llvm-project/mlir/test/python/ir/array_attributes.py

241 lines
7.5 KiB
Python

# RUN: %PYTHON %s | FileCheck %s
# Note that this is separate from ir_attributes.py since it depends on numpy,
# and we may want to disable if not available.
import gc
from mlir.ir import *
import numpy as np
def run(f):
print("\nTEST:", f.__name__)
f()
gc.collect()
assert Context._get_live_count() == 0
################################################################################
# Tests of the array/buffer .get() factory method on unsupported dtype.
################################################################################
def testGetDenseElementsUnsupported():
with Context():
array = np.array([["hello", "goodbye"]])
try:
attr = DenseElementsAttr.get(array)
except ValueError as e:
# CHECK: unimplemented array format conversion from format:
print(e)
run(testGetDenseElementsUnsupported)
################################################################################
# Splats.
################################################################################
# CHECK-LABEL: TEST: testGetDenseElementsSplatInt
def testGetDenseElementsSplatInt():
with Context(), Location.unknown():
t = IntegerType.get_signless(32)
element = IntegerAttr.get(t, 555)
shaped_type = RankedTensorType.get((2, 3, 4), t)
attr = DenseElementsAttr.get_splat(shaped_type, element)
# CHECK: dense<555> : tensor<2x3x4xi32>
print(attr)
# CHECK: is_splat: True
print("is_splat:", attr.is_splat)
run(testGetDenseElementsSplatInt)
# CHECK-LABEL: TEST: testGetDenseElementsSplatFloat
def testGetDenseElementsSplatFloat():
with Context(), Location.unknown():
t = F32Type.get()
element = FloatAttr.get(t, 1.2)
shaped_type = RankedTensorType.get((2, 3, 4), t)
attr = DenseElementsAttr.get_splat(shaped_type, element)
# CHECK: dense<1.200000e+00> : tensor<2x3x4xf32>
print(attr)
run(testGetDenseElementsSplatFloat)
# CHECK-LABEL: TEST: testGetDenseElementsSplatErrors
def testGetDenseElementsSplatErrors():
with Context(), Location.unknown():
t = F32Type.get()
other_t = F64Type.get()
element = FloatAttr.get(t, 1.2)
other_element = FloatAttr.get(other_t, 1.2)
shaped_type = RankedTensorType.get((2, 3, 4), t)
dynamic_shaped_type = UnrankedTensorType.get(t)
non_shaped_type = t
try:
attr = DenseElementsAttr.get_splat(non_shaped_type, element)
except ValueError as e:
# CHECK: Expected a static ShapedType for the shaped_type parameter: Type(f32)
print(e)
try:
attr = DenseElementsAttr.get_splat(dynamic_shaped_type, element)
except ValueError as e:
# CHECK: Expected a static ShapedType for the shaped_type parameter: Type(tensor<*xf32>)
print(e)
try:
attr = DenseElementsAttr.get_splat(shaped_type, other_element)
except ValueError as e:
# CHECK: Shaped element type and attribute type must be equal: shaped=Type(tensor<2x3x4xf32>), element=Attribute(1.200000e+00 : f64)
print(e)
run(testGetDenseElementsSplatErrors)
################################################################################
# Tests of the array/buffer .get() factory method, in all of its permutations.
################################################################################
### float and double arrays.
# CHECK-LABEL: TEST: testGetDenseElementsF32
def testGetDenseElementsF32():
with Context():
array = np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float32)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1.100000e+00, 2.200000e+00, 3.300000e+00], [4.400000e+00, 5.500000e+00, 6.600000e+00]]> : tensor<2x3xf32>
print(attr)
# CHECK: is_splat: False
print("is_splat:", attr.is_splat)
# CHECK: {{\[}}[1.1 2.2 3.3]
# CHECK: {{\[}}4.4 5.5 6.6]]
print(np.array(attr))
run(testGetDenseElementsF32)
# CHECK-LABEL: TEST: testGetDenseElementsF64
def testGetDenseElementsF64():
with Context():
array = np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float64)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1.100000e+00, 2.200000e+00, 3.300000e+00], [4.400000e+00, 5.500000e+00, 6.600000e+00]]> : tensor<2x3xf64>
print(attr)
# CHECK: {{\[}}[1.1 2.2 3.3]
# CHECK: {{\[}}4.4 5.5 6.6]]
print(np.array(attr))
run(testGetDenseElementsF64)
### 32 bit integer arrays
# CHECK-LABEL: TEST: testGetDenseElementsI32Signless
def testGetDenseElementsI32Signless():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi32>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
run(testGetDenseElementsI32Signless)
# CHECK-LABEL: TEST: testGetDenseElementsUI32Signless
def testGetDenseElementsUI32Signless():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint32)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi32>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
run(testGetDenseElementsUI32Signless)
# CHECK-LABEL: TEST: testGetDenseElementsI32
def testGetDenseElementsI32():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)
attr = DenseElementsAttr.get(array, signless=False)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xsi32>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
run(testGetDenseElementsI32)
# CHECK-LABEL: TEST: testGetDenseElementsUI32
def testGetDenseElementsUI32():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint32)
attr = DenseElementsAttr.get(array, signless=False)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xui32>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
run(testGetDenseElementsUI32)
## 64bit integer arrays
# CHECK-LABEL: TEST: testGetDenseElementsI64Signless
def testGetDenseElementsI64Signless():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi64>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
run(testGetDenseElementsI64Signless)
# CHECK-LABEL: TEST: testGetDenseElementsUI64Signless
def testGetDenseElementsUI64Signless():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint64)
attr = DenseElementsAttr.get(array)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi64>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
run(testGetDenseElementsUI64Signless)
# CHECK-LABEL: TEST: testGetDenseElementsI64
def testGetDenseElementsI64():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64)
attr = DenseElementsAttr.get(array, signless=False)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xsi64>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
run(testGetDenseElementsI64)
# CHECK-LABEL: TEST: testGetDenseElementsUI64
def testGetDenseElementsUI64():
with Context():
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint64)
attr = DenseElementsAttr.get(array, signless=False)
# CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xui64>
print(attr)
# CHECK: {{\[}}[1 2 3]
# CHECK: {{\[}}4 5 6]]
print(np.array(attr))
run(testGetDenseElementsUI64)