llvm-project/llvm/lib/Target/Hexagon/HexagonISelLowering.h

450 lines
20 KiB
C++

//===-- HexagonISelLowering.h - Hexagon DAG Lowering Interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Hexagon uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H
#define LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H
#include "Hexagon.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/Support/MachineValueType.h"
#include <cstdint>
#include <utility>
namespace llvm {
namespace HexagonISD {
enum NodeType : unsigned {
OP_BEGIN = ISD::BUILTIN_OP_END,
CONST32 = OP_BEGIN,
CONST32_GP, // For marking data present in GP.
ADDC, // Add with carry: (X, Y, Cin) -> (X+Y, Cout).
SUBC, // Sub with carry: (X, Y, Cin) -> (X+~Y+Cin, Cout).
ALLOCA,
AT_GOT, // Index in GOT.
AT_PCREL, // Offset relative to PC.
CALL, // Function call.
CALLnr, // Function call that does not return.
CALLR,
RET_FLAG, // Return with a flag operand.
BARRIER, // Memory barrier.
JT, // Jump table.
CP, // Constant pool.
COMBINE,
VSPLAT, // Generic splat, selection depends on argument/return
// types.
VASL,
VASR,
VLSR,
TSTBIT,
INSERT,
EXTRACTU,
VEXTRACTW,
VINSERTW0,
VROR,
TC_RETURN,
EH_RETURN,
DCFETCH,
READCYCLE,
D2P, // Convert 8-byte value to 8-bit predicate register. [*]
P2D, // Convert 8-bit predicate register to 8-byte value. [*]
V2Q, // Convert HVX vector to a vector predicate reg. [*]
Q2V, // Convert vector predicate to an HVX vector. [*]
// [*] The equivalence is defined as "Q <=> (V != 0)",
// where the != operation compares bytes.
// Note: V != 0 is implemented as V >u 0.
QCAT,
QTRUE,
QFALSE,
VZERO,
VSPLATW, // HVX splat of a 32-bit word with an arbitrary result type.
TYPECAST, // No-op that's used to convert between different legal
// types in a register.
VALIGN, // Align two vectors (in Op0, Op1) to one that would have
// been loaded from address in Op2.
VALIGNADDR, // Align vector address: Op0 & -Op1, except when it is
// an address in a vector load, then it's a no-op.
OP_END
};
} // end namespace HexagonISD
class HexagonSubtarget;
class HexagonTargetLowering : public TargetLowering {
int VarArgsFrameOffset; // Frame offset to start of varargs area.
const HexagonTargetMachine &HTM;
const HexagonSubtarget &Subtarget;
bool CanReturnSmallStruct(const Function* CalleeFn, unsigned& RetSize)
const;
void promoteLdStType(MVT VT, MVT PromotedLdStVT);
public:
explicit HexagonTargetLowering(const TargetMachine &TM,
const HexagonSubtarget &ST);
bool isHVXVectorType(MVT Ty) const;
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet,
bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const;
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const override;
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
bool isTruncateFree(EVT VT1, EVT VT2) const override;
bool isCheapToSpeculateCttz() const override { return true; }
bool isCheapToSpeculateCtlz() const override { return true; }
bool isCtlzFast() const override { return true; }
bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
/// Return true if an FMA operation is faster than a pair of mul and add
/// instructions. fmuladd intrinsics will be expanded to FMAs when this
/// method returns true (and FMAs are legal), otherwise fmuladd is
/// expanded to mul + add.
bool isFMAFasterThanFMulAndFAdd(EVT) const override;
// Should we expand the build vector with shuffles?
bool shouldExpandBuildVectorWithShuffles(EVT VT,
unsigned DefinedValues) const override;
bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
const override;
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const override;
const char *getTargetNodeName(unsigned Opcode) const override;
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerANY_EXTEND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEH_LABEL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
SDValue
LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const override;
SDValue LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const;
SDValue LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const;
SDValue LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const;
SDValue GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
GlobalAddressSDNode *GA, SDValue InFlag, EVT PtrVT,
unsigned ReturnReg, unsigned char OperandFlags) const;
SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const override;
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals,
const SmallVectorImpl<SDValue> &OutVals,
SDValue Callee) const;
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const;
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
bool CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const override;
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const override;
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
/// If a physical register, this returns the register that receives the
/// exception address on entry to an EH pad.
unsigned
getExceptionPointerRegister(const Constant *PersonalityFn) const override {
return Hexagon::R0;
}
/// If a physical register, this returns the register that receives the
/// exception typeid on entry to a landing pad.
unsigned
getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
return Hexagon::R1;
}
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
EVT getSetCCResultType(const DataLayout &, LLVMContext &C,
EVT VT) const override {
if (!VT.isVector())
return MVT::i1;
else
return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
}
bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
SDValue &Base, SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const override;
ConstraintType getConstraintType(StringRef Constraint) const override;
std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint, MVT VT) const override;
unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
if (ConstraintCode == "o")
return InlineAsm::Constraint_o;
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
}
// Intrinsics
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
/// The type may be VoidTy, in which case only return true if the addressing
/// mode is legal for a load/store of any legal type.
/// TODO: Handle pre/postinc as well.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
Type *Ty, unsigned AS,
Instruction *I = nullptr) const override;
/// Return true if folding a constant offset with the given GlobalAddress
/// is legal. It is frequently not legal in PIC relocation models.
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can
/// compare a register against the immediate without having to materialize
/// the immediate into a register.
bool isLegalICmpImmediate(int64_t Imm) const override;
EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
MachineFunction &MF) const override;
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
unsigned Align, bool *Fast) const override;
/// Returns relocation base for the given PIC jumptable.
SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG)
const override;
// Handling of atomic RMW instructions.
Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const override;
Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
Value *Addr, AtomicOrdering Ord) const override;
AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;
AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override {
return AtomicExpansionKind::LLSC;
}
private:
void initializeHVXLowering();
std::pair<SDValue,int> getBaseAndOffset(SDValue Addr) const;
bool getBuildVectorConstInts(ArrayRef<SDValue> Values, MVT VecTy,
SelectionDAG &DAG,
MutableArrayRef<ConstantInt*> Consts) const;
SDValue buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy,
SelectionDAG &DAG) const;
SDValue buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy,
SelectionDAG &DAG) const;
SDValue extractVector(SDValue VecV, SDValue IdxV, const SDLoc &dl,
MVT ValTy, MVT ResTy, SelectionDAG &DAG) const;
SDValue insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
const SDLoc &dl, MVT ValTy, SelectionDAG &DAG) const;
SDValue expandPredicate(SDValue Vec32, const SDLoc &dl,
SelectionDAG &DAG) const;
SDValue contractPredicate(SDValue Vec64, const SDLoc &dl,
SelectionDAG &DAG) const;
SDValue getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) const;
bool isUndef(SDValue Op) const {
if (Op.isMachineOpcode())
return Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF;
return Op.getOpcode() == ISD::UNDEF;
}
SDValue getInstr(unsigned MachineOpc, const SDLoc &dl, MVT Ty,
ArrayRef<SDValue> Ops, SelectionDAG &DAG) const {
SDNode *N = DAG.getMachineNode(MachineOpc, dl, Ty, Ops);
return SDValue(N, 0);
}
SDValue getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) const;
using VectorPair = std::pair<SDValue, SDValue>;
using TypePair = std::pair<MVT, MVT>;
SDValue getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
const SDLoc &dl, SelectionDAG &DAG) const;
MVT ty(SDValue Op) const {
return Op.getValueType().getSimpleVT();
}
TypePair ty(const VectorPair &Ops) const {
return { Ops.first.getValueType().getSimpleVT(),
Ops.second.getValueType().getSimpleVT() };
}
MVT tyScalar(MVT Ty) const {
if (!Ty.isVector())
return Ty;
return MVT::getIntegerVT(Ty.getSizeInBits());
}
MVT tyVector(MVT Ty, MVT ElemTy) const {
if (Ty.isVector() && Ty.getVectorElementType() == ElemTy)
return Ty;
unsigned TyWidth = Ty.getSizeInBits();
unsigned ElemWidth = ElemTy.getSizeInBits();
assert((TyWidth % ElemWidth) == 0);
return MVT::getVectorVT(ElemTy, TyWidth/ElemWidth);
}
MVT typeJoin(const TypePair &Tys) const;
TypePair typeSplit(MVT Ty) const;
MVT typeExtElem(MVT VecTy, unsigned Factor) const;
MVT typeTruncElem(MVT VecTy, unsigned Factor) const;
SDValue opJoin(const VectorPair &Ops, const SDLoc &dl,
SelectionDAG &DAG) const;
VectorPair opSplit(SDValue Vec, const SDLoc &dl, SelectionDAG &DAG) const;
SDValue opCastElem(SDValue Vec, MVT ElemTy, SelectionDAG &DAG) const;
bool isHvxSingleTy(MVT Ty) const;
bool isHvxPairTy(MVT Ty) const;
SDValue convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
SelectionDAG &DAG) const;
SDValue getIndexInWord32(SDValue Idx, MVT ElemTy, SelectionDAG &DAG) const;
SDValue getByteShuffle(const SDLoc &dl, SDValue Op0, SDValue Op1,
ArrayRef<int> Mask, SelectionDAG &DAG) const;
SDValue buildHvxVectorReg(ArrayRef<SDValue> Values, const SDLoc &dl,
MVT VecTy, SelectionDAG &DAG) const;
SDValue buildHvxVectorPred(ArrayRef<SDValue> Values, const SDLoc &dl,
MVT VecTy, SelectionDAG &DAG) const;
SDValue createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
unsigned BitBytes, bool ZeroFill,
SelectionDAG &DAG) const;
SDValue extractHvxElementReg(SDValue VecV, SDValue IdxV, const SDLoc &dl,
MVT ResTy, SelectionDAG &DAG) const;
SDValue extractHvxElementPred(SDValue VecV, SDValue IdxV, const SDLoc &dl,
MVT ResTy, SelectionDAG &DAG) const;
SDValue insertHvxElementReg(SDValue VecV, SDValue IdxV, SDValue ValV,
const SDLoc &dl, SelectionDAG &DAG) const;
SDValue insertHvxElementPred(SDValue VecV, SDValue IdxV, SDValue ValV,
const SDLoc &dl, SelectionDAG &DAG) const;
SDValue extractHvxSubvectorReg(SDValue VecV, SDValue IdxV, const SDLoc &dl,
MVT ResTy, SelectionDAG &DAG) const;
SDValue extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, const SDLoc &dl,
MVT ResTy, SelectionDAG &DAG) const;
SDValue insertHvxSubvectorReg(SDValue VecV, SDValue SubV, SDValue IdxV,
const SDLoc &dl, SelectionDAG &DAG) const;
SDValue insertHvxSubvectorPred(SDValue VecV, SDValue SubV, SDValue IdxV,
const SDLoc &dl, SelectionDAG &DAG) const;
SDValue extendHvxVectorPred(SDValue VecV, const SDLoc &dl, MVT ResTy,
bool ZeroExt, SelectionDAG &DAG) const;
SDValue LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxMul(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxSetCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxShift(SDValue Op, SelectionDAG &DAG) const;
SDValue SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const;
SDValue SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const;
std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT)
const override;
bool isHvxOperation(SDValue Op) const;
SDValue LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const;
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H