llvm-project/clang/lib/Lex/PTHLexer.cpp

690 lines
22 KiB
C++

//===--- PTHLexer.cpp - Lex from a token stream ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PTHLexer interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/TokenKinds.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Lex/PTHLexer.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PTHManager.h"
#include "clang/Lex/Token.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/System/Host.h"
using namespace clang;
#define DISK_TOKEN_SIZE (1+1+2+4+4)
//===----------------------------------------------------------------------===//
// Utility methods for reading from the mmap'ed PTH file.
//===----------------------------------------------------------------------===//
static inline uint16_t ReadUnalignedLE16(const unsigned char *&Data) {
uint16_t V = ((uint16_t)Data[0] << 0) |
((uint16_t)Data[1] << 8);
Data += 2;
return V;
}
static inline uint32_t ReadLE32(const unsigned char *&Data) {
// Hosts that directly support little-endian 32-bit loads can just
// use them. Big-endian hosts need a bswap.
uint32_t V = *((uint32_t*)Data);
if (llvm::sys::isBigEndianHost())
V = llvm::ByteSwap_32(V);
Data += 4;
return V;
}
//===----------------------------------------------------------------------===//
// PTHLexer methods.
//===----------------------------------------------------------------------===//
PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D,
const unsigned char *ppcond,
PTHSpellingSearch &mySpellingSrch, PTHManager &PM)
: PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(0),
PPCond(ppcond), CurPPCondPtr(ppcond), MySpellingSrch(mySpellingSrch),
PTHMgr(PM) {
FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID);
}
void PTHLexer::Lex(Token& Tok) {
LexNextToken:
//===--------------------------------------==//
// Read the raw token data.
//===--------------------------------------==//
// Shadow CurPtr into an automatic variable.
const unsigned char *CurPtrShadow = CurPtr;
// Read in the data for the token.
unsigned Word0 = ReadLE32(CurPtrShadow);
uint32_t IdentifierID = ReadLE32(CurPtrShadow);
uint32_t FileOffset = ReadLE32(CurPtrShadow);
tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF);
Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF);
uint32_t Len = Word0 >> 16;
CurPtr = CurPtrShadow;
//===--------------------------------------==//
// Construct the token itself.
//===--------------------------------------==//
Tok.startToken();
Tok.setKind(TKind);
Tok.setFlag(TFlags);
assert(!LexingRawMode);
Tok.setLocation(FileStartLoc.getFileLocWithOffset(FileOffset));
Tok.setLength(Len);
// Handle identifiers.
if (IdentifierID) {
MIOpt.ReadToken();
IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1);
Tok.setIdentifierInfo(II);
// Change the kind of this identifier to the appropriate token kind, e.g.
// turning "for" into a keyword.
Tok.setKind(II->getTokenID());
if (II->isHandleIdentifierCase())
PP->HandleIdentifier(Tok);
return;
}
//===--------------------------------------==//
// Process the token.
//===--------------------------------------==//
#if 0
SourceManager& SM = PP->getSourceManager();
llvm::cerr << SM.getFileEntryForID(FileID)->getName()
<< ':' << SM.getLogicalLineNumber(Tok.getLocation())
<< ':' << SM.getLogicalColumnNumber(Tok.getLocation())
<< '\n';
#endif
if (TKind == tok::eof) {
// Save the end-of-file token.
EofToken = Tok;
Preprocessor *PPCache = PP;
assert(!ParsingPreprocessorDirective);
assert(!LexingRawMode);
// FIXME: Issue diagnostics similar to Lexer.
if (PP->HandleEndOfFile(Tok, false))
return;
assert(PPCache && "Raw buffer::LexEndOfFile should return a token");
return PPCache->Lex(Tok);
}
if (TKind == tok::hash && Tok.isAtStartOfLine()) {
LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE;
assert(!LexingRawMode);
PP->HandleDirective(Tok);
if (PP->isCurrentLexer(this))
goto LexNextToken;
return PP->Lex(Tok);
}
if (TKind == tok::eom) {
assert(ParsingPreprocessorDirective);
ParsingPreprocessorDirective = false;
return;
}
MIOpt.ReadToken();
}
// FIXME: We can just grab the last token instead of storing a copy
// into EofToken.
void PTHLexer::getEOF(Token& Tok) {
assert(EofToken.is(tok::eof));
Tok = EofToken;
}
void PTHLexer::DiscardToEndOfLine() {
assert(ParsingPreprocessorDirective && ParsingFilename == false &&
"Must be in a preprocessing directive!");
// We assume that if the preprocessor wishes to discard to the end of
// the line that it also means to end the current preprocessor directive.
ParsingPreprocessorDirective = false;
// Skip tokens by only peeking at their token kind and the flags.
// We don't need to actually reconstruct full tokens from the token buffer.
// This saves some copies and it also reduces IdentifierInfo* lookup.
const unsigned char* p = CurPtr;
while (1) {
// Read the token kind. Are we at the end of the file?
tok::TokenKind x = (tok::TokenKind) (uint8_t) *p;
if (x == tok::eof) break;
// Read the token flags. Are we at the start of the next line?
Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1];
if (y & Token::StartOfLine) break;
// Skip to the next token.
p += DISK_TOKEN_SIZE;
}
CurPtr = p;
}
/// SkipBlock - Used by Preprocessor to skip the current conditional block.
bool PTHLexer::SkipBlock() {
assert(CurPPCondPtr && "No cached PP conditional information.");
assert(LastHashTokPtr && "No known '#' token.");
const unsigned char* HashEntryI = 0;
uint32_t Offset;
uint32_t TableIdx;
do {
// Read the token offset from the side-table.
Offset = ReadLE32(CurPPCondPtr);
// Read the target table index from the side-table.
TableIdx = ReadLE32(CurPPCondPtr);
// Compute the actual memory address of the '#' token data for this entry.
HashEntryI = TokBuf + Offset;
// Optmization: "Sibling jumping". #if...#else...#endif blocks can
// contain nested blocks. In the side-table we can jump over these
// nested blocks instead of doing a linear search if the next "sibling"
// entry is not at a location greater than LastHashTokPtr.
if (HashEntryI < LastHashTokPtr && TableIdx) {
// In the side-table we are still at an entry for a '#' token that
// is earlier than the last one we saw. Check if the location we would
// stride gets us closer.
const unsigned char* NextPPCondPtr =
PPCond + TableIdx*(sizeof(uint32_t)*2);
assert(NextPPCondPtr >= CurPPCondPtr);
// Read where we should jump to.
uint32_t TmpOffset = ReadLE32(NextPPCondPtr);
const unsigned char* HashEntryJ = TokBuf + TmpOffset;
if (HashEntryJ <= LastHashTokPtr) {
// Jump directly to the next entry in the side table.
HashEntryI = HashEntryJ;
Offset = TmpOffset;
TableIdx = ReadLE32(NextPPCondPtr);
CurPPCondPtr = NextPPCondPtr;
}
}
}
while (HashEntryI < LastHashTokPtr);
assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'");
assert(TableIdx && "No jumping from #endifs.");
// Update our side-table iterator.
const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2);
assert(NextPPCondPtr >= CurPPCondPtr);
CurPPCondPtr = NextPPCondPtr;
// Read where we should jump to.
HashEntryI = TokBuf + ReadLE32(NextPPCondPtr);
uint32_t NextIdx = ReadLE32(NextPPCondPtr);
// By construction NextIdx will be zero if this is a #endif. This is useful
// to know to obviate lexing another token.
bool isEndif = NextIdx == 0;
// This case can occur when we see something like this:
//
// #if ...
// /* a comment or nothing */
// #elif
//
// If we are skipping the first #if block it will be the case that CurPtr
// already points 'elif'. Just return.
if (CurPtr > HashEntryI) {
assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE);
// Did we reach a #endif? If so, go ahead and consume that token as well.
if (isEndif)
CurPtr += DISK_TOKEN_SIZE*2;
else
LastHashTokPtr = HashEntryI;
return isEndif;
}
// Otherwise, we need to advance. Update CurPtr to point to the '#' token.
CurPtr = HashEntryI;
// Update the location of the last observed '#'. This is useful if we
// are skipping multiple blocks.
LastHashTokPtr = CurPtr;
// Skip the '#' token.
assert(((tok::TokenKind)*CurPtr) == tok::hash);
CurPtr += DISK_TOKEN_SIZE;
// Did we reach a #endif? If so, go ahead and consume that token as well.
if (isEndif) { CurPtr += DISK_TOKEN_SIZE*2; }
return isEndif;
}
SourceLocation PTHLexer::getSourceLocation() {
// getSourceLocation is not on the hot path. It is used to get the location
// of the next token when transitioning back to this lexer when done
// handling a #included file. Just read the necessary data from the token
// data buffer to construct the SourceLocation object.
// NOTE: This is a virtual function; hence it is defined out-of-line.
const unsigned char *OffsetPtr = CurPtr + (DISK_TOKEN_SIZE - 4);
uint32_t Offset = ReadLE32(OffsetPtr);
return FileStartLoc.getFileLocWithOffset(Offset);
}
//===----------------------------------------------------------------------===//
// getSpelling() - Use cached data in PTH files for getSpelling().
//===----------------------------------------------------------------------===//
unsigned PTHManager::getSpelling(FileID FID, unsigned FPos,
const char *&Buffer) {
llvm::DenseMap<FileID, PTHSpellingSearch*>::iterator I =SpellingMap.find(FID);
if (I == SpellingMap.end())
return 0;
return I->second->getSpellingBinarySearch(FPos, Buffer);
}
unsigned PTHManager::getSpelling(SourceLocation Loc, const char *&Buffer) {
SourceManager &SM = PP->getSourceManager();
Loc = SM.getSpellingLoc(Loc);
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedFileLoc(Loc);
return getSpelling(LocInfo.first, LocInfo.second, Buffer);
}
unsigned PTHManager::getSpellingAtPTHOffset(unsigned PTHOffset,
const char *&Buffer) {
assert(PTHOffset < Buf->getBufferSize());
const unsigned char* Ptr =
(const unsigned char*)Buf->getBufferStart() + PTHOffset;
// The string is prefixed by 16 bits for its length, followed by the string
// itself.
unsigned Len = ReadUnalignedLE16(Ptr);
Buffer = (const char *)Ptr;
return Len;
}
unsigned PTHSpellingSearch::getSpellingLinearSearch(unsigned FPos,
const char *&Buffer) {
const unsigned char *Ptr = LinearItr;
unsigned Len = 0;
if (Ptr == TableEnd)
return getSpellingBinarySearch(FPos, Buffer);
do {
uint32_t TokOffset = ReadLE32(Ptr);
if (TokOffset > FPos)
return getSpellingBinarySearch(FPos, Buffer);
// Did we find a matching token offset for this spelling?
if (TokOffset == FPos) {
uint32_t SpellingPTHOffset = ReadLE32(Ptr);
Len = PTHMgr.getSpellingAtPTHOffset(SpellingPTHOffset, Buffer);
break;
}
} while (Ptr != TableEnd);
LinearItr = Ptr;
return Len;
}
unsigned PTHSpellingSearch::getSpellingBinarySearch(unsigned FPos,
const char *&Buffer) {
assert((TableEnd - TableBeg) % SpellingEntrySize == 0);
assert(TableEnd >= TableBeg);
if (TableEnd == TableBeg)
return 0;
unsigned min = 0;
const unsigned char *tb = TableBeg;
unsigned max = NumSpellings;
do {
unsigned i = (max - min) / 2 + min;
const unsigned char *Ptr = tb + (i * SpellingEntrySize);
uint32_t TokOffset = ReadLE32(Ptr);
if (TokOffset > FPos) {
max = i;
assert(!(max == min) || (min == i));
continue;
}
if (TokOffset < FPos) {
if (i == min)
break;
min = i;
continue;
}
uint32_t SpellingPTHOffset = ReadLE32(Ptr);
return PTHMgr.getSpellingAtPTHOffset(SpellingPTHOffset, Buffer);
}
while (min != max);
return 0;
}
unsigned PTHLexer::getSpelling(SourceLocation Loc, const char *&Buffer) {
SourceManager &SM = PP->getSourceManager();
Loc = SM.getSpellingLoc(Loc);
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedFileLoc(Loc);
FileID FID = LocInfo.first;
unsigned FPos = LocInfo.second;
if (FID == getFileID())
return MySpellingSrch.getSpellingLinearSearch(FPos, Buffer);
return PTHMgr.getSpelling(FID, FPos, Buffer);
}
//===----------------------------------------------------------------------===//
// Internal Data Structures for PTH file lookup and resolving identifiers.
//===----------------------------------------------------------------------===//
/// PTHFileLookup - This internal data structure is used by the PTHManager
/// to map from FileEntry objects managed by FileManager to offsets within
/// the PTH file.
namespace {
class VISIBILITY_HIDDEN PTHFileLookup {
public:
class Val {
uint32_t TokenOff;
uint32_t PPCondOff;
uint32_t SpellingOff;
public:
Val() : TokenOff(~0) {}
Val(uint32_t toff, uint32_t poff, uint32_t soff)
: TokenOff(toff), PPCondOff(poff), SpellingOff(soff) {}
bool isValid() const { return TokenOff != ~((uint32_t)0); }
uint32_t getTokenOffset() const {
assert(isValid() && "PTHFileLookup entry initialized.");
return TokenOff;
}
uint32_t getPPCondOffset() const {
assert(isValid() && "PTHFileLookup entry initialized.");
return PPCondOff;
}
uint32_t getSpellingOffset() const {
assert(isValid() && "PTHFileLookup entry initialized.");
return SpellingOff;
}
};
private:
llvm::StringMap<Val> FileMap;
public:
PTHFileLookup() {};
bool isEmpty() const {
return FileMap.empty();
}
Val Lookup(const FileEntry* FE) {
const char* s = FE->getName();
unsigned size = strlen(s);
return FileMap.GetOrCreateValue(s, s+size).getValue();
}
void ReadTable(const unsigned char* D) {
uint32_t N = ReadLE32(D); // Read the length of the table.
for ( ; N > 0; --N) { // The rest of the data is the table itself.
uint32_t Len = ReadLE32(D);
const char* s = (const char *)D;
D += Len;
uint32_t TokenOff = ReadLE32(D);
uint32_t PPCondOff = ReadLE32(D);
uint32_t SpellingOff = ReadLE32(D);
FileMap.GetOrCreateValue(s, s+Len).getValue() =
Val(TokenOff, PPCondOff, SpellingOff);
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// PTHManager methods.
//===----------------------------------------------------------------------===//
PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup,
const unsigned char* idDataTable,
IdentifierInfo** perIDCache,
const unsigned char* sortedIdTable, unsigned numIds)
: Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup),
IdDataTable(idDataTable), SortedIdTable(sortedIdTable),
NumIds(numIds), PP(0) {}
PTHManager::~PTHManager() {
delete Buf;
delete (PTHFileLookup*) FileLookup;
free(PerIDCache);
}
PTHManager* PTHManager::Create(const std::string& file) {
// Memory map the PTH file.
llvm::OwningPtr<llvm::MemoryBuffer>
File(llvm::MemoryBuffer::getFile(file.c_str()));
if (!File)
return 0;
// Get the buffer ranges and check if there are at least three 32-bit
// words at the end of the file.
const unsigned char* BufBeg = (unsigned char*)File->getBufferStart();
const unsigned char* BufEnd = (unsigned char*)File->getBufferEnd();
if(!(BufEnd > BufBeg + sizeof(uint32_t)*3)) {
assert(false && "Invalid PTH file.");
return 0; // FIXME: Proper error diagnostic?
}
// Compute the address of the index table at the end of the PTH file.
// This table contains the offset of the file lookup table, the
// persistent ID -> identifer data table.
// FIXME: We should just embed this offset in the PTH file.
const unsigned char* EndTable = BufEnd - sizeof(uint32_t)*4;
// Construct the file lookup table. This will be used for mapping from
// FileEntry*'s to cached tokens.
const unsigned char* FileTableOffset = EndTable + sizeof(uint32_t)*3;
const unsigned char* FileTable = BufBeg + ReadLE32(FileTableOffset);
if (!(FileTable > BufBeg && FileTable < BufEnd)) {
assert(false && "Invalid PTH file.");
return 0; // FIXME: Proper error diagnostic?
}
llvm::OwningPtr<PTHFileLookup> FL(new PTHFileLookup());
FL->ReadTable(FileTable);
if (FL->isEmpty())
return 0;
// Get the location of the table mapping from persistent ids to the
// data needed to reconstruct identifiers.
const unsigned char* IDTableOffset = EndTable + sizeof(uint32_t)*1;
const unsigned char* IData = BufBeg + ReadLE32(IDTableOffset);
if (!(IData >= BufBeg && IData < BufEnd)) {
assert(false && "Invalid PTH file.");
return 0; // FIXME: Proper error diagnostic?
}
// Get the location of the lexigraphically-sorted table of persistent IDs.
const unsigned char* SortedIdTableOffset = EndTable + sizeof(uint32_t)*2;
const unsigned char* SortedIdTable = BufBeg + ReadLE32(SortedIdTableOffset);
if (!(SortedIdTable >= BufBeg && SortedIdTable < BufEnd)) {
assert(false && "Invalid PTH file.");
return 0; // FIXME: Proper error diagnostic?
}
// Get the number of IdentifierInfos and pre-allocate the identifier cache.
uint32_t NumIds = ReadLE32(IData);
// Pre-allocate the peristent ID -> IdentifierInfo* cache. We use calloc()
// so that we in the best case only zero out memory once when the OS returns
// us new pages.
IdentifierInfo** PerIDCache = 0;
if (NumIds) {
PerIDCache = (IdentifierInfo**)calloc(NumIds, sizeof(*PerIDCache));
if (!PerIDCache) {
assert(false && "Could not allocate Persistent ID cache.");
return 0;
}
}
// Create the new PTHManager.
return new PTHManager(File.take(), FL.take(), IData, PerIDCache,
SortedIdTable, NumIds);
}
IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) {
// Look in the PTH file for the string data for the IdentifierInfo object.
const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID;
const unsigned char* IDData =
(const unsigned char*)Buf->getBufferStart() + ReadLE32(TableEntry);
assert(IDData < (const unsigned char*)Buf->getBufferEnd());
// Allocate the object.
std::pair<IdentifierInfo,const unsigned char*> *Mem =
Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >();
Mem->second = IDData;
IdentifierInfo *II = new ((void*) Mem) IdentifierInfo();
// Store the new IdentifierInfo in the cache.
PerIDCache[PersistentID] = II;
return II;
}
IdentifierInfo* PTHManager::get(const char *NameStart, const char *NameEnd) {
unsigned min = 0;
unsigned max = NumIds;
unsigned Len = NameEnd - NameStart;
do {
unsigned i = (max - min) / 2 + min;
const unsigned char *Ptr = SortedIdTable + (i * 4);
// Read the persistentID.
unsigned perID = ReadLE32(Ptr);
// Get the IdentifierInfo.
IdentifierInfo* II = GetIdentifierInfo(perID);
// First compare the lengths.
unsigned IILen = II->getLength();
if (Len < IILen) goto IsLess;
if (Len > IILen) goto IsGreater;
// Now compare the strings!
{
signed comp = strncmp(NameStart, II->getName(), Len);
if (comp < 0) goto IsLess;
if (comp > 0) goto IsGreater;
}
// We found a match!
return II;
IsGreater:
if (i == min) break;
min = i;
continue;
IsLess:
max = i;
assert(!(max == min) || (min == i));
}
while (min != max);
return 0;
}
PTHLexer *PTHManager::CreateLexer(FileID FID) {
const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID);
if (!FE)
return 0;
// Lookup the FileEntry object in our file lookup data structure. It will
// return a variant that indicates whether or not there is an offset within
// the PTH file that contains cached tokens.
PTHFileLookup::Val FileData = ((PTHFileLookup*)FileLookup)->Lookup(FE);
if (!FileData.isValid()) // No tokens available.
return 0;
const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart();
// Compute the offset of the token data within the buffer.
const unsigned char* data = BufStart + FileData.getTokenOffset();
// Get the location of pp-conditional table.
const unsigned char* ppcond = BufStart + FileData.getPPCondOffset();
uint32_t Len = ReadLE32(ppcond);
if (Len == 0) ppcond = 0;
// Get the location of the spelling table.
const unsigned char* spellingTable = BufStart + FileData.getSpellingOffset();
Len = ReadLE32(spellingTable);
if (Len == 0) spellingTable = 0;
assert(data < (const unsigned char*)Buf->getBufferEnd());
// Create the SpellingSearch object for this FileID.
PTHSpellingSearch* ss = new PTHSpellingSearch(*this, Len, spellingTable);
SpellingMap[FID] = ss;
assert(PP && "No preprocessor set yet!");
return new PTHLexer(*PP, FID, data, ppcond, *ss, *this);
}