::src0_modifiers) ||
hasModifiersSet(*UseMI, AMDGPU::OpName::src1_modifiers) ||
hasModifiersSet(*UseMI, AMDGPU::OpName::src2_modifiers)) {
return false;
}
const MachineOperand &ImmOp = DefMI->getOperand(1);
// If this is a free constant, there's no reason to do this.
// TODO: We could fold this here instead of letting SIFoldOperands do it
// later.
if (isInlineConstant(ImmOp, 4))
return false;
MachineOperand *Src0 = getNamedOperand(*UseMI, AMDGPU::OpName::src0);
MachineOperand *Src1 = getNamedOperand(*UseMI, AMDGPU::OpName::src1);
MachineOperand *Src2 = getNamedOperand(*UseMI, AMDGPU::OpName::src2);
// Multiplied part is the constant: Use v_madmk_f32
// We should only expect these to be on src0 due to canonicalizations.
if (Src0->isReg() && Src0->getReg() == Reg) {
if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
return false;
if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg())))
return false;
// We need to swap operands 0 and 1 since madmk constant is at operand 1.
const int64_t Imm = DefMI->getOperand(1).getImm();
// FIXME: This would be a lot easier if we could return a new instruction
// instead of having to modify in place.
// Remove these first since they are at the end.
UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc,
AMDGPU::OpName::omod));
UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc,
AMDGPU::OpName::clamp));
unsigned Src1Reg = Src1->getReg();
unsigned Src1SubReg = Src1->getSubReg();
Src0->setReg(Src1Reg);
Src0->setSubReg(Src1SubReg);
Src0->setIsKill(Src1->isKill());
if (Opc == AMDGPU::V_MAC_F32_e64) {
UseMI->untieRegOperand(
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
}
Src1->ChangeToImmediate(Imm);
removeModOperands(*UseMI);
UseMI->setDesc(get(AMDGPU::V_MADMK_F32));
bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
if (DeleteDef)
DefMI->eraseFromParent();
return true;
}
// Added part is the constant: Use v_madak_f32
if (Src2->isReg() && Src2->getReg() == Reg) {
// Not allowed to use constant bus for another operand.
// We can however allow an inline immediate as src0.
if (!Src0->isImm() &&
(Src0->isReg() && RI.isSGPRClass(MRI->getRegClass(Src0->getReg()))))
return false;
if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
return false;
const int64_t Imm = DefMI->getOperand(1).getImm();
// FIXME: This would be a lot easier if we could return a new instruction
// instead of having to modify in place.
// Remove these first since they are at the end.
UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc,
AMDGPU::OpName::omod));
UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc,
AMDGPU::OpName::clamp));
if (Opc == AMDGPU::V_MAC_F32_e64) {
UseMI->untieRegOperand(
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
}
// ChangingToImmediate adds Src2 back to the instruction.
Src2->ChangeToImmediate(Imm);
// These come before src2.
removeModOperands(*UseMI);
UseMI->setDesc(get(AMDGPU::V_MADAK_F32));
bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
if (DeleteDef)
DefMI->eraseFromParent();
return true;
}
}
return false;
}
static bool offsetsDoNotOverlap(int WidthA, int OffsetA,
int WidthB, int OffsetB) {
int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
return LowOffset + LowWidth <= HighOffset;
}
bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr *MIa,
MachineInstr *MIb) const {
unsigned BaseReg0, BaseReg1;
int64_t Offset0, Offset1;
if (getMemOpBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) &&
getMemOpBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) {
if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) {
// FIXME: Handle ds_read2 / ds_write2.
return false;
}
unsigned Width0 = (*MIa->memoperands_begin())->getSize();
unsigned Width1 = (*MIb->memoperands_begin())->getSize();
if (BaseReg0 == BaseReg1 &&
offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) {
return true;
}
}
return false;
}
bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
MachineInstr *MIb,
AliasAnalysis *AA) const {
assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
"MIa must load from or modify a memory location");
assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
"MIb must load from or modify a memory location");
if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects())
return false;
// XXX - Can we relax this between address spaces?
if (MIa->hasOrderedMemoryRef() || MIb->hasOrderedMemoryRef())
return false;
// TODO: Should we check the address space from the MachineMemOperand? That
// would allow us to distinguish objects we know don't alias based on the
// underlying address space, even if it was lowered to a different one,
// e.g. private accesses lowered to use MUBUF instructions on a scratch
// buffer.
if (isDS(*MIa)) {
if (isDS(*MIb))
return checkInstOffsetsDoNotOverlap(MIa, MIb);
return !isFLAT(*MIb);
}
if (isMUBUF(*MIa) || isMTBUF(*MIa)) {
if (isMUBUF(*MIb) || isMTBUF(*MIb))
return checkInstOffsetsDoNotOverlap(MIa, MIb);
return !isFLAT(*MIb) && !isSMRD(*MIb);
}
if (isSMRD(*MIa)) {
if (isSMRD(*MIb))
return checkInstOffsetsDoNotOverlap(MIa, MIb);
return !isFLAT(*MIb) && !isMUBUF(*MIa) && !isMTBUF(*MIa);
}
if (isFLAT(*MIa)) {
if (isFLAT(*MIb))
return checkInstOffsetsDoNotOverlap(MIa, MIb);
return false;
}
return false;
}
MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB,
MachineBasicBlock::iterator &MI,
LiveVariables *LV) const {
switch (MI->getOpcode()) {
default: return nullptr;
case AMDGPU::V_MAC_F32_e64: break;
case AMDGPU::V_MAC_F32_e32: {
const MachineOperand *Src0 = getNamedOperand(*MI, AMDGPU::OpName::src0);
if (Src0->isImm() && !isInlineConstant(*Src0, 4))
return nullptr;
break;
}
}
const MachineOperand *Dst = getNamedOperand(*MI, AMDGPU::OpName::vdst);
const MachineOperand *Src0 = getNamedOperand(*MI, AMDGPU::OpName::src0);
const MachineOperand *Src1 = getNamedOperand(*MI, AMDGPU::OpName::src1);
const MachineOperand *Src2 = getNamedOperand(*MI, AMDGPU::OpName::src2);
return BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_MAD_F32))
.addOperand(*Dst)
.addImm(0) // Src0 mods
.addOperand(*Src0)
.addImm(0) // Src1 mods
.addOperand(*Src1)
.addImm(0) // Src mods
.addOperand(*Src2)
.addImm(0) // clamp
.addImm(0); // omod
}
bool SIInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const {
// Target-independent instructions do not have an implicit-use of EXEC, even
// when they operate on VGPRs. Treating EXEC modifications as scheduling
// boundaries prevents incorrect movements of such instructions.
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (MI->modifiesRegister(AMDGPU::EXEC, TRI))
return true;
return AMDGPUInstrInfo::isSchedulingBoundary(MI, MBB, MF);
}
bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
int64_t SVal = Imm.getSExtValue();
if (SVal >= -16 && SVal <= 64)
return true;
if (Imm.getBitWidth() == 64) {
uint64_t Val = Imm.getZExtValue();
return (DoubleToBits(0.0) == Val) ||
(DoubleToBits(1.0) == Val) ||
(DoubleToBits(-1.0) == Val) ||
(DoubleToBits(0.5) == Val) ||
(DoubleToBits(-0.5) == Val) ||
(DoubleToBits(2.0) == Val) ||
(DoubleToBits(-2.0) == Val) ||
(DoubleToBits(4.0) == Val) ||
(DoubleToBits(-4.0) == Val);
}
// The actual type of the operand does not seem to matter as long
// as the bits match one of the inline immediate values. For example:
//
// -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
// so it is a legal inline immediate.
//
// 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
// floating-point, so it is a legal inline immediate.
uint32_t Val = Imm.getZExtValue();
return (FloatToBits(0.0f) == Val) ||
(FloatToBits(1.0f) == Val) ||
(FloatToBits(-1.0f) == Val) ||
(FloatToBits(0.5f) == Val) ||
(FloatToBits(-0.5f) == Val) ||
(FloatToBits(2.0f) == Val) ||
(FloatToBits(-2.0f) == Val) ||
(FloatToBits(4.0f) == Val) ||
(FloatToBits(-4.0f) == Val);
}
bool SIInstrInfo::isInlineConstant(const MachineOperand &MO,
unsigned OpSize) const {
if (MO.isImm()) {
// MachineOperand provides no way to tell the true operand size, since it
// only records a 64-bit value. We need to know the size to determine if a
// 32-bit floating point immediate bit pattern is legal for an integer
// immediate. It would be for any 32-bit integer operand, but would not be
// for a 64-bit one.
unsigned BitSize = 8 * OpSize;
return isInlineConstant(APInt(BitSize, MO.getImm(), true));
}
return false;
}
bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO,
unsigned OpSize) const {
return MO.isImm() && !isInlineConstant(MO, OpSize);
}
static bool compareMachineOp(const MachineOperand &Op0,
const MachineOperand &Op1) {
if (Op0.getType() != Op1.getType())
return false;
switch (Op0.getType()) {
case MachineOperand::MO_Register:
return Op0.getReg() == Op1.getReg();
case MachineOperand::MO_Immediate:
return Op0.getImm() == Op1.getImm();
default:
llvm_unreachable("Didn't expect to be comparing these operand types");
}
}
bool SIInstrInfo::isImmOperandLegal(const MachineInstr *MI, unsigned OpNo,
const MachineOperand &MO) const {
const MCOperandInfo &OpInfo = get(MI->getOpcode()).OpInfo[OpNo];
assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());
if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
return true;
if (OpInfo.RegClass < 0)
return false;
unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize();
if (isLiteralConstant(MO, OpSize))
return RI.opCanUseLiteralConstant(OpInfo.OperandType);
return RI.opCanUseInlineConstant(OpInfo.OperandType);
}
bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
int Op32 = AMDGPU::getVOPe32(Opcode);
if (Op32 == -1)
return false;
return pseudoToMCOpcode(Op32) != -1;
}
bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
// The src0_modifier operand is present on all instructions
// that have modifiers.
return AMDGPU::getNamedOperandIdx(Opcode,
AMDGPU::OpName::src0_modifiers) != -1;
}
bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
unsigned OpName) const {
const MachineOperand *Mods = getNamedOperand(MI, OpName);
return Mods && Mods->getImm();
}
bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
const MachineOperand &MO,
unsigned OpSize) const {
// Literal constants use the constant bus.
if (isLiteralConstant(MO, OpSize))
return true;
if (!MO.isReg() || !MO.isUse())
return false;
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
return RI.isSGPRClass(MRI.getRegClass(MO.getReg()));
// FLAT_SCR is just an SGPR pair.
if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR))
return true;
// EXEC register uses the constant bus.
if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC)
return true;
// SGPRs use the constant bus
return (MO.getReg() == AMDGPU::VCC || MO.getReg() == AMDGPU::M0 ||
(!MO.isImplicit() &&
(AMDGPU::SGPR_32RegClass.contains(MO.getReg()) ||
AMDGPU::SGPR_64RegClass.contains(MO.getReg()))));
}
static unsigned findImplicitSGPRRead(const MachineInstr &MI) {
for (const MachineOperand &MO : MI.implicit_operands()) {
// We only care about reads.
if (MO.isDef())
continue;
switch (MO.getReg()) {
case AMDGPU::VCC:
case AMDGPU::M0:
case AMDGPU::FLAT_SCR:
return MO.getReg();
default:
break;
}
}
return AMDGPU::NoRegister;
}
bool SIInstrInfo::verifyInstruction(const MachineInstr *MI,
StringRef &ErrInfo) const {
uint16_t Opcode = MI->getOpcode();
const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
// Make sure we don't have SCC live-ins to basic blocks. moveToVALU assumes
// all SCC users are in the same blocks as their defs.
const MachineBasicBlock *MBB = MI->getParent();
if (MI == &MBB->front()) {
if (MBB->isLiveIn(AMDGPU::SCC)) {
ErrInfo = "scc register cannot be live across blocks.";
return false;
}
}
// Make sure the number of operands is correct.
const MCInstrDesc &Desc = get(Opcode);
if (!Desc.isVariadic() &&
Desc.getNumOperands() != MI->getNumExplicitOperands()) {
ErrInfo = "Instruction has wrong number of operands.";
return false;
}
// Make sure the register classes are correct.
for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
if (MI->getOperand(i).isFPImm()) {
ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast "
"all fp values to integers.";
return false;
}
int RegClass = Desc.OpInfo[i].RegClass;
switch (Desc.OpInfo[i].OperandType) {
case MCOI::OPERAND_REGISTER:
if (MI->getOperand(i).isImm()) {
ErrInfo = "Illegal immediate value for operand.";
return false;
}
break;
case AMDGPU::OPERAND_REG_IMM32:
break;
case AMDGPU::OPERAND_REG_INLINE_C:
if (isLiteralConstant(MI->getOperand(i),
RI.getRegClass(RegClass)->getSize())) {
ErrInfo = "Illegal immediate value for operand.";
return false;
}
break;
case MCOI::OPERAND_IMMEDIATE:
// Check if this operand is an immediate.
// FrameIndex operands will be replaced by immediates, so they are
// allowed.
if (!MI->getOperand(i).isImm() && !MI->getOperand(i).isFI()) {
ErrInfo = "Expected immediate, but got non-immediate";
return false;
}
// Fall-through
default:
continue;
}
if (!MI->getOperand(i).isReg())
continue;
if (RegClass != -1) {
unsigned Reg = MI->getOperand(i).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
continue;
const TargetRegisterClass *RC = RI.getRegClass(RegClass);
if (!RC->contains(Reg)) {
ErrInfo = "Operand has incorrect register class.";
return false;
}
}
}
// Verify VOP*
if (isVOP1(*MI) || isVOP2(*MI) || isVOP3(*MI) || isVOPC(*MI)) {
// Only look at the true operands. Only a real operand can use the constant
// bus, and we don't want to check pseudo-operands like the source modifier
// flags.
const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx };
unsigned ConstantBusCount = 0;
unsigned SGPRUsed = findImplicitSGPRRead(*MI);
if (SGPRUsed != AMDGPU::NoRegister)
++ConstantBusCount;
for (int OpIdx : OpIndices) {
if (OpIdx == -1)
break;
const MachineOperand &MO = MI->getOperand(OpIdx);
if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) {
if (MO.isReg()) {
if (MO.getReg() != SGPRUsed)
++ConstantBusCount;
SGPRUsed = MO.getReg();
} else {
++ConstantBusCount;
}
}
}
if (ConstantBusCount > 1) {
ErrInfo = "VOP* instruction uses the constant bus more than once";
return false;
}
}
// Verify misc. restrictions on specific instructions.
if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 ||
Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) {
const MachineOperand &Src0 = MI->getOperand(Src0Idx);
const MachineOperand &Src1 = MI->getOperand(Src1Idx);
const MachineOperand &Src2 = MI->getOperand(Src2Idx);
if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
if (!compareMachineOp(Src0, Src1) &&
!compareMachineOp(Src0, Src2)) {
ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
return false;
}
}
}
// Make sure we aren't losing exec uses in the td files. This mostly requires
// being careful when using let Uses to try to add other use registers.
if (!isGenericOpcode(Opcode) && !isSALU(Opcode) && !isSMRD(Opcode)) {
if (!MI->hasRegisterImplicitUseOperand(AMDGPU::EXEC)) {
ErrInfo = "VALU instruction does not implicitly read exec mask";
return false;
}
}
return true;
}
unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default: return AMDGPU::INSTRUCTION_LIST_END;
case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
case AMDGPU::COPY: return AMDGPU::COPY;
case AMDGPU::PHI: return AMDGPU::PHI;
case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
case AMDGPU::S_MOV_B32:
return MI.getOperand(1).isReg() ?
AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
case AMDGPU::S_ADD_I32:
case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32;
case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32;
case AMDGPU::S_SUB_I32:
case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32;
case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32;
case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32;
case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32;
case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32;
case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32;
case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32;
case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32;
case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32;
case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64;
case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64;
case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64;
case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32;
case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32;
case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32;
case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32;
case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64;
case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32;
case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32;
case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32;
case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32;
case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32;
case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32;
case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e32;
case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e32;
case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e32;
case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e32;
case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e32;
case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e32;
case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64;
case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64;
case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ;
case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ;
}
}
bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const {
return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END;
}
const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
unsigned OpNo) const {
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
const MCInstrDesc &Desc = get(MI.getOpcode());
if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
Desc.OpInfo[OpNo].RegClass == -1) {
unsigned Reg = MI.getOperand(OpNo).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
return MRI.getRegClass(Reg);
return RI.getPhysRegClass(Reg);
}
unsigned RCID = Desc.OpInfo[OpNo].RegClass;
return RI.getRegClass(RCID);
}
bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const {
switch (MI.getOpcode()) {
case AMDGPU::COPY:
case AMDGPU::REG_SEQUENCE:
case AMDGPU::PHI:
case AMDGPU::INSERT_SUBREG:
return RI.hasVGPRs(getOpRegClass(MI, 0));
default:
return RI.hasVGPRs(getOpRegClass(MI, OpNo));
}
}
void SIInstrInfo::legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const {
MachineBasicBlock::iterator I = MI;
MachineBasicBlock *MBB = MI->getParent();
MachineOperand &MO = MI->getOperand(OpIdx);
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
unsigned RCID = get(MI->getOpcode()).OpInfo[OpIdx].RegClass;
const TargetRegisterClass *RC = RI.getRegClass(RCID);
unsigned Opcode = AMDGPU::V_MOV_B32_e32;
if (MO.isReg())
Opcode = AMDGPU::COPY;
else if (RI.isSGPRClass(RC))
Opcode = AMDGPU::S_MOV_B32;
const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC))
VRC = &AMDGPU::VReg_64RegClass;
else
VRC = &AMDGPU::VGPR_32RegClass;
unsigned Reg = MRI.createVirtualRegister(VRC);
DebugLoc DL = MBB->findDebugLoc(I);
BuildMI(*MI->getParent(), I, DL, get(Opcode), Reg)
.addOperand(MO);
MO.ChangeToRegister(Reg, false);
}
unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
MachineRegisterInfo &MRI,
MachineOperand &SuperReg,
const TargetRegisterClass *SuperRC,
unsigned SubIdx,
const TargetRegisterClass *SubRC)
const {
MachineBasicBlock *MBB = MI->getParent();
DebugLoc DL = MI->getDebugLoc();
unsigned SubReg = MRI.createVirtualRegister(SubRC);
if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) {
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
.addReg(SuperReg.getReg(), 0, SubIdx);
return SubReg;
}
// Just in case the super register is itself a sub-register, copy it to a new
// value so we don't need to worry about merging its subreg index with the
// SubIdx passed to this function. The register coalescer should be able to
// eliminate this extra copy.
unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC);
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg)
.addReg(SuperReg.getReg(), 0, SuperReg.getSubReg());
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
.addReg(NewSuperReg, 0, SubIdx);
return SubReg;
}
MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
MachineBasicBlock::iterator MII,
MachineRegisterInfo &MRI,
MachineOperand &Op,
const TargetRegisterClass *SuperRC,
unsigned SubIdx,
const TargetRegisterClass *SubRC) const {
if (Op.isImm()) {
// XXX - Is there a better way to do this?
if (SubIdx == AMDGPU::sub0)
return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF);
if (SubIdx == AMDGPU::sub1)
return MachineOperand::CreateImm(Op.getImm() >> 32);
llvm_unreachable("Unhandled register index for immediate");
}
unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC,
SubIdx, SubRC);
return MachineOperand::CreateReg(SubReg, false);
}
// Change the order of operands from (0, 1, 2) to (0, 2, 1)
void SIInstrInfo::swapOperands(MachineBasicBlock::iterator Inst) const {
assert(Inst->getNumExplicitOperands() == 3);
MachineOperand Op1 = Inst->getOperand(1);
Inst->RemoveOperand(1);
Inst->addOperand(Op1);
}
bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI,
const MCOperandInfo &OpInfo,
const MachineOperand &MO) const {
if (!MO.isReg())
return false;
unsigned Reg = MO.getReg();
const TargetRegisterClass *RC =
TargetRegisterInfo::isVirtualRegister(Reg) ?
MRI.getRegClass(Reg) :
RI.getPhysRegClass(Reg);
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo());
RC = TRI->getSubRegClass(RC, MO.getSubReg());
// In order to be legal, the common sub-class must be equal to the
// class of the current operand. For example:
//
// v_mov_b32 s0 ; Operand defined as vsrc_32
// ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL
//
// s_sendmsg 0, s0 ; Operand defined as m0reg
// ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL
return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC;
}
bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI,
const MCOperandInfo &OpInfo,
const MachineOperand &MO) const {
if (MO.isReg())
return isLegalRegOperand(MRI, OpInfo, MO);
// Handle non-register types that are treated like immediates.
assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());
return true;
}
bool SIInstrInfo::isOperandLegal(const MachineInstr *MI, unsigned OpIdx,
const MachineOperand *MO) const {
const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
const MCInstrDesc &InstDesc = MI->getDesc();
const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
const TargetRegisterClass *DefinedRC =
OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
if (!MO)
MO = &MI->getOperand(OpIdx);
if (isVALU(*MI) &&
usesConstantBus(MRI, *MO, DefinedRC->getSize())) {
RegSubRegPair SGPRUsed;
if (MO->isReg())
SGPRUsed = RegSubRegPair(MO->getReg(), MO->getSubReg());
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
if (i == OpIdx)
continue;
const MachineOperand &Op = MI->getOperand(i);
if (Op.isReg() &&
(Op.getReg() != SGPRUsed.Reg || Op.getSubReg() != SGPRUsed.SubReg) &&
usesConstantBus(MRI, Op, getOpSize(*MI, i))) {
return false;
}
}
}
if (MO->isReg()) {
assert(DefinedRC);
return isLegalRegOperand(MRI, OpInfo, *MO);
}
// Handle non-register types that are treated like immediates.
assert(MO->isImm() || MO->isTargetIndex() || MO->isFI());
if (!DefinedRC) {
// This operand expects an immediate.
return true;
}
return isImmOperandLegal(MI, OpIdx, *MO);
}
void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI,
MachineInstr *MI) const {
unsigned Opc = MI->getOpcode();
const MCInstrDesc &InstrDesc = get(Opc);
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
MachineOperand &Src1 = MI->getOperand(Src1Idx);
// If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32
// we need to only have one constant bus use.
//
// Note we do not need to worry about literal constants here. They are
// disabled for the operand type for instructions because they will always
// violate the one constant bus use rule.
bool HasImplicitSGPR = findImplicitSGPRRead(*MI) != AMDGPU::NoRegister;
if (HasImplicitSGPR) {
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
MachineOperand &Src0 = MI->getOperand(Src0Idx);
if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg()))
legalizeOpWithMove(MI, Src0Idx);
}
// VOP2 src0 instructions support all operand types, so we don't need to check
// their legality. If src1 is already legal, we don't need to do anything.
if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1))
return;
// We do not use commuteInstruction here because it is too aggressive and will
// commute if it is possible. We only want to commute here if it improves
// legality. This can be called a fairly large number of times so don't waste
// compile time pointlessly swapping and checking legality again.
if (HasImplicitSGPR || !MI->isCommutable()) {
legalizeOpWithMove(MI, Src1Idx);
return;
}
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
MachineOperand &Src0 = MI->getOperand(Src0Idx);
// If src0 can be used as src1, commuting will make the operands legal.
// Otherwise we have to give up and insert a move.
//
// TODO: Other immediate-like operand kinds could be commuted if there was a
// MachineOperand::ChangeTo* for them.
if ((!Src1.isImm() && !Src1.isReg()) ||
!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) {
legalizeOpWithMove(MI, Src1Idx);
return;
}
int CommutedOpc = commuteOpcode(*MI);
if (CommutedOpc == -1) {
legalizeOpWithMove(MI, Src1Idx);
return;
}
MI->setDesc(get(CommutedOpc));
unsigned Src0Reg = Src0.getReg();
unsigned Src0SubReg = Src0.getSubReg();
bool Src0Kill = Src0.isKill();
if (Src1.isImm())
Src0.ChangeToImmediate(Src1.getImm());
else if (Src1.isReg()) {
Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill());
Src0.setSubReg(Src1.getSubReg());
} else
llvm_unreachable("Should only have register or immediate operands");
Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill);
Src1.setSubReg(Src0SubReg);
}
// Legalize VOP3 operands. Because all operand types are supported for any
// operand, and since literal constants are not allowed and should never be
// seen, we only need to worry about inserting copies if we use multiple SGPR
// operands.
void SIInstrInfo::legalizeOperandsVOP3(
MachineRegisterInfo &MRI,
MachineInstr *MI) const {
unsigned Opc = MI->getOpcode();
int VOP3Idx[3] = {
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1),
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)
};
// Find the one SGPR operand we are allowed to use.
unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx);
for (unsigned i = 0; i < 3; ++i) {
int Idx = VOP3Idx[i];
if (Idx == -1)
break;
MachineOperand &MO = MI->getOperand(Idx);
// We should never see a VOP3 instruction with an illegal immediate operand.
if (!MO.isReg())
continue;
if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
continue; // VGPRs are legal
if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) {
SGPRReg = MO.getReg();
// We can use one SGPR in each VOP3 instruction.
continue;
}
// If we make it this far, then the operand is not legal and we must
// legalize it.
legalizeOpWithMove(MI, Idx);
}
}
unsigned SIInstrInfo::readlaneVGPRToSGPR(unsigned SrcReg, MachineInstr *UseMI,
MachineRegisterInfo &MRI) const {
const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg);
const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC);
unsigned DstReg = MRI.createVirtualRegister(SRC);
unsigned SubRegs = VRC->getSize() / 4;
SmallVector<unsigned, 8> SRegs;
for (unsigned i = 0; i < SubRegs; ++i) {
unsigned SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
BuildMI(*UseMI->getParent(), UseMI, UseMI->getDebugLoc(),
get(AMDGPU::V_READFIRSTLANE_B32), SGPR)
.addReg(SrcReg, 0, RI.getSubRegFromChannel(i));
SRegs.push_back(SGPR);
}
MachineInstrBuilder MIB = BuildMI(*UseMI->getParent(), UseMI,
UseMI->getDebugLoc(),
get(AMDGPU::REG_SEQUENCE), DstReg);
for (unsigned i = 0; i < SubRegs; ++i) {
MIB.addReg(SRegs[i]);
MIB.addImm(RI.getSubRegFromChannel(i));
}
return DstReg;
}
void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI,
MachineInstr *MI) const {
// If the pointer is store in VGPRs, then we need to move them to
// SGPRs using v_readfirstlane. This is safe because we only select
// loads with uniform pointers to SMRD instruction so we know the
// pointer value is uniform.
MachineOperand *SBase = getNamedOperand(*MI, AMDGPU::OpName::sbase);
if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) {
unsigned SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI);
SBase->setReg(SGPR);
}
}
void SIInstrInfo::legalizeOperands(MachineInstr *MI) const {
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
// Legalize VOP2
if (isVOP2(*MI) || isVOPC(*MI)) {
legalizeOperandsVOP2(MRI, MI);
return;
}
// Legalize VOP3
if (isVOP3(*MI)) {
legalizeOperandsVOP3(MRI, MI);
return;
}
// Legalize SMRD
if (isSMRD(*MI)) {
legalizeOperandsSMRD(MRI, MI);
return;
}
// Legalize REG_SEQUENCE and PHI
// The register class of the operands much be the same type as the register
// class of the output.
if (MI->getOpcode() == AMDGPU::PHI) {
const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
if (!MI->getOperand(i).isReg() ||
!TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg()))
continue;
const TargetRegisterClass *OpRC =
MRI.getRegClass(MI->getOperand(i).getReg());
if (RI.hasVGPRs(OpRC)) {
VRC = OpRC;
} else {
SRC = OpRC;
}
}
// If any of the operands are VGPR registers, then they all most be
// otherwise we will create illegal VGPR->SGPR copies when legalizing
// them.
if (VRC || !RI.isSGPRClass(getOpRegClass(*MI, 0))) {
if (!VRC) {
assert(SRC);
VRC = RI.getEquivalentVGPRClass(SRC);
}
RC = VRC;
} else {
RC = SRC;
}
// Update all the operands so they have the same type.
for (unsigned I = 1, E = MI->getNumOperands(); I != E; I += 2) {
MachineOperand &Op = MI->getOperand(I);
if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
continue;
unsigned DstReg = MRI.createVirtualRegister(RC);
// MI is a PHI instruction.
MachineBasicBlock *InsertBB = MI->getOperand(I + 1).getMBB();
MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator();
BuildMI(*InsertBB, Insert, MI->getDebugLoc(), get(AMDGPU::COPY), DstReg)
.addOperand(Op);
Op.setReg(DstReg);
}
}
// REG_SEQUENCE doesn't really require operand legalization, but if one has a
// VGPR dest type and SGPR sources, insert copies so all operands are
// VGPRs. This seems to help operand folding / the register coalescer.
if (MI->getOpcode() == AMDGPU::REG_SEQUENCE) {
MachineBasicBlock *MBB = MI->getParent();
const TargetRegisterClass *DstRC = getOpRegClass(*MI, 0);
if (RI.hasVGPRs(DstRC)) {
// Update all the operands so they are VGPR register classes. These may
// not be the same register class because REG_SEQUENCE supports mixing
// subregister index types e.g. sub0_sub1 + sub2 + sub3
for (unsigned I = 1, E = MI->getNumOperands(); I != E; I += 2) {
MachineOperand &Op = MI->getOperand(I);
if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
continue;
const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg());
const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC);
if (VRC == OpRC)
continue;
unsigned DstReg = MRI.createVirtualRegister(VRC);
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::COPY), DstReg)
.addOperand(Op);
Op.setReg(DstReg);
Op.setIsKill();
}
}
return;
}
// Legalize INSERT_SUBREG
// src0 must have the same register class as dst
if (MI->getOpcode() == AMDGPU::INSERT_SUBREG) {
unsigned Dst = MI->getOperand(0).getReg();
unsigned Src0 = MI->getOperand(1).getReg();
const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0);
if (DstRC != Src0RC) {
MachineBasicBlock &MBB = *MI->getParent();
unsigned NewSrc0 = MRI.createVirtualRegister(DstRC);
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::COPY), NewSrc0)
.addReg(Src0);
MI->getOperand(1).setReg(NewSrc0);
}
return;
}
// Legalize MIMG
if (isMIMG(*MI)) {
MachineOperand *SRsrc = getNamedOperand(*MI, AMDGPU::OpName::srsrc);
if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) {
unsigned SGPR = readlaneVGPRToSGPR(SRsrc->getReg(), MI, MRI);
SRsrc->setReg(SGPR);
}
MachineOperand *SSamp = getNamedOperand(*MI, AMDGPU::OpName::ssamp);
if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) {
unsigned SGPR = readlaneVGPRToSGPR(SSamp->getReg(), MI, MRI);
SSamp->setReg(SGPR);
}
return;
}
// Legalize MUBUF* instructions
// FIXME: If we start using the non-addr64 instructions for compute, we
// may need to legalize them here.
int SRsrcIdx =
AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc);
if (SRsrcIdx != -1) {
// We have an MUBUF instruction
MachineOperand *SRsrc = &MI->getOperand(SRsrcIdx);
unsigned SRsrcRC = get(MI->getOpcode()).OpInfo[SRsrcIdx].RegClass;
if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()),
RI.getRegClass(SRsrcRC))) {
// The operands are legal.
// FIXME: We may need to legalize operands besided srsrc.
return;
}
MachineBasicBlock &MBB = *MI->getParent();
// Extract the ptr from the resource descriptor.
unsigned SRsrcPtr = buildExtractSubReg(MI, MRI, *SRsrc,
&AMDGPU::VReg_128RegClass, AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass);
// Create an empty resource descriptor
unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
uint64_t RsrcDataFormat = getDefaultRsrcDataFormat();
// Zero64 = 0
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B64),
Zero64)
.addImm(0);
// SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
SRsrcFormatLo)
.addImm(RsrcDataFormat & 0xFFFFFFFF);
// SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
SRsrcFormatHi)
.addImm(RsrcDataFormat >> 32);
// NewSRsrc = {Zero64, SRsrcFormat}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewSRsrc)
.addReg(Zero64)
.addImm(AMDGPU::sub0_sub1)
.addReg(SRsrcFormatLo)
.addImm(AMDGPU::sub2)
.addReg(SRsrcFormatHi)
.addImm(AMDGPU::sub3);
MachineOperand *VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr);
unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
if (VAddr) {
// This is already an ADDR64 instruction so we need to add the pointer
// extracted from the resource descriptor to the current value of VAddr.
unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
// NewVaddrLo = SRsrcPtr:sub0 + VAddr:sub0
DebugLoc DL = MI->getDebugLoc();
BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), NewVAddrLo)
.addReg(SRsrcPtr, 0, AMDGPU::sub0)
.addReg(VAddr->getReg(), 0, AMDGPU::sub0);
// NewVaddrHi = SRsrcPtr:sub1 + VAddr:sub1
BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e32), NewVAddrHi)
.addReg(SRsrcPtr, 0, AMDGPU::sub1)
.addReg(VAddr->getReg(), 0, AMDGPU::sub1);
// NewVaddr = {NewVaddrHi, NewVaddrLo}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr)
.addReg(NewVAddrLo)
.addImm(AMDGPU::sub0)
.addReg(NewVAddrHi)
.addImm(AMDGPU::sub1);
} else {
// This instructions is the _OFFSET variant, so we need to convert it to
// ADDR64.
assert(MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration()
< AMDGPUSubtarget::VOLCANIC_ISLANDS &&
"FIXME: Need to emit flat atomics here");
MachineOperand *VData = getNamedOperand(*MI, AMDGPU::OpName::vdata);
MachineOperand *Offset = getNamedOperand(*MI, AMDGPU::OpName::offset);
MachineOperand *SOffset = getNamedOperand(*MI, AMDGPU::OpName::soffset);
unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI->getOpcode());
// Atomics rith return have have an additional tied operand and are
// missing some of the special bits.
MachineOperand *VDataIn = getNamedOperand(*MI, AMDGPU::OpName::vdata_in);
MachineInstr *Addr64;
if (!VDataIn) {
// Regular buffer load / store.
MachineInstrBuilder MIB
= BuildMI(MBB, MI, MI->getDebugLoc(), get(Addr64Opcode))
.addOperand(*VData)
.addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
// This will be replaced later
// with the new value of vaddr.
.addOperand(*SRsrc)
.addOperand(*SOffset)
.addOperand(*Offset);
// Atomics do not have this operand.
if (const MachineOperand *GLC
= getNamedOperand(*MI, AMDGPU::OpName::glc)) {
MIB.addImm(GLC->getImm());
}
MIB.addImm(getNamedImmOperand(*MI, AMDGPU::OpName::slc));
if (const MachineOperand *TFE
= getNamedOperand(*MI, AMDGPU::OpName::tfe)) {
MIB.addImm(TFE->getImm());
}
MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
Addr64 = MIB;
} else {
// Atomics with return.
Addr64 = BuildMI(MBB, MI, MI->getDebugLoc(), get(Addr64Opcode))
.addOperand(*VData)
.addOperand(*VDataIn)
.addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
// This will be replaced later
// with the new value of vaddr.
.addOperand(*SRsrc)
.addOperand(*SOffset)
.addOperand(*Offset)
.addImm(getNamedImmOperand(*MI, AMDGPU::OpName::slc))
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
}
MI->removeFromParent();
MI = Addr64;
// NewVaddr = {NewVaddrHi, NewVaddrLo}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr)
.addReg(SRsrcPtr, 0, AMDGPU::sub0)
.addImm(AMDGPU::sub0)
.addReg(SRsrcPtr, 0, AMDGPU::sub1)
.addImm(AMDGPU::sub1);
VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr);
SRsrc = getNamedOperand(*MI, AMDGPU::OpName::srsrc);
}
// Update the instruction to use NewVaddr
VAddr->setReg(NewVAddr);
// Update the instruction to use NewSRsrc
SRsrc->setReg(NewSRsrc);
}
}
void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
SmallVector<MachineInstr *, 128> Worklist;
Worklist.push_back(&TopInst);
while (!Worklist.empty()) {
MachineInstr *Inst = Worklist.pop_back_val();
MachineBasicBlock *MBB = Inst->getParent();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
unsigned Opcode = Inst->getOpcode();
unsigned NewOpcode = getVALUOp(*Inst);
// Handle some special cases
switch (Opcode) {
default:
break;
case AMDGPU::S_AND_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_AND_B32_e64);
Inst->eraseFromParent();
continue;
case AMDGPU::S_OR_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_OR_B32_e64);
Inst->eraseFromParent();
continue;
case AMDGPU::S_XOR_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_XOR_B32_e64);
Inst->eraseFromParent();
continue;
case AMDGPU::S_NOT_B64:
splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::V_NOT_B32_e32);
Inst->eraseFromParent();
continue;
case AMDGPU::S_BCNT1_I32_B64:
splitScalar64BitBCNT(Worklist, Inst);
Inst->eraseFromParent();
continue;
case AMDGPU::S_BFE_I64: {
splitScalar64BitBFE(Worklist, Inst);
Inst->eraseFromParent();
continue;
}
case AMDGPU::S_LSHL_B32:
if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
NewOpcode = AMDGPU::V_LSHLREV_B32_e64;
swapOperands(Inst);
}
break;
case AMDGPU::S_ASHR_I32:
if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
NewOpcode = AMDGPU::V_ASHRREV_I32_e64;
swapOperands(Inst);
}
break;
case AMDGPU::S_LSHR_B32:
if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
NewOpcode = AMDGPU::V_LSHRREV_B32_e64;
swapOperands(Inst);
}
break;
case AMDGPU::S_LSHL_B64:
if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
NewOpcode = AMDGPU::V_LSHLREV_B64;
swapOperands(Inst);
}
break;
case AMDGPU::S_ASHR_I64:
if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
NewOpcode = AMDGPU::V_ASHRREV_I64;
swapOperands(Inst);
}
break;
case AMDGPU::S_LSHR_B64:
if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
NewOpcode = AMDGPU::V_LSHRREV_B64;
swapOperands(Inst);
}
break;
case AMDGPU::S_ABS_I32:
lowerScalarAbs(Worklist, Inst);
Inst->eraseFromParent();
continue;
case AMDGPU::S_CBRANCH_SCC0:
case AMDGPU::S_CBRANCH_SCC1:
// Clear unused bits of vcc
BuildMI(*MBB, Inst, Inst->getDebugLoc(), get(AMDGPU::S_AND_B64), AMDGPU::VCC)
.addReg(AMDGPU::EXEC)
.addReg(AMDGPU::VCC);
break;
case AMDGPU::S_BFE_U64:
case AMDGPU::S_BFM_B64:
llvm_unreachable("Moving this op to VALU not implemented");
}
if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
// We cannot move this instruction to the VALU, so we should try to
// legalize its operands instead.
legalizeOperands(Inst);
continue;
}
// Use the new VALU Opcode.
const MCInstrDesc &NewDesc = get(NewOpcode);
Inst->setDesc(NewDesc);
// Remove any references to SCC. Vector instructions can't read from it, and
// We're just about to add the implicit use / defs of VCC, and we don't want
// both.
for (unsigned i = Inst->getNumOperands() - 1; i > 0; --i) {
MachineOperand &Op = Inst->getOperand(i);
if (Op.isReg() && Op.getReg() == AMDGPU::SCC) {
Inst->RemoveOperand(i);
addSCCDefUsersToVALUWorklist(Inst, Worklist);
}
}
if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
// We are converting these to a BFE, so we need to add the missing
// operands for the size and offset.
unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
Inst->addOperand(MachineOperand::CreateImm(0));
Inst->addOperand(MachineOperand::CreateImm(Size));
} else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
// The VALU version adds the second operand to the result, so insert an
// extra 0 operand.
Inst->addOperand(MachineOperand::CreateImm(0));
}
Inst->addImplicitDefUseOperands(*Inst->getParent()->getParent());
if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
const MachineOperand &OffsetWidthOp = Inst->getOperand(2);
// If we need to move this to VGPRs, we need to unpack the second operand
// back into the 2 separate ones for bit offset and width.
assert(OffsetWidthOp.isImm() &&
"Scalar BFE is only implemented for constant width and offset");
uint32_t Imm = OffsetWidthOp.getImm();
uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
Inst->RemoveOperand(2); // Remove old immediate.
Inst->addOperand(MachineOperand::CreateImm(Offset));
Inst->addOperand(MachineOperand::CreateImm(BitWidth));
}
bool HasDst = Inst->getOperand(0).isReg() && Inst->getOperand(0).isDef();
unsigned NewDstReg = AMDGPU::NoRegister;
if (HasDst) {
// Update the destination register class.
const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(*Inst);
if (!NewDstRC)
continue;
unsigned DstReg = Inst->getOperand(0).getReg();
NewDstReg = MRI.createVirtualRegister(NewDstRC);
MRI.replaceRegWith(DstReg, NewDstReg);
}
// Legalize the operands
legalizeOperands(Inst);
if (HasDst)
addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist);
}
}
//===----------------------------------------------------------------------===//
// Indirect addressing callbacks
//===----------------------------------------------------------------------===//
const TargetRegisterClass *SIInstrInfo::getIndirectAddrRegClass() const {
return &AMDGPU::VGPR_32RegClass;
}
void SIInstrInfo::lowerScalarAbs(SmallVectorImpl<MachineInstr *> &Worklist,
MachineInstr *Inst) const {
MachineBasicBlock &MBB = *Inst->getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineBasicBlock::iterator MII = Inst;
DebugLoc DL = Inst->getDebugLoc();
MachineOperand &Dest = Inst->getOperand(0);
MachineOperand &Src = Inst->getOperand(1);
unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(MBB, MII, DL, get(AMDGPU::V_SUB_I32_e32), TmpReg)
.addImm(0)
.addReg(Src.getReg());
BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg)
.addReg(Src.getReg())
.addReg(TmpReg);
MRI.replaceRegWith(Dest.getReg(), ResultReg);
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
}
void SIInstrInfo::splitScalar64BitUnaryOp(
SmallVectorImpl<MachineInstr *> &Worklist,
MachineInstr *Inst,
unsigned Opcode) const {
MachineBasicBlock &MBB = *Inst->getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineOperand &Dest = Inst->getOperand(0);
MachineOperand &Src0 = Inst->getOperand(1);
DebugLoc DL = Inst->getDebugLoc();
MachineBasicBlock::iterator MII = Inst;
const MCInstrDesc &InstDesc = get(Opcode);
const TargetRegisterClass *Src0RC = Src0.isReg() ?
MRI.getRegClass(Src0.getReg()) :
&AMDGPU::SGPR_32RegClass;
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub0, Src0SubRC);
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
BuildMI(MBB, MII, DL, InstDesc, DestSub0)
.addOperand(SrcReg0Sub0);
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub1, Src0SubRC);
unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
BuildMI(MBB, MII, DL, InstDesc, DestSub1)
.addOperand(SrcReg0Sub1);
unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC);
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
.addReg(DestSub0)
.addImm(AMDGPU::sub0)
.addReg(DestSub1)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
// We don't need to legalizeOperands here because for a single operand, src0
// will support any kind of input.
// Move all users of this moved value.
addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
}
void SIInstrInfo::splitScalar64BitBinaryOp(
SmallVectorImpl<MachineInstr *> &Worklist,
MachineInstr *Inst,
unsigned Opcode) const {
MachineBasicBlock &MBB = *Inst->getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineOperand &Dest = Inst->getOperand(0);
MachineOperand &Src0 = Inst->getOperand(1);
MachineOperand &Src1 = Inst->getOperand(2);
DebugLoc DL = Inst->getDebugLoc();
MachineBasicBlock::iterator MII = Inst;
const MCInstrDesc &InstDesc = get(Opcode);
const TargetRegisterClass *Src0RC = Src0.isReg() ?
MRI.getRegClass(Src0.getReg()) :
&AMDGPU::SGPR_32RegClass;
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
const TargetRegisterClass *Src1RC = Src1.isReg() ?
MRI.getRegClass(Src1.getReg()) :
&AMDGPU::SGPR_32RegClass;
const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub0, Src0SubRC);
MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
AMDGPU::sub0, Src1SubRC);
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
MachineInstr *LoHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub0)
.addOperand(SrcReg0Sub0)
.addOperand(SrcReg1Sub0);
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub1, Src0SubRC);
MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
AMDGPU::sub1, Src1SubRC);
unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
MachineInstr *HiHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub1)
.addOperand(SrcReg0Sub1)
.addOperand(SrcReg1Sub1);
unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC);
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
.addReg(DestSub0)
.addImm(AMDGPU::sub0)
.addReg(DestSub1)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
// Try to legalize the operands in case we need to swap the order to keep it
// valid.
legalizeOperands(LoHalf);
legalizeOperands(HiHalf);
// Move all users of this moved vlaue.
addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
}
void SIInstrInfo::splitScalar64BitBCNT(SmallVectorImpl<MachineInstr *> &Worklist,
MachineInstr *Inst) const {
MachineBasicBlock &MBB = *Inst->getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineBasicBlock::iterator MII = Inst;
DebugLoc DL = Inst->getDebugLoc();
MachineOperand &Dest = Inst->getOperand(0);
MachineOperand &Src = Inst->getOperand(1);
const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64);
const TargetRegisterClass *SrcRC = Src.isReg() ?
MRI.getRegClass(Src.getReg()) :
&AMDGPU::SGPR_32RegClass;
unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0);
MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
AMDGPU::sub0, SrcSubRC);
MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
AMDGPU::sub1, SrcSubRC);
BuildMI(MBB, MII, DL, InstDesc, MidReg)
.addOperand(SrcRegSub0)
.addImm(0);
BuildMI(MBB, MII, DL, InstDesc, ResultReg)
.addOperand(SrcRegSub1)
.addReg(MidReg);
MRI.replaceRegWith(Dest.getReg(), ResultReg);
// We don't need to legalize operands here. src0 for etiher instruction can be
// an SGPR, and the second input is unused or determined here.
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
}
void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist,
MachineInstr *Inst) const {
MachineBasicBlock &MBB = *Inst->getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineBasicBlock::iterator MII = Inst;
DebugLoc DL = Inst->getDebugLoc();
MachineOperand &Dest = Inst->getOperand(0);
uint32_t Imm = Inst->getOperand(2).getImm();
uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
(void) Offset;
// Only sext_inreg cases handled.
assert(Inst->getOpcode() == AMDGPU::S_BFE_I64 &&
BitWidth <= 32 &&
Offset == 0 &&
"Not implemented");
if (BitWidth < 32) {
unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo)
.addReg(Inst->getOperand(1).getReg(), 0, AMDGPU::sub0)
.addImm(0)
.addImm(BitWidth);
BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi)
.addImm(31)
.addReg(MidRegLo);
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
.addReg(MidRegLo)
.addImm(AMDGPU::sub0)
.addReg(MidRegHi)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Dest.getReg(), ResultReg);
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
return;
}
MachineOperand &Src = Inst->getOperand(1);
unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg)
.addImm(31)
.addReg(Src.getReg(), 0, AMDGPU::sub0);
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
.addReg(Src.getReg(), 0, AMDGPU::sub0)
.addImm(AMDGPU::sub0)
.addReg(TmpReg)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Dest.getReg(), ResultReg);
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
}
void SIInstrInfo::addUsersToMoveToVALUWorklist(
unsigned DstReg,
MachineRegisterInfo &MRI,
SmallVectorImpl<MachineInstr *> &Worklist) const {
for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg),
E = MRI.use_end(); I != E; ++I) {
MachineInstr &UseMI = *I->getParent();
if (!canReadVGPR(UseMI, I.getOperandNo())) {
Worklist.push_back(&UseMI);
}
}
}
void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineInstr *SCCDefInst,
SmallVectorImpl<MachineInstr *> &Worklist) const {
// This assumes that all the users of SCC are in the same block
// as the SCC def.
for (MachineBasicBlock::iterator I = SCCDefInst,
E = SCCDefInst->getParent()->end(); I != E; ++I) {
// Exit if we find another SCC def.
if (I->findRegisterDefOperandIdx(AMDGPU::SCC) != -1)
return;
if (I->findRegisterUseOperandIdx(AMDGPU::SCC) != -1)
Worklist.push_back(I);
}
}
const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass(
const MachineInstr &Inst) const {
const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0);
switch (Inst.getOpcode()) {
// For target instructions, getOpRegClass just returns the virtual register
// class associated with the operand, so we need to find an equivalent VGPR
// register class in order to move the instruction to the VALU.
case AMDGPU::COPY:
case AMDGPU::PHI:
case AMDGPU::REG_SEQUENCE:
case AMDGPU::INSERT_SUBREG:
if (RI.hasVGPRs(NewDstRC))
return nullptr;
NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
if (!NewDstRC)
return nullptr;
return NewDstRC;
default:
return NewDstRC;
}
}
// Find the one SGPR operand we are allowed to use.
unsigned SIInstrInfo::findUsedSGPR(const MachineInstr *MI,
int OpIndices[3]) const {
const MCInstrDesc &Desc = MI->getDesc();
// Find the one SGPR operand we are allowed to use.
//
// First we need to consider the instruction's operand requirements before
// legalizing. Some operands are required to be SGPRs, such as implicit uses
// of VCC, but we are still bound by the constant bus requirement to only use
// one.
//
// If the operand's class is an SGPR, we can never move it.
unsigned SGPRReg = findImplicitSGPRRead(*MI);
if (SGPRReg != AMDGPU::NoRegister)
return SGPRReg;
unsigned UsedSGPRs[3] = { AMDGPU::NoRegister };
const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
for (unsigned i = 0; i < 3; ++i) {
int Idx = OpIndices[i];
if (Idx == -1)
break;
const MachineOperand &MO = MI->getOperand(Idx);
if (!MO.isReg())
continue;
// Is this operand statically required to be an SGPR based on the operand
// constraints?
const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass);
bool IsRequiredSGPR = RI.isSGPRClass(OpRC);
if (IsRequiredSGPR)
return MO.getReg();
// If this could be a VGPR or an SGPR, Check the dynamic register class.
unsigned Reg = MO.getReg();
const TargetRegisterClass *RegRC = MRI.getRegClass(Reg);
if (RI.isSGPRClass(RegRC))
UsedSGPRs[i] = Reg;
}
// We don't have a required SGPR operand, so we have a bit more freedom in
// selecting operands to move.
// Try to select the most used SGPR. If an SGPR is equal to one of the
// others, we choose that.
//
// e.g.
// V_FMA_F32 v0, s0, s0, s0 -> No moves
// V_FMA_F32 v0, s0, s1, s0 -> Move s1
// TODO: If some of the operands are 64-bit SGPRs and some 32, we should
// prefer those.
if (UsedSGPRs[0] != AMDGPU::NoRegister) {
if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2])
SGPRReg = UsedSGPRs[0];
}
if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) {
if (UsedSGPRs[1] == UsedSGPRs[2])
SGPRReg = UsedSGPRs[1];
}
return SGPRReg;
}
void SIInstrInfo::reserveIndirectRegisters(BitVector &Reserved,
const MachineFunction &MF) const {
int End = getIndirectIndexEnd(MF);
int Begin = getIndirectIndexBegin(MF);
if (End == -1)
return;
for (int Index = Begin; Index <= End; ++Index)
Reserved.set(AMDGPU::VGPR_32RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 1); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_64RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 2); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_96RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 3); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_128RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 7); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_256RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 15); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_512RegClass.getRegister(Index));
}
MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
unsigned OperandName) const {
int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName);
if (Idx == -1)
return nullptr;
return &MI.getOperand(Idx);
}
uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const {
uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT;
if (ST.isAmdHsaOS()) {
RsrcDataFormat |= (1ULL << 56);
if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
// Set MTYPE = 2
RsrcDataFormat |= (2ULL << 59);
}
return RsrcDataFormat;
}
uint64_t SIInstrInfo::getScratchRsrcWords23() const {
uint64_t Rsrc23 = getDefaultRsrcDataFormat() |
AMDGPU::RSRC_TID_ENABLE |
0xffffffff; // Size;
uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize()) - 1;
Rsrc23 |= (EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT);
// If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17].
// Clear them unless we want a huge stride.
if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT;
return Rsrc23;
}
bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr *MI) const {
unsigned Opc = MI->getOpcode();
return isSMRD(Opc);
}
bool SIInstrInfo::isHighLatencyInstruction(const MachineInstr *MI) const {
unsigned Opc = MI->getOpcode();
return isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc);
}
ArrayRef<std::pair<int, const char *>>
SIInstrInfo::getSerializableTargetIndices() const {
static const std::pair<int, const char *> TargetIndices[] = {
{AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"},
{AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"},
{AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"},
{AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"},
{AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}};
return makeArrayRef(TargetIndices);
}
/// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The
/// post-RA version of misched uses CreateTargetMIHazardRecognizer.
ScheduleHazardRecognizer *
SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAG *DAG) const {
return new GCNHazardRecognizer(DAG->MF);
}
/// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer
/// pass.
ScheduleHazardRecognizer *
SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
return new GCNHazardRecognizer(MF);
}